Visual Sensor Placement Optimization with 3D Animation for Cattle Health Monitoring in a Confined Operation
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Use of Visual Sensors in Livestock Monitoring
1.2. Camera Placement Optimization
2. Materials and Methods
2.1. A Case Study for Camera Coverage Calculation
2.1.1. 3D Environment Creation
2.1.2. Camera Placement
2.1.3. Coverage Calculation
2.2. Multi-camera Placement Optimization
2.2.1. Approach 1: Coverage Optimization with Budget Constraints
2.2.2. Approach 2: Weighted Sum of Coverage and Budget Optimization
2.2.3. Common Constraints for Both Approaches
2.2.4. Camera Coverage Award
2.2.5. Genetic Algorithm Implementation
3. Results
3.1. A Case Study of Camera Coverage for Single Camera
3.2. Multi-Camera Coverage Optimization with Genetic Algorithm
3.2.1. Coverage Optimization with Budget as a Constraint
3.2.2. Coverage Optimization with Budget Integrated into the Optimization Function
4. Discussions
4.1. Findings
4.2. Limitations and Recommendations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wongsriworaphon, A.; Arnonkijpanich, B.; Pathumnakul, S. An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Comput. Electron. Agric. 2015, 115, 26–33. [Google Scholar] [CrossRef]
- Poursaberi, A.; Bahr, C.; Pluk, A.; Van Nuffel, A.; Berckmans, D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Comput. Electron. Agric. 2010, 74, 110–119. [Google Scholar] [CrossRef]
- Andrew, W.; Greatwood, C.; Burghardt, T. Aerial Animal Biometrics: Individual Friesian Cattle Recovery and Visual Identification via an Autonomous UAV with Onboard Deep Inference. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Macau, China, 3–8 November 2019. [Google Scholar]
- Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Tuyttens, F.; Berckmans, D. Automatic monitoring of pig locomotion using image analysis. Livest. Sci. 2014, 159, 141–148. [Google Scholar] [CrossRef]
- Nilsson, M.; Herlin, A.H.; Ardö, H.; Guzhva, O.; Aström, K.; Bergsten, C. Development of automatic surveillance of animal behaviour and welfare using image analysis and machine learned segmentation technique. Animal 2015, 9, 1859–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viazzi, S.; Bahr, C.; Schlageter-Tello, A.; Van Hertem, T.; Romanini, C.E.B.; Pluk, A.; Halachmi, I.; Lokhorst, C.; Berckmans, D. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. J. Dairy Sci. 2013, 96, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Matthews, S.G.; Miller, A.L.; Clapp, J.; Plötz, T.; Kyriazakis, I. Early detection of health and welfare compromises through automated detection of behavioural changes in pigs. Vet. J. 2016, 217, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Xiong, Y.; Li, K.; Liu, L.; Yan, L.; Ding, Y.; Lin, X.; Yang, X.; Shen, M. An automatic splitting method for the adhesive piglets’ gray scale image based on the ellipse shape feature. Comput. Electron. Agric. 2016, 120, 53–62. [Google Scholar] [CrossRef]
- Nasirahmadi, A.; Hensel, O.; Edwards, S.A.; Sturm, B. Automatic detection of mounting behaviours among pigs using image analysis. Comput. Electron. Agric. 2016, 124, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Kashiha, M.A.; Bahr, C.; Ott, S.; Moons, C.P.H.; Niewold, T.A.; Ödberg, F.O.; Berckmans, D. Automatic identification of marked pigs in a pen using image pattern recognition. Comput. Electron. Agric. 2013, 93, 111–120. [Google Scholar] [CrossRef]
- Andrew, W.; Hannuna, S.; Campbell, N.; Burghardt, T. Automatic individual holstein friesian cattle identification via selective local coat pattern matching in RGB-D imagery. In Proceedings of the International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016. [Google Scholar]
- Tasdemir, S.; Urkmez, A.; Inal, S. Determination of body measurements on the Holstein cows using digital image analysis and estimation of live weight with regression analysis. Comput. Electron. Agric. 2011, 76, 189–197. [Google Scholar] [CrossRef]
- Viazzi, S.; Ismayilova, G.; Oczak, M.; Sonoda, L.T.; Fels, M.; Guarino, M.; Vranken, E.; Hartung, J.; Bahr, C.; Berckmans, D. Image feature extraction for classification of aggressive interactions among pigs. Comput. Electron. Agric. 2014, 104, 57–62. [Google Scholar] [CrossRef]
- Kim, J.; Chung, Y.; Choi, Y.; Sa, J.; Kim, H.; Chung, Y.; Park, D.; Kim, H. Depth-based detection of standing-pigs in moving noise environments. Sensors 2017, 17, 2757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown-Brandl, T.M.; Eigenberg, R.A. Development of a livestock feeding behavior monitoring system. Trans. ASABE 2011, 54, 1913–1920. [Google Scholar] [CrossRef]
- Pluk, A.; Bahr, C.; Leroy, T.; Poursaberi, A.; Song, X.; Vranken, E.; Maertens, W.; Van Nuffel, A.; Berckmans, D. Evaluation of Step Overlap as an Automatic Measure in Dairy Cow Locomotion. Trans. ASABE 2010, 53, 1305–1312. [Google Scholar] [CrossRef]
- Martinez-Ortiz, C.; Everson, R.; Mottram, T. Video tracking of dairy cows for assessing mobility scores. In Proceedings of the Precision Livestock Farming 2013—Papers Presented at the 6th European Conference on Precision Livestock Farming, ECPLF, Leuven, Belgium, 10–12 September 2013. [Google Scholar]
- Kelly, H. After Boston: The Pros and Cons of Surveillance Cameras. Available online: https://www.cnn.com/2013/04/26/tech/innovation/security-cameras-boston-bombings/index.html (accessed on 4 May 2022).
- Chen, H.T.; Wu, S.W.; Hsieh, S.H. Visualization of CCTV coverage in public building space using BIM technology. Vis. Eng. 2013, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Luo, H.; Skitmore, M.; Li, Q.; Zhong, B. Optimal Camera Placement for Monitoring Safety in Metro Station Construction Work. J. Constr. Eng. Manag. 2019, 145, 04018118. [Google Scholar] [CrossRef] [Green Version]
- Erdem, U.M.; Sclaroff, S. Automated camera layout to satisfy task-specific and floor plan-specific coverage requirements. Comput. Vis. Image Underst. 2006, 103, 156–169. [Google Scholar] [CrossRef] [Green Version]
- Yabuta, K.; Kitazawa, H. Optimum camera placement considering camera specification for security monitoring. In Proceedings of the IEEE International Symposium on Circuits and Systems, Seattle, WA, USA, 18–21 May 2008. [Google Scholar]
- Cheng, B.; Cui, L.; Jia, W.; Zhao, W.; Gerhard, P.H. Multiple region of interest coverage in camera sensor networks for tele-intensive care units. IEEE Trans. Ind. Inform. 2016, 12, 2331–2341. [Google Scholar] [CrossRef]
- Kim, K.; Murray, A.T.; Xiao, N. A multiobjective evolutionary algorithm for surveillance sensor placement. Environ. Plan. B Plan. Des. 2008, 35, 935–948. [Google Scholar] [CrossRef]
- Indu, S.; Bhattacharyya, A.; Mittal, N.R.; Chaudhury, S. Optimal sensor placement for surveillance of large spaces. In Proceedings of the 2009 3rd ACM/IEEE International Conference on Distributed Smart Cameras, Como, Italy, 30 August–2 September 2009. [Google Scholar]
- Kim, J.; Ham, Y.; Chung, Y.; Chi, S. Systematic Camera Placement Framework for Operation-Level Visual Monitoring on Construction Jobsites. J. Constr. Eng. Manag. 2019, 145, 04019019. [Google Scholar] [CrossRef] [Green Version]
- Albahri, A.H.; Hammad, A. Simulation-Based Optimization of Surveillance Camera Types, Number, and Placement in Buildings Using BIM. J. Comput. Civ. Eng. 2017, 31, 04017055. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Huang, T.; Zhai, X.; Wang, F.; Wang, C. Computer-Aided Optimization of Surveillance Cameras Placement on Construction Sites. Comput. Civ. Infrastruct. Eng. 2018, 33, 1110–1126. [Google Scholar] [CrossRef]
- Rebai, M.; Le Berre, M.; Hnaien, F.; Snoussi, H. Exact Biobjective Optimization Methods for Camera Coverage Problem in Three-Dimensional Areas. IEEE Sens. J. 2016, 16, 3323–3331. [Google Scholar] [CrossRef]
- The Blender Foundation Blender. Available online: https://www.blender.org/ (accessed on 9 February 2021).
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Konak, A.; Coit, D.W.; Smith, A.E. Multiobjective optimization using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 992–1007. [Google Scholar] [CrossRef]
- Altahir, A.A.; Asirvadam, V.S.; Hamid, N.H.B.; Sebastian, P.; Saad, N.B.; Ibrahim, R.B.; Dass, S.C. Optimizing visual sensor coverage overlaps for multiview surveillance systems. IEEE Sens. J. 2018, 18, 4544–4552. [Google Scholar] [CrossRef]
Pen | Camera | Cell Size | Camera Position | Optimal Camera Angles | Weighted Coverage (%) | Time Required | |
---|---|---|---|---|---|---|---|
Pitch | Yaw | ||||||
Single | A | 0.5 | 7, −9, 15 | 60 | 0 | 99.69 | 613 |
1 | 7, −9, 15 | 60 | 10 | 95.96 | 117 | ||
2 | 3, −9, 15 | 60 | −30 | 102.2 | 56.29 | ||
B | 0.5 | 11, −9, 15 | 60 | 30 | 97.05 | 1765 | |
1 | 0, −9, 15 | 60 | −30 | 94.44 | 332 | ||
2 | 11, −9, 15 | 60 | 30 | 99.05 | 128 | ||
Double | A | 0.5 | 12, −9, 15 | 60 | 0 | 98.28 | 4236 |
1 | 12, −9, 15 | 60 | 0 | 95.18 | 688 | ||
2 | 0, −9, 15 | 60 | −30 | 100 | 196 | ||
B | 0.5 | 12, −9, 15 | 60 | 10 | 91.43 | 1325 | |
1 | 12, −9, 15 | 60 | 10 | 90.82 | 218 | ||
2 | 0, −9, 15 | 60 | −30 | 97.4 | 190 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sourav, A.A.; Peschel, J.M. Visual Sensor Placement Optimization with 3D Animation for Cattle Health Monitoring in a Confined Operation. Animals 2022, 12, 1181. https://doi.org/10.3390/ani12091181
Sourav AA, Peschel JM. Visual Sensor Placement Optimization with 3D Animation for Cattle Health Monitoring in a Confined Operation. Animals. 2022; 12(9):1181. https://doi.org/10.3390/ani12091181
Chicago/Turabian StyleSourav, Abdullah All, and Joshua M. Peschel. 2022. "Visual Sensor Placement Optimization with 3D Animation for Cattle Health Monitoring in a Confined Operation" Animals 12, no. 9: 1181. https://doi.org/10.3390/ani12091181
APA StyleSourav, A. A., & Peschel, J. M. (2022). Visual Sensor Placement Optimization with 3D Animation for Cattle Health Monitoring in a Confined Operation. Animals, 12(9), 1181. https://doi.org/10.3390/ani12091181