Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Diet Preparation
Item | Treatment | ||
---|---|---|---|
Control Group | Corn Group | Barley Group | |
Corn grain | 12.81 | 32.81 | 7.81 |
Barley grain | 0 | 0 | 25 |
Soybean meal | 9.225 | 9.225 | 9.225 |
Wheat bran | 3 | 3 | 3 |
Soda | 0.765 | 0.765 | 0.765 |
Puffing urea | 1.2 | 1.2 | 1.2 |
Premix (1) | 3 | 3 | 3 |
Straw | 10 | 10 | 10 |
Silage corn | 60 | 40 | 40 |
Total | 100 | 100 | 100 |
Nutrient level (2) | |||
Starch | 27.93 | 34.96 | 33.36 |
Crude protain | 7.26 | 8.83 | 8.55 |
Ether extract | 13.87 | 13.75 | 14.58 |
Ash | 2.24 | 2.53 | 2.21 |
Dry matter | 48.66 | 61.56 | 61.31 |
Metabolic energy(MJ/Kg) | 3.32 | 3.20 | 5.25 |
Neutral deterent fibre | 42.25 | 33.77 | 35.19 |
Acid deterent fibre | 20.86 | 16.56 | 17.36 |
Ca | 0.23 | 0.17 | 0.52 |
P | 0.20 | 0.15 | 0.27 |
2.3. Cattle Management
2.4. Determination of Feed Intake
2.5. Sample Collection
2.6. Determination of Proximate Composition and Meat Quality
2.7. Determination of Nucleotides
2.8. Determination of Free Amino Acids
2.9. Determination of Fatty Acids
2.10. Determination of Flavor Substances
2.11. Statistical Analysis
3. Results
3.1. Feed Intake
3.2. Proximate Composition
3.3. Meat Quality
3.4. Umami 5′-Nucleotides
3.5. Free Amino Acids
3.6. Fatty Acids
3.7. Volatile Flavor Substances
4. Discussion
4.1. Feed Intake
4.2. Proximate Composition
4.3. Meat Quality
4.4. Umami 5′-Nucleotides
4.5. Free Amino Acids (FAAs)
4.6. Fatty Acids
4.7. Volatile Flavor Substances
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.P.; Luoreng, Z.M.; Li, F.; Wang, J.R.; Li, N.; Li, S.H. Genetic polymorphisms of lipoprotein lipase gene and their associations with growth traits in xiangxi cattle. Mol. Biol. Rep. 2012, 39, 10331–10338. [Google Scholar] [CrossRef]
- Wang, J.G.; Wu, Y.B. Xiangxi cattle. Hunan Agric. 2021, 6, 28. [Google Scholar]
- Bureau of statistics of the people’s Republic of China China Statistical Yearbook. Beijing: China Statistics Press 2022. Available online: http://www.stats.gov.cn/xxgk/jd/sjjd2020/202201/t20220118_1826603.html (accessed on 6 April 2022).
- Poste, L.M. A sensory perspective of effect of feeds on flavor in meats: Poultry meats. J. Anim. Sci. 1990, 68, 4414–4420. [Google Scholar] [CrossRef] [Green Version]
- Fruet, A.; Trombetta, F.; Stefanello, F.; Speroni, C.; Donadel, J.; De Souza, A.; Júnior, A.R.; Tonetto, C.; Wagner, R.; De Mello, A.; et al. Effects of feeding legume-grass pasture and different concentrate levels on fatty acid profile, volatile compounds, and off-flavor of the M. longissimus thoracis. Meat Sci. 2018, 140, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.V.S.; Oliveira, A.C.; Silva, R.R.; Ribeiro, J.S.; Oliveira, H.C.; Santos, L.S. Crude glycerin in the supplementation of crossbred heifers in tropical pastures. Animal 2021, 15, 100088. [Google Scholar] [CrossRef] [PubMed]
- van Cleef, E.H.C.B.; Almeida, M.T.C.; Perez, H.L.; van Cleef, F.O.S.; Silva, D.A.V.; Ezequiel, J.M.B. Crude glycerin changes ruminal parameters, in vitro greenhouse gas profile, and bacterial fractions of beef cattle. Livest Sci. 2015, 178, 158–164. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.M.; Zhang, K.Y.; Bai, S.P.; Ding, X.M.; Wang, J.P.; Peng, H.W.; Xuan, Y.; Su, Z.W.; Gang, T.; Zeng, Q.F. Dietary resistant potato starch improves growth performance and feather development in pekin ducks fed a low phosphorus diet. Poul. Sci. 2021, 100, 100947. [Google Scholar] [CrossRef]
- Huang, X.L.; Zhong, L.; Kang, Q.; Liu, S.; Feng, Y.; Geng, Y.; Chen, D.; Ou, Y.; Yang, S.; Yin, L.; et al. A high starch diet alters the composition of the intestinal microbiota of largemouth bass micropterus salmoides, which may be associated with the development of enteritis. Front. Microbiol. 2021, 12, 1832. [Google Scholar] [CrossRef]
- Doti, S.; Suarez-Belloch, J.; Latorre, M.A.; Guada, J.A.; Fondevila, M. Effect of dietary starch source on growth performances, digestibility and quality traits of growing pigs. Livest Sci. 2014, 164, 119–127. [Google Scholar] [CrossRef]
- Nizza, A.; Moniello, G. Meat quality and caecal content characteristics of rabbit according to dietary content and botanical origin of starch. World Rabbit Sci. 2000, 8, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Camp, L.K.; Southern, L.L.; Bidner, T.D. Effect of carbohydrate source on growth performance, carcass traits, and meat quality of growing-finishing pigs. J. Anim. Sci. 2003, 81, 2488–2495. [Google Scholar] [CrossRef] [PubMed]
- Favaro, V.; Ezequiel, J.; Almeida, M.; D’Aurea, A.; Paschoaloto, J.; Van Cleef, E.; Junqueira, N.B. Carcass traits and meat quality of Nellore cattle fed different non-fiber carbohydrates sources associated with crude glycerin. Animal 2016, 10, 1402–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, P.J. Properties of corn starch. Spec. Corns 2001, 2, 34–55. [Google Scholar]
- Siyuan, S.; Tong, L.; Liu, R.H. Corn phytochemicals and their health benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Czuchajowska, Z.; Klamczynski, A.; Paszczynska, B.; Baik, B.-K. Structure and functionality of barley starches. Cereal Chem. 1998, 75, 747–754. [Google Scholar] [CrossRef]
- Liu, Q. Understanding starches and their role in foods. In Food Carbohydrates: Chemistry, Physical Properties and Applications; Steve, W., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2005; p. 340. [Google Scholar]
- Francisco, A.E.; Janíček, M.; Dentinho, T.; Portugal, A.P.; Almeida, J.M.; Alves, S.P.; Fialho, L.; Jerónimo, E.; Bessa, R.J.; Santos-Silva, J. Effects of alfalfa particle size and starch content in diets on feeding behaviour, intake, rumen parameters, animal performance and meat quality of growing lambs. Meat Sci. 2020, 161, 107964. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Liu, D.; Li, S.; Wang, N.; Deng, Y.; Sha, L.; Gai, S.; Liu, H.; Xu, X. Evolution of taste compounds of dezhou-braised chicken during cooking evaluated by chemical analysis and an electronic tongue system. J. Food Sci. 2017, 82, 1076–1082. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, C.H.; Chen, S.J. Comparison of active non-volatile taste components in the viscera and adductor muscles of oyster (Ostrea rivularis gould). Food Sci. Technol. Res. 2013, 19, 417–424. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, K.; Wu, N.; Wang, X.; Wu, X.; Wang, S.; Long, X.; Wei, X. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female chinese mitten crab (Eriocheir sinensis). J. Food Sci. 2016, 81, S968–S981. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Yu, W.J.; Hou, J.W.; Zhu, B.S. Accurate determination of fourteen fatty acids in pork by external standard-gas chromatography-mass spectrometry. Anal. Instrum. 2012, 3, 10–16. [Google Scholar]
- Mezgebo, G.B.; Monahan, F.J.; McGee, M.; O’Riordan, E.G.; Richardson, I.R.; Brunton, N.P.; Moloney, A.P. Fatty acid, volatile and sensory characteristics of beef as affected by grass silage or pasture in the bovine diet. Food Chem. 2017, 235, 86–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, M.C.; Jia, W.J.; Ge, X.P.; Xie, J.; Liu, B.; Zhou, Q.L.; Liao, Y.J. Effects of different dietary starch levels on growth performance, digestive enzyme activity and muscle composition of adult blunt snout bream. J. Fish. China 2014, 38, 1494–1502. [Google Scholar]
- Brake, A.C.; Goetsch, A.L.; Forster, L.A., Jr.; Landis, K.M. Feed Intake, Digestion and Digesta Characteristics of Cattle Fed Bermudagrass or Orchardgrass Alone or with Ground Barley or Corn. J. Anim. Sci. 1989, 12, 3425–3436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penner, G.B.; Oba, M. Increasing dietary sugar concentration may improve dry matter intake, ruminal fermentation, and productivity of dairy cows in the postpartum phase of the transition period. J. Dairy Sci. 2009, 92, 3341–3353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pethick, D.; McIntyre, L.; Tudor, G.; Rowe, J. The partitioning of fat in ruminants-can nutrition be used as a tool to regulate marbling? Recent Adv. Anim. Nutr. Aust. 1997, 151–158. [Google Scholar]
- Sami, A.S.; Koegel, J.; Eichinger, H.; Freudenreich, P.; Schwarz, F.J. Effects of the dietary energy source on meat quality and eating quality attributes and fatty acid profile of simmental bulls. Anim. Res. 2006, 55, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhu, Y.; Wang, X.; He, Y.; Cao, B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of f1 Angus x chinese xiangxi yellow cattle. J. Anim. Sci. BioTechnol. 2014, 5, 21. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, P.; Johnson, J.; Sutherland, B.; Penner, G.; Prieto, N.; Aalhus, J.; Juárez, M.; López-Campos, O.O.; Dugan, M. Changes in the fatty acid composition of steer subcutaneous fat, including biohydrogenation products, are minimal when finished on combinations of corn and barley grains and silages. Can. J. Anim. Sci. 2021, 101, 362–369. [Google Scholar] [CrossRef]
- Zhu, H. Quality Traits and Sensory Evaluation of Beef in China. Master’s Thesis, Shandong Agricultural University, Taian, China, 2012. [Google Scholar]
- Ijaz, M.; Li, X.; Zhang, D.; Hussain, Z.; Ren, C.; Bai, Y.; Zheng, X. Association between meat color of dfd beef and other quality attributes. Meat Sci. 2020, 161, 107954. [Google Scholar] [CrossRef]
- Insausti, K.; Beriain, M.J.; Purroy, A.; Alberti, P.; Lizaso, L.; Hernandez, B. Colour stability of beef from different spanish native cattle breeds stored under vacuum and modified atmosphere. Meat Sci. 1999, 53, 241–249. [Google Scholar] [CrossRef]
- Ouart, M.D.; Bell, D.E.; Janky, D.M.; Dukes, M.G.; Marion, J.E. Influence of source and physical form of xanthophyll pigment on broiler pigmentation and performance. Poult. Sci. 1988, 67, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Seong, P.N.; Seo, H.W.; Kim, J.H.; Kang, G.H.; Cho, S.H.; Chae, H.S.; Park, B.Y.; Van Ba, H. Assessment of frozen storage duration effect on quality characteristics of various horse muscles. Asian-Australas J. Anim. Sci. 2017, 30, 1756–1763. [Google Scholar] [CrossRef] [Green Version]
- Silva, J.A.; Patarata, L.; Martins, C. Influence of ultimate ph on bovine meat tenderness during ageing. Meat Sci. 1999, 52, 453–459. [Google Scholar] [CrossRef]
- Cheng, Q.; Sun, D.W. Factors affecting the water holding capacity of red meat products: A review of recent research advances. Crit. Rev. Food Sci. Nutr. 2008, 48, 137–159. [Google Scholar] [CrossRef]
- Wang, H.Z. Effects of dietary energy concentration on performance, rumen fermentation and intramuscular fat metabolism in yarks fed indoors. Master’s Thesis, Sichuan Agricultural University, Ya’an, China, 2015. [Google Scholar]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Kayim, M.; Cimen, M.; Can, E.; Kocabas, M. Biochemical taste parameters in meat and sea products. Asian J. Anim. Vet. Adv. 2011, 6, 233–237. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.X.; Shi, W.Z.; Qu, Y.H.; Qin, J.Y.; Wang, Z.H. Research on quality changes of grass carp (ctenopharyngodon idellus) during short-term starvation. Food Sci. Nutr. 2020, 8, 1150–1161. [Google Scholar] [CrossRef]
- Sato, M.; Nakamura, T.; Homma, S.; Abe, H.; Sato, A.; Fujimaki, M. Flavor and taste comparison between japanese black cattle beef, dairy cattle beef and imported beef. Anim. Sci. Technol. 1996, 65, 142–148. [Google Scholar]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat flavor precursors and factors influencing flavor precursors-a systematic review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef]
- Ma, X.; Yu, M.; Liu, Z.; Deng, D.; Cui, Y.; Tian, Z.; Wang, G. Effect of amino acids and their derivatives on meat quality of finishing pigs. J. Food Sci. Technol.-Mysore 2020, 57, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Lee, J.R.; Kim, M.K.; Jo, C.; Lee, K.H.; You, I.; Jung, S. Quality improvement of pork loin by dry aging. Korean J. Food Sci. Anim. Resour. 2016, 36, 369–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, M.; Zhang, W.-J.; Yin, J.-L.; Chen, N.; Zhang, Y.-F. Comparative study on beef quality of holstein dairy bull calf of different month ages. Xinjiang Agric. Sci. 2013, 50, 158–163. [Google Scholar]
- Felig, P.; Pozefsk, T.; Marlis, E.; Cahill, G.F. Alanine: Key role in gluconeogenesis. Science 1970, 167, 1003–1004. [Google Scholar] [CrossRef]
- Matthews, J.J.; Dolan, E.; A Swinton, P.; Santos, L.; Artioli, G.G.; Turner, M.D.; Elliott-Sale, K.J.; Sale, C. Effect of carnosine or β-alanine supplementation on markers of glycemic control and insulin resistance in humans and animals: A systematic review and meta-analysis. Adv. Nutr. 2021, 12, 2216–2231. [Google Scholar] [CrossRef]
- Wang, D.B.; Wang, X.D.; Guo, T.L.; Liang, J.F.; Na, Q.; Wang, L.M. Effects of different mixed feeds on slaughtering performance, eating quality and nutrients of dumont sheep. Meat Res. 2018, 32, 12–17. [Google Scholar]
- Yu, M.; Li, Z.; Rong, T.; Wang, G.; Liu, Z.; Chen, W.; Li, J.; Li, J.; Ma, X. Different dietary starch sources alter the carcass traits, meat quality, and the profile of muscle amino acid and fatty acid in finishing pigs. J. Anim. Sci. BioTechnol. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef] [PubMed]
- Flock, M.R.; Kris-Etherton, P.M. Diverse physiological effects of long-chain saturated fatty acids: Implications for cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 133–140. [Google Scholar] [CrossRef]
- Simopoulos, A.P. N− 3 fatty acids and human health: Defining strategies for public policy. Lipids 2001, 36, S83–S89. [Google Scholar] [CrossRef] [PubMed]
- Lada, A.T.; Rudel, L.L. Dietary monounsaturated versus polyunsaturated fatty acids: Which is really better for protection from coronary heart disease? Curr. Opin. Lipidol. 2003, 14, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Montoya, M.T.; Porres, A.; Serrano, S.; Fruchart, J.C.; Mata, P.; Gerique, J.A.G.; Castro, G.R. Fatty acid saturation of the diet and plasma lipid concentrations, lipoprotein particle concentrations, and cholesterol efflux capacity. Am. J. Clin. Nutr. 2002, 75, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.D.; Enser, M. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Br. J. Nutr. 1997, 78, S49–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duckett, S.K.; Wagner, D.G.; Yates, L.D.; Dolezal, H.G.; May, S.G. Effects of time on feed on beef nutrient composition. J. Anim. Sci. 1993, 71, 2079–2088. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Teng, F.; Huang, Z.; Lv, B.; Lv, X.; Babich, O.; Yu, W.; Li, Y.; Wang, Z.; Jiang, L. Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll. 2020, 105, 105752. [Google Scholar] [CrossRef]
- Zhen, Z.Y.; Liu, Y.L.; Wang, J.; Li, J.J.; Li, X.B.; Zheng, H.B. Determination of volatile flavor compounds in raw and treated duck meats of different body parts. J. Food Biochem. 2021, e13908. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.J.; D’Souza, L.A. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 1986, 24, 141–243. [Google Scholar] [CrossRef]
- Gkarane, V.; Allen, P.; Brunton, N.P.; Gravador, R.S.; Claffey, N.A.; Harrison, S.M.; Diskin, M.G.; Fahey, A.G.; Farmer, L.J.; Moloney, A.P.; et al. Volatile and sensory analysis to discriminate meat from lambs fed different concentrate-based diets. Anim. Prod. Sci. 2020, 60, 1654–1667. [Google Scholar] [CrossRef]
Item | Treatment | ||
---|---|---|---|
Control Group | Corn Group | Barley Group | |
Corn grain | 11.80 | 51.80 | 3.60 |
Barley grain | 0.00 | 0.00 | 51.80 |
Soybean meal | 10.24 | 10.24 | 6.64 |
Wheat bran | 3.00 | 3.00 | 3.00 |
Soda | 0.77 | 0.77 | 0.77 |
Puffing urea | 1.20 | 1.20 | 1.20 |
Premix (1) | 3.00 | 3.00 | 3.00 |
Straw | 10.00 | 10.00 | 10.00 |
Silage corn | 60.00 | 20.00 | 20.00 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient level | |||
Starch | 27.33 | 41.40 | 40.22 |
Crude protain | 14.23 | 13.99 | 14.42 |
Ether extract | 2.22 | 2.81 | 2.20 |
Ash | 3.37 | 3.13 | 7.20 |
Dry matter | 48.67 | 74.47 | 73.91 |
Metabolic energy(MJ/Kg) | 7.25 | 10.38 | 9.85 |
Neutral deterent fibre | 42.29 | 25.33 | 28.13 |
Acid deterent fibre | 20.93 | 12.33 | 13.74 |
Ca | 0.23 | 0.12 | 0.82 |
P | 0.20 | 0.11 | 0.35 |
Item | Treatment | ||
---|---|---|---|
Control Group | Corn Group | Barley Group | |
Corn grain | 11.8 | 71.8 | 3.6 |
Barley grain | 0 | 0 | 71.8 |
Soybean meal | 10.24 | 10.24 | 6.64 |
Wheat bran | 3 | 3 | 3 |
Soda | 0.765 | 0.765 | 0.765 |
Puffing urea | 1.2 | 1.2 | 1.2 |
Premix (1) | 3 | 3 | 3 |
Straw | 10 | 10 | 10 |
Silage corn | 60 | 0 | 0 |
Total | 100 | 100 | 100 |
Nutrient level | |||
Starch | 27.33 | 48.44 | 45.98 |
Crude protain | 14.23 | 13.87 | 14.96 |
Ether extract | 2.22 | 3.10 | 2.23 |
Ash | 3.37 | 3.01 | 8.73 |
Dry matter | 48.67 | 87.37 | 86.62 |
Metabolic energy (MJ/Kg) | 7.25 | 11.95 | 11.20 |
Neutral deterent fibre | 42.29 | 16.85 | 20.79 |
Acid deterent fibre | 20.93 | 8.03 | 10.08 |
Ca | 0.23 | 0.06 | 1.04 |
P | 0.20 | 0.07 | 0.39 |
Item | Treatment | p-Value | ||
---|---|---|---|---|
Control Group | Corn Group | Barley Group | ||
Dry matter intake g/d | 5.37 ± 0.31 b | 5.76 ± 0.42 ab | 6.56 ± 0.45 a | 0.09 |
Dry matter digestibility g/kg | 561.00 ± 21.33 b | 717.00 ± 20.53 a | 626.00 ± 17.93 a | <0.001 |
Average daily gain g/d | 180.00 ± 17.02 b | 450.00 ± 21.03 a | 410.00 ± 19.53 a | 0.02 |
Items | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|
Moisture,% | 72.99 ± 1.16 a | 70.55 ± 0.47 b | 69.82 ± 1.64 b | 0.04 |
Crude protein content,% | 20.38 ± 0.46 | 19.60 ± 0.56 | 19.51 ± 1.65 | 0.56 |
Intramuscular fat,% | 3.46 ± 0.34 B | 6.53 ± 0.17 A | 6.06 ± 1.00 A | 0.002 |
Items | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|
L (Lightness) | 29.74 ± 2.68 | 34.48 ± 0.16 | 31.12 ± 3.14 | 0.12 |
a (Redness) | 12.66 ± 0.21 b | 14.76 ± 0.93 a | 15.30 ± 0.57 a | 0.01 |
b (Yellowness) | 1.95 ± 0.21 | 2.53 ± 0.38 | 2.15 ± 0.01 | 0.08 |
pH1h | 6.55 ± 0.04 | 6.56 ± 0.04 | 6.58 ± 0.04 | 0.79 |
pH24h | 5.61 ± 0.31 | 5.53 ± 0.13 | 5.61 ± 0.35 | 0.83 |
Water loss,% | 6.11 ± 0.09 A | 5.59 ± 0.09 B | 5.44 ± 0.09 B | 0.001 |
Cooking loss,% | 35.03 ± 0.63 | 31.70 ± 1.32 | 31.69 ± 2.46 | 0.08 |
Shearing force, Kgf | 8.90 ± 0.09 A | 5.74 ± 0.52 B | 6.25 ± 0.97 B | 0.002 |
Items | Taste Threshold Value (μg/g) | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|---|
Nucleotide content (μg/g) | |||||
5′-GMP | 125 | 17.52 ± 2.38 | 18.13 ± 0.12 | 18.63 ± 3.78 | 0.88 |
5′-IMP | 250 | 1283.78 ± 148.40 | 1189.22 ± 28.46 | 1202.13 ± 157.81 | 0.63 |
5′-AMP | 500 | 95.80 ± 9.57 | 94.37 ± 4.68 | 84.01 ± 18.42 | 0.48 |
MSG equivalent concentration(g/100 g) | |||||
EUC | 300 | 0.16 ± 0.06 | 0.24 ± 0.05 | 0.24 ± 0.04 | 0.11 |
Taste activity value | |||||
5′-GMP | 125 | 0.14 ± 0.02 | 0.15 ± 0.001 | 0.15 ± 0.03 | 0.88 |
5′-IMP | 250 | 5.14 ± 0.59 | 4.76 ± 0.11 | 4.81 ± 0.63 | 0.63 |
5′-AMP | 500 | 0.19 ± 0.02 | 0.19 ± 0.01 | 0.17 ± 0.02 | 0.48 |
EUC | 300 | 5.23 ± 1.95 | 8.10 ± 1.51 | 8.09 ± 1.21 | 0.18 |
Items | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|
Cys | 1.33 ± 0.07 Bb | 2.44 ± 0.27 Aa | 2.17 ± 0.17 Aa | 0.001 |
Glu | 1.69 ± 0.08 Bb | 2.35 ± 0.11 Aa | 2.47 ± 0.01 Aa | <0.001 |
Ser | 2.62 ± 0.19 | 2.85 ± 0.07 | 2.71 ± 0.14 | 0.210 |
Lys | 2.67 ± 0.06 | 3.14 ± 0.24 | 2.85 ± 0.24 | 0.070 |
Gly | 7.71 ± 0.07 C | 12.16 ± 0.10 A | 10.32 ± 1.15 B | <0.001 |
Arg | 5.81 ± 0.34 A | 4.53 ± 0.32 B | 4.44 ± 0.01 B | 0.001 |
Thr | 2.51 ± 0.26 B | 3.53 ± 0.18 A | 2.87 ± 0.04 B | 0.001 |
Ala | 110.41 ± 2.34 a | 112.90 ± 2.26 a | 106.02 ± 1.56 b | 0.020 |
Tyr | 1.47 ± 0.04 | 1.55 ± 0.11 | 1.53 ± 0.17 | 0.710 |
Leu | 3.57 ± 0.19 B | 4.43 ± 0.13 A | 3.42 ± 0.34 B | 0.004 |
Sar | 0.23 ± 0.03 B | 0.24 ± 0.06 B | 0.55 ± 0.06 A | <0.001 |
Lys | 1.46 ± 0.10 | 1.56 ± 0.30 | 1.55 ± 0.19 | 0.820 |
Hyp | 0.28 ± 0.04 | 0.31 ± 0.09 | 0.27 ± 0.02 | 0.721 |
Met | 1.99 ± 0.02 | 2.11 ± 0.42 | 2.32 ± 0.01 | 0.311 |
Trp | 3.39 ± 0.15 B | 5.16 ± 0.63A | 2.81 ± 0.62 B | 0.003 |
Val | 5.74 ± 0.30 b | 6.57 ± 0.41 | 7.25 ± 0.55 a | 0.021 |
Nva | 16.71 ± 0.20 B | 10.47 ± 0.35 C | 18.76 ± 0.97 A | <0.001 |
Phe | 2.43 ± 0.06 | 3.10 ± 0.52 | 2.44 ± 0.06 | 0.062 |
Gln | 24.01 ± 0.29 C | 27.95 ± 1.04 A | 26.55 ± 0.09 B | 0.001 |
Asn | 0.94 ± 0.07 B | 1.39 ± 0.09 A | 1.47 ± 0.05 A | <0.001 |
Ile | 3.42 ± 0.14 | 3.40 ± 0.55 | 3.40 ± 0.05 | 0.992 |
Asp | 0.74 ± 0.12 C | 1.51 ± 0.07 A | 1.23 ± 0.12 B | <0.001 |
Items | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|
tAA | 3.37 ± 0.04 B | 5.25 ± 0.13 A | 5.17 ± 0.16 A | <0.001 |
BAA | 22.60 ± 0.23 C | 26.74 ±0.62 A | 25.39 ± 0.81 B | <0.001 |
SAA | 160.43 ± 2.13 C | 175.20 ± 2.26 A | 164.60 ± 1.76 B | <0.001 |
TAA | 201.10 ± 2.11 C | 213.63 ± 2.89 A | 207.38 ± 2.50 B | 0.003 |
Items | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|
C10:0 | 0.59 ± 0.04 | 0.93 ± 0.09 | 0.98 ± 0.08 | 0.22 |
C12:0 | 0.58 ± 0.17 | 1.31 ± 0.15 | 1.39 ± 0.53 | 0.05 |
C13:0 | 27.78 ± 1.14 B | 74.40 ± 8.60 A | 71.30 ± 1.38 B | <0.001 |
C14:0 | 16.99 ± 2.39 C | 64.12 ± 2.65 B | 72.24 ± 2.13 A | <0.001 |
C15:0 | 0.80 ± 0.08 C | 2.54 ± 0.23 A | 1.84 ± 0.44 B | 0.001 |
C16:0 | 1.59 ± 0.14 C | 5.37 ± 0.04 A | 3.51 ± 0.67 B | <0.001 |
C17:0 | 5.25 ± 0.42 B | 22.58 ± 1.69 A | 5.40 ± 0.54 B | <0.001 |
C18:0 | 1.74 ± 0.15 B | 5.35 ± 0.15 A | 5.44 ± 0.73 A | <0.001 |
C19:0 | 1.19 ± 0.14 b | 1.99 ± 0.41 | 2.53 ± 0.62 a | 0.03 |
C20:0 | 1.12 ± 0.18 B | 2.74 ± 0.24 A | 2.93 ± 0.23 A | <0.001 |
C22:1 | 2.68 ± 0.57 B | 10.80 ± 0.99 A | 9.15 ± 1.72 A | <0.001 |
C14:1 | 4.99 ± 1.51 C | 23.90 ± 1.01 A | 18.80 ± 0.71 B | <0.001 |
C16:1 | 29.81 ± 3.68 C | 109.36 ± 8.87 A | 78.81 ± 6.26 B | <0.001 |
C18:1n9t | 5.40 ± 0.39 B | 19.32 ± 1.76 A | 17.34 ± 3.11 A | <0.001 |
C18:1n9c | 407.16 ± 80.15 B | 793.90 ± 8.35 A | 740.65 ± 23.98 A | <0.001 |
C20:1 | 2.65 ± 0.59 B | 10.03 ± 1.16 A | 9.15 ± 1.72 A | 0.001 |
C18:2n6c | 2.31 ± 0.27 B | 9.49 ± 0.53 A | 9.28 ± 0.94 A | <0.001 |
C18:3 | 3.67 ± 1.26 B | 3.77 ± 0.68 B | 6.86 ± 0.05 A | 0.006 |
C20:3n6 | 4.76 ± 0.42 | 4.53 ± 0.08 | 6.09 ± 1.24 | 0.09 |
C20:4n6 | 14.72 ± 1.05 A | 13.41 ± 0.43 | 11.42 ± 1.92 B | 0.05 |
C22:6n3 | 2.35 ± 0.34 B | 7.14 ± 0.83 A | 7.39 ± 1.05 A | <0.001 |
C20:5 | 2.27 ± 0.24 A | 0.99 ± 0.11 B | 1.28 ± 0.44 B | 0.004 |
Saturated fatty acid, SFA | 57.64 ± 1.68 C | 181.31 ± 10.60 A | 167.55 ± 2.80 B | <0.001 |
Monounsaturated fatty acid, MUFA | 452.68 ± 78.97 B | 967.31 ± 14.29 A | 873.89 ± 23.20 A | <0.001 |
Polyunsaturated fatty acid, PUFA | 30.07 ± 0.82 B | 39.32 ± 1.55 A | 42.26 ± 3.98 A | 0.002 |
PUFA/SFA | 0.52 ± 0.01 A | 0.21 ± 0.01 C | 0.25 ± 0.02 B | <0.001 |
n-3PUFA | 4.62 ± 0.56 B | 8.12 ± 0.77 A | 8.67 ± 1.47 A | 0.005 |
n-6PUFA | 25.45 ± 1.24 b | 31.20 ± 0.90 a | 33.59 ±1.01 a | 0.02 |
n-6/n-3PUFA | 5.59 ± 0.98 | 3.86 ± 0.29 | 3.97 ± 0.95 | 0.07 |
Total fatty acid, TFA | 540.39 ± 76.71 C | 1187.94 ± 25.76 A | 1083.71 ± 25.52 B | <0.001 |
Items | Control Group | Corn Group | Barley Group | p-Value |
---|---|---|---|---|
Alcohols | 46.62 ± 3.26 B | 163.37 ± 9.45 A | 53.02 ± 23.09 B | <0.001 |
Aldehydes | 26.52 ± 4.18 C | 126.69 ± 3.82 A | 38.57 ± 4.87 B | <0.001 |
Ketones | 1.05 ± 0.22 | 1.92 ± 0.72 | — | — |
Esters | 0.70 ± 0.32 | 2.00 ± 0.45 | 1.54 ± 0.68 | 0.053 |
Acids | 8.44 ± 0.60 C | 41.76 ± 6.52 A | 29.80 ± 0.62 B | <0.001 |
Hydrocarbons | 36.75 ± 1.50 B | 64.83 ± 4.29 A | 44.60 ± 5.47 B | <0.001 |
Others | 3.17 ± 0.61 | 4.19 ± 0.28 | 3.10 ± 0.70 | 0.101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, M.; Chen, D.; Zhou, J.; Shen, Q. Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle. Animals 2022, 12, 1136. https://doi.org/10.3390/ani12091136
Su M, Chen D, Zhou J, Shen Q. Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle. Animals. 2022; 12(9):1136. https://doi.org/10.3390/ani12091136
Chicago/Turabian StyleSu, Minchao, Dong Chen, Jing Zhou, and Qingwu Shen. 2022. "Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle" Animals 12, no. 9: 1136. https://doi.org/10.3390/ani12091136
APA StyleSu, M., Chen, D., Zhou, J., & Shen, Q. (2022). Effects of Different Dietary Carbohydrate Sources on the Meat Quality and Flavor Substances of Xiangxi Yellow Cattle. Animals, 12(9), 1136. https://doi.org/10.3390/ani12091136