Occurrence and D-Tryptophan Application for Controlling the Growth of Multidrug-Resistant Non-O157 Shiga Toxin-Producing Escherichia coli in Dairy Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collection
2.2. Preparation and Isolation of Non O157 E. coli
2.3. Serological Identification of the Recovered E. coli Isolates
2.4. Antimicrobial Susceptibility Testing
2.5. Molecular Characterization of Non O157 E. coli
2.6. In Vitro and Food Model Reduction of E. coli O26
2.6.1. Preparation of Bacterial Strains
2.6.2. Reduction of E. coli O26 in Broth Media Supplemented with D-Trp at Chilled Stress (4 °C) and at Room Temperature (25 °C)
2.6.3. Preparation of Dairy Products and Inoculation with Shiga toxin E. coli O26 and D-Trp
2.7. Statistical Analysis
3. Results
3.1. Prevalence and Serological Identification of the Recovered Isolates
3.2. Antimicrobial Resistance and Molecular Characterization of E. coli
3.3. The Inhibitory Effects of Different Concentrations of D-Trp against E. coli O26:H11 Inoculated into PYG Broth at 4 °C and 25 °C
3.4. The Effect of D-Tryptophan at 40 mM on Experimentally Inoculated Shiga Toxigenic E. coli O26:H11 Strains on Soft Cheese and Ice Cream under Osmotic and Freezing Stressors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Munekata, P.; Pateiro, M.; Rodríguez-Lázaro, D.; Domínguez, R.; Zhong, J.; Lorenzo, J. The Role of Essential Oils against Pathogenic Escherichia coli in Food Products. Microorgansims 2020, 8, 924. [Google Scholar] [CrossRef] [PubMed]
- Elafify, M.; Khalifa, H.; Al-Ashmawy, M.; Elsherbini, M.; Abd El Latif, A.; Okanda, T.; Matsumoto, T.; Koseki, S.; Abdelkhalek, A. Prevalence and antimicrobial resistance of Shiga toxin-producing Escherichia coli in milk and dairy products in Egypt. J. Environ. Sci. Health B. 2020, 55, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Dawson, C. Economic Impact of Food Safety Outbreaks on Food Businesses. Foods 2013, 2, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.W.; Seo, K.H.; Chon, J.W.; Song, K.Y. Antimicrobial Activity of Hibiscus sabdariffa L.(Roselle) Powder against Food-Borne Pathogens Present in Dairy Products: Preliminary Study. J. Dairy Sci. 2020, 38, 37–44. [Google Scholar] [CrossRef]
- Kalmus, P.; Kramarenko, T.; Roasto, M.; Meremäe, K.; Viltrop, A. Quality of raw milk intended for direct consumption in Estonia. Food Control. 2015, 51, 135–139. [Google Scholar] [CrossRef]
- FDA. Available online: https://www.fda.gov/food/foodborne-pathogens/escherichia-coli-e-coli (accessed on 1 May 2020).
- Kornaki, J.L.; Johnson, J.L. Enterobacteriaceae, coliforms, and Escherichia coli as qualityand safety indicators. In Compendium of Methods for the Microbiological Examination of Foods, 4th ed.; Downes, F.P., Ito, K., Eds.; American Public Health Association: Washington, DC, USA, 2001; pp. 69–82. [Google Scholar]
- Chaleshtori, F.; Arani, N.; Aghadavod, E.; Naseri, A.; Chaleshtori, R. Molecular characterization of Escherichia coli recovered from traditional milk products in Kashan, Iran. Vet. World 2017, 10, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Assumpção, G.L.H.; Cardozo, M.V.; Beraldo, L.G.; Maluta, R.P.; Silva, J.T.; Avila, F.A.D.; McIntosh, D.; Rigobelo, E.C. Antimicrobials resistance patterns and the presence of stx1, stx2 and eae in Escherichia coli. Rev. Bras. Saude Prod. Anim. 2015, 16, 308–316. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Zoonotic Non-O157 Shiga Toxin-Producing Escherichia coli (STEC), 23–26 June 1998, Berlin, Germany; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Espiè, E.; Grimont, F.; Mariani-Kurkdian, P.; Vaillant, V. Surveillance du Syndrôme He’molytique et Urémique Chez les Enfants de Moins de 15 Ans en France; Institut de Veille Sanitaire, Institut Pasteur: Paris, France, 2005. [Google Scholar]
- Zimmerhack, L.; Rosales, A.; Hofer, J.; Riedl, M.; Jungraithmay, T.; Mellmann, A.; Bielaszewska, M.; Karch, H. Enterohemorrhagic Escherichia coli O26: H11-associated hemolytic uremic syndrome: Bacteriology and clinical presentation. Semin. Thromb. Hemost. 2010, 36, 586–593. [Google Scholar] [CrossRef]
- Mylius, M.; Dreesman, J.; Pulz, M.; Pallasch, G.; Beyrer, K.; Claußen, K.; Allerberger, F.; Fruth, A.; Lang, C.; Prager, R. Shiga Toxin-Producing Escherichia coli O103:H2 Outbreak in Germany after School Trip to Austria Due to Raw Cow Milk, The Important Role of International Collaboration for Outbreak Investigations. Int. J. Med. Microbiol. 2017, 308, 539–544. [Google Scholar] [CrossRef]
- AL-Ashmawy, M.; Gwida, M.; Abdelgalil, K. Prevalence, Detection Methods and Antimicrobial Susceptibility of Listeria monocytogens Isolated from Milk and Soft Cheeses and its Zoonotic Importance. World Appl. Sci. J. 2014, 29, 869–878. [Google Scholar] [CrossRef]
- Al-Ashmawy, M.; Sallam, K.; Abd-Elghany, S.M.; Elhadidy, M.; Tamura, T. Prevalence, Molecular Characterization, and Antimicrobial Susceptibility of Methicillin-ResistantStaphylococcus aureus (MRSA) Isolated from Milk and Dairy Products. Foodborne Pathog. Dis. 2016, 13, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Elafify, M.; Darwish, W.; Al-Ashmawy, M.; Elsherbini, M.; Koseki, S.; Kawamura, S.; Abdelkhalek, A. Prevalence of Salmonella spp. in Egyptian Dairy Products: Molecular, Antimicrobial Profiles and a Reduction Trial Using DTryptophan. J. Verbrauch Lebensm. 2019, 14, 399–407. [Google Scholar] [CrossRef]
- El-Baz, A.; El-Sherbini, M.; Abdelkhalek, A.; Al-Ashmawy, M. Prevalence and molecular characterization of Salmonella serovars in milk and cheese in Mansoura city, Egypt. J. Adv. Vet. Anim. Res. 2017, 4, 45–51. [Google Scholar] [CrossRef]
- Boor, K.J. ADSA foundation scholar award fluid dairy product quality and safety: Looking to the future. Dairy Sci. 2001, 84, 1–11. [Google Scholar] [CrossRef]
- Hussain, A.; Pu, H.; Sun, D.W. SERS detection of sodium thiocyanate and benzoic acid preservatives in liquid milk using cysteamine functionalized core-shelled nanoparticles. Spectrochimica Acta Part A. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117994. [Google Scholar] [CrossRef]
- ELafify, M.; Chen, J.; Abdelkhalek, A.; ELsherbini, M.; AL-Ashmawy, M.A.; Koseki, S. Combined d-Tryptophan Treatment and Temperature Stress Exert Antimicrobial Activity against Listeria monocytogenes in Milk. J. Food Prot. 2020, 83, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ye, Y.; Ling, N.; Wu, Q.; Zhang, J. Inhibitory effects of d-tryptophan on biofilm development by the foodborne Cronobacter sakazakii. Int. Dairy J. 2015, 49, 125–129. [Google Scholar] [CrossRef]
- Roberts, D.; Hooper, W.; Greenwood, M. Practical Food Microbiology: Methods for the Examination of Food for Microorganisms of Public Health Significance; Public Health Laboratory Service: London, UK, 1995. [Google Scholar]
- Kreig, N.; Holt, J. Bergey’s Manual of Systemic Bacteriology; William and Wilkins: Baltimore, ML, USA, 1984; Volume 1. [Google Scholar]
- Kok, T.; Worswich, D.; Gowans, E. Some serological techniques for microbial and viral infections. In Practical Medical Microbiology, 14th ed.; Collee, J., Fraser, A., Marmion, B., Simmons, A., Eds.; Churchill Livingstone: Edinburgh, UK, 1996. [Google Scholar]
- Mary, C.; Usha, M. Incidences of multi-drug resistance Escherichia coli isolates in Panipuri sold in Bangalore. Food Res. Int. 2013, 20, 1007–1009. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 12th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Singh, A.; Yadav, S.; Singh, S.; Bharti, P. Prevalence of Salmonella in Chicken Eggs Collected from Poultry Farms and Marketing Channels and Their Antimicrobial Resistance. Food Res. Int. 2010, 43, 2027–2030. [Google Scholar] [CrossRef]
- Elhadidy, M.; Mohammed, M.A. Shiga toxin–producing Escherichia coli from raw milk cheese in Egypt: Prevalence, molecular characterization andsurvival to stress conditions. Lett. Appl. Microbiol. 2012, 56, 120–127. [Google Scholar] [CrossRef]
- Dhanashree, B.; Mallya, S. Detection of shiga-toxigenic Escherichia coli (STEC) in diarrhoeagenic stool and meat samples in Mangalore, India. Indian J. Med. Res. 2008, 128, 271–277. [Google Scholar]
- Mazaheri, S.; Ahrabi, S.; Aslani, M. Shiga Toxin-Producing Escherichia coli Isolated from Lettuce Samples in Tehran, Iran. Jundishapur J. Microbiol. 2014, 7, e12346. [Google Scholar] [CrossRef] [Green Version]
- Fratamico, P.; Sackitey, S.; Wiedmann, M.; Deng, M. Detection of Escherichia coli O157:H7 by multiplex PCR. J. Clin. Microbiol. 1995, 33, 2188–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youssef, A.M.; El-Sayed, S.M.; El-Sayed, H.S.; Salama, H.H.; Dufresne, A. Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr. Polym. 2016, 151, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Shahjee, H.M.; Banerjee, K.; Ahmad, F. Comparative analysis of naturally occurring L-amino acid osmolytes and their D-isomers on protection of Escherichia coli against environmental stresses. J. Biosci. 2002, 27, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Ombarak, R.; Zayda, M.; Hinenoya, A.; Yamasaki, S. Serotypes, pathogenic potential and antimicrobial resistance of Escherichia coli isolated from subclinical bovine mastitis milk samples in Egypt. Jpn. J. Infect. Dis. 2019, 72, 337–339. [Google Scholar] [CrossRef] [Green Version]
- Hassan, G.; Meshref, A.; El-Newery, H.; Mohamed, A. Prevalence of E. coli in milk and dairy producst in Beni-suef Governorate, Egypt. J. Vet. Med. Res. 2021, 27, 161–167. [Google Scholar] [CrossRef]
- FAO. The Technology of Traditional Milk Products in Developing Countries. Animal Production and Health. FAO Accession No: XF91:305259. 1992. Available online: http://www.fao.org/docrep/003/T0251E/T0251E13.htm (accessed on 4 March 2022).
- Ombarak, R.; Hinenoya, A.; Awasth, S.; Iguchi, A.; Shima, A.; Elbagory, A.; Yamasaki, S. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int. J. Food Microbiol. 2016, 221, 69–76. [Google Scholar] [CrossRef]
- Hassan, G.M.; Meshref, A.M.S.; Gomaa, S.M. Microbiological Quality and Safety of Fluid Milk Marketed in Cairo and Giza Governorates. J. Dairy Res. 2015, 7, 18–25. [Google Scholar] [CrossRef]
- El-Baz, A.H. Prevalence, Molecular Characterization and Antimicrobial Resistance of Vero Toxigenic E. coli in Fresh Soft Cheese, Ice Cream and Yoghurt in Mansoura City. Alex. J. Vet. Sci. 2019, 62, 38–46. [Google Scholar] [CrossRef]
- Kandil, A.; Elhadidy, M.; El-Gamal, A.; Al-Ashmawy, M. Identification of S.aureus and E. coli from Dairy Products Intended for Human Consumption. Adv. Anim. Vet. Sci. 2018, 6, 11. [Google Scholar] [CrossRef] [Green Version]
- Mokbul, M.; Islam, T.; Alim, S.R. Bacteriological Quality Analysis of Ice Cream Produced by the Small Factories of Dhak city. Int. J. Health Sci. Res. 2014, 7, 147–153. [Google Scholar]
- Kasem, N.; Al-Ashmawy, M.; Elsherbini, M.; Abdelkhalek, A. Antimicrobial resistance and molecular genotyping of Escherichia coli and Staphylococcus aureus isolated from some Egyptian cheeses. J. Adv. Vet. Anim. Res. 2021, 8, 246–255. [Google Scholar] [CrossRef] [PubMed]
- El Bagoury, A.M.; Shelaby, H.H.; Saied, H. Incidence of Escherichia coli and Salmonella species with special reference to antibiotic resistant pathogenic E. coli isolated from locally produced cheeses in Egypt. Alex. J. Vet. Sci. 2019, 60, 93–101. [Google Scholar] [CrossRef]
- Rahimi, E.; Chaleshtor, S.S.; Parsaei, P. Prevalence and antimicrobial resistance of Escherichia coli O157 isolated from traditional cheese, ice cream and Yoghurt in Iran. Afr. J. Microbiol. Res. 2011, 5, 3706–3710. [Google Scholar] [CrossRef]
- Gundogan, N.; Avci, E. Occurrence and antibiotic resistance of Escherichia coli, Staphylococcus aureus and Bacillus cereus in raw milk and dairy products in Turkey. Int. J. Dairy Technol. 2014, 67, 562–569. [Google Scholar] [CrossRef]
- Fach, P.; Perelle, S.; Dilasser, F.; Grout, J. Compartitive between a PCR-ElISA tesr and the vero cell assay for detecting Shia toxin producing E. coli in dairy products and virulence trials of the isolated strains. J. Appl. Microbiol. 2001, 90, 809–818. [Google Scholar] [CrossRef] [Green Version]
- Zweifel, C.; Giezendanner, N.; Corti, S.; Krause, G.; Beutin, L.; Danuser, J.; Stephan, R. Characterization of shiga toxin –producing E. coli isolated from swiss raw milk cheese within a 3- year monitoring program. J. Food Prot. 2010, 73, 88–91. [Google Scholar] [CrossRef]
- Vernozy-Rozand, C.; Montet, M.P.; Beradin, M.; Bavai, C.; Beutin, L. Isolation and characterization of Shiga toxin-producing Escherichia coli strains from raw milk cheeses in France. Lett. Appl. Microbiol. 2005, 42, 235–241. [Google Scholar] [CrossRef]
- Paneto, B.R.; Schocken-Iturrino, R.P.; Macedo, C.; Marin, J.M. Occurrence of toxigenic Escherichia coli in raw milk cheese in Brazil. Arq. Bras. Med. Vet. Zootec. 2007, 59, 508–512. [Google Scholar] [CrossRef]
- Klie, H.; Timm, M.; Richter, H.; Gallien, P.; Perlberg, K.W.; Steinruck, H. Detection and occurrence of verotoxin-forming and/or shigatoxin producing Escherichia coli (VTEC and/or STEC) in milk. Berl. Munch. Tierarztl. 1997, 110, 337–341. [Google Scholar]
- Dehkordi, F.; Yazdani, F.; Mozafari, J. Virulence factors, serogroups and antimicrobial resistance properties of Escherichia coli strains in fermented dairy products. BMC Res. Notes. 2014, 7, 217. Available online: http://www.biomedcentral.com/1756-0500/7/217 (accessed on 4 March 2022). [CrossRef] [PubMed]
- Altalhi, A.; Hassan, S. Bacterial quality of raw milk investigated by Escherichia coli and isolates analysis for specific virulence-gene markers. Food Control. 2009, 20, 913–917. [Google Scholar] [CrossRef]
- Ferreira, M.R.A.; Stella, A.E.; Freitas-Filho, E.G.; Silva, T.S.; Nascimento, K.A.; Pinto, J.F.N.; Dias, M.; Moreira, C.N. Distribution of the stx1 and stx2 Genes in Escherichia coli Isolated from Milk Cattle according to Season, Age, and Production Scale in Southwestern Region of Goias, Brazil. Arq. Bras. Med. Vet. 2018, 70, 1807–1813. [Google Scholar] [CrossRef]
- Kan, K.; Chen, J.; Kawamura, S.; Koseki, S. Characteristics of d-Tryptophan as an antibacterial agent: Effect of sodium chloride concentration and temperature on Escherichia coli growth inhibition. J. Food Prot. 2018, 81, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Kudo, H.; Kan, K.; Kawamura, S.; Koseki, S. Growth-inhibitory effect of D-tryptophan on Vibrio spp. in shucked and live oysters. Appl. Environ. Microbiol. 2018, 84, e01543.18. [Google Scholar] [CrossRef] [Green Version]
- Hochbaum, A.I.; Kolodkin-Gal, I.; Foulston, L.; Kolter, R.; Aizenberg, J.; Losick, R. Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J. Bacteriol. 2011, 193, 5616–5622. [Google Scholar] [CrossRef] [Green Version]
- Rumbo, C.; Vallejo, J.A.; Cabral, M.P.; Martinez-Guitian, M.; Pérez, A.; Beceiro, A.; Bou, G. Assessment of antivirulence activity of several d-amino acids against Acinetobacter baumannii and Pseudomonas aeruginosa. J. Antimicrob. Chemother. 2016, 71, 3473–3481. [Google Scholar] [CrossRef]
Primers | Oligonucleotide Sequences (5′ → 3′) | Product Sizes (bp) | References |
---|---|---|---|
stx1 (F) | 5′ ACACTGGATGATCTCAGTGG 3′ | 614 | [29] |
stx1 (R) | 5′ CTGAATCCCCCTCCATTATG 3′ | ||
stx2 (F) | 5′ CCATGACAACGGACAGCAGTT 3′ | 779 | |
stx2 (R) | 5′ CCTGTCAACTGAGCAGCACTTTG 3′ | ||
eaeA (F) | 5′ GTGGCGAATACTGGCGAGACT 3′ | 890 | [30] |
eaeA (R) | 5′ CCCCATTCTTTTTCACCGTCG 3′ | ||
hylA (F) | 5′ ACGATGTGGTTTATTCTGGA 3′ | 165 | [31] |
hylA (R) | 5′ CTTCACGTGACCATACATAT 3′ |
Type of Dairy Samples | Number of Samples | Positive Samples | |
---|---|---|---|
No. | % | ||
Market raw Milk | 30 | 9 | 30 |
UHT milk | 30 | 0 | 0 |
Kariesh cheese | 30 | 11 | 36.67 |
White soft cheese | 30 | 2 | 6.67 |
Small-scale ice cream | 30 | 8 | 26.67 |
Total | 150 | 30 | 20 |
Pathotypes | Serotypes | No. of Strains | Distribution of E. coli Isolates | ||||
---|---|---|---|---|---|---|---|
Market Raw Milk | Ultra-Heat Treated Milk | Kariesh Cheese | White Soft Cheese | Small-Scale Ice Cream | |||
EPEC | O17:H18 | 4 | - | - | 1 | - | 3 |
O114:H4 | 2 | - | - | 2 | - | - | |
O119:H6 | 13 | 3 | - | 4 | 1 | 5 | |
O121:H7 | 3 | - | - | 3 | - | - | |
O146:H21 | 1 | - | - | - | 1 | - | |
ETEC | O128:H2 | 8 | 1 | - | 2 | 1 | 4 |
O26:H11 | 15 | 3 | - | 8 | 3 | 1 | |
EHEC | O55:H7 | 6 | 1 | - | - | 2 | 3 |
O111:H2 | 6 | 2 | - | 2 | 2 | - | |
EIEC | O159 | 6 | 3 | -- | 3 | - | - |
No. | Isolates ID | E. coli Strains | Type of Dairy Products | Antimicrobial Resistance Profile | MAR Index | Virulent Fenes | |||
---|---|---|---|---|---|---|---|---|---|
Stx1 | Stx2 | eaeA | hlyA | ||||||
1 | 5 | O26:H11 | Market raw milk | T, OX, E, NA, SXT, AM, CF, CL, CZ, K, AK, IPM, CP, G | 1 | + | + | + | + |
2 | 7 | O26:H11 | Market raw milk | T, OX, E, NA, SXT, AM, CF, CL, K, AK, G | 0.786 | + | + | + | + |
3 | 8 | O26:H11 | Market raw milk | T, OX, E, NA, SXT, AM, CF, CZ | 0.571 | + | + | + | + |
4 | 22 | O26:H11 | Kariesh cheese | T, OX, NA, SXT, CL, K, CP | 0.5 | + | + | + | + |
5 | 23 | O26:H11 | Kariesh cheese | T, OX, E, NA, SXT, CZ | 0.428 | + | + | + | + |
6 | 25 | O26:H11 | Kariesh cheese | T, OX, NA, SXT, AM, CF, CL | 0.5 | + | + | + | + |
7 | 28 | O26:H11 | Kariesh cheese | T, OX, E, NA, SXT, AM | 0.428 | + | + | + | + |
8 | 36 | O26:H11 | Kariesh cheese | T, OX, E, NA, AM, CF, K | 0.5 | + | + | + | + |
9 | 38 | O26:H11 | Kariesh cheese | T, OX, E, NA, SXT, CL, CZ | 0.5 | + | + | + | + |
10 | 39 | O26:H11 | Kariesh cheese | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | + | + |
11 | 40 | O26:H11 | Kariesh cheese | T, OX, NA, SXT, CZ | 0.357 | + | + | + | + |
12 | 99 | O26:H11 | White soft cheese | T, OX, E, AM, CF, CL, K | 0.5 | + | + | + | + |
13 | 101 | O26:H11 | White soft cheese | T, OX, E, NA, SXT, CZ | 0.428 | + | + | + | + |
14 | 9 | O26:H11 | White soft cheese | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | + | + |
15 | 155 | O26:H11 | Ice cream | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | + | + |
16 | 14 | O128:H2 | Market raw milk | T, OX, E, NA, SXT, AM, CF, CL | 0.571 | + | − | − | − |
17 | 44 | O128:H2 | Kariesh cheese | T, OX, E, NA, AM, CF | 0.428 | + | − | − | − |
18 | 47 | O128:H2 | Kariesh cheese | T, OX, NA, SXT, AM, CL, CZ, K | 0.571 | + | − | − | − |
19 | 104 | O128:H2 | White soft cheese | T, OX, E, AM, CF, CL | 0.428 | + | − | − | − |
20 | 161 | O128:H2 | Ice cream | T, OX, E, NA, SXT, AM, CF | 0.5 | + | − | − | − |
21 | 162 | O128:H2 | Ice cream | T, OX, E, AM, CL, CZ | 0.428 | + | − | − | − |
22 | 169 | O128:H2 | Ice cream | T, OX, E, NA, SXT, K | 0.428 | + | − | − | − |
23 | 172 | O128:H2 | Ice cream | T, OX, E, NA, AM, CF, CL | 0.5 | + | − | − | − |
24 | 21 | O111:H2 | Market raw milk | T, OX, E, AM, CF, CL, CZ | 0.5 | + | + | + | + |
25 | 32 | O111:H2 | Market raw milk | T, OX, E, NA, SXT, AM, CF, CZ | 0.571 | + | + | + | + |
26 | 48 | O111:H2 | Kariesh cheese | T, OX, E, NA, AM, CF, CZ | 0.5 | + | + | + | + |
27 | 49 | O111:H2 | Kariesh cheese | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | + | + |
28 | 116 | O111:H2 | White soft cheese | T, OX, E, NA, AM, AK | 0.428 | + | + | + | + |
29 | 119 | O111:H2 | White soft cheese | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | + | + |
30 | 121 | O55:H7 | White soft cheese | T, OX, E, NA, AM, CF | 0.428 | + | + | − | − |
31 | 123 | O55:H7 | White soft cheese | T, OX, E, NA, SXT, AM | 0.428 | + | + | − | − |
32 | 33 | O55:H7 | Market raw milk | T, OX, E, AM, CF, CZ | 0.428 | + | + | − | − |
33 | 174 | O55:H7 | Ice cream | T, OX, E, NA, SXT, AM | 0.428 | + | + | − | − |
34 | 175 | O55:H7 | Ice cream | T, OX, E, NA, AM, CF, CZ | 0.5 | + | + | − | − |
35 | 183 | O55:H7 | Ice cream | T, OX, E, AM, CF, CL, K | 0.5 | + | + | − | − |
36 | 41 | O119:H6 | Market raw milk | T, OX, E, NA, AM, CF | 0.428 | + | + | − | − |
37 | 42 | O119:H6 | Market raw milk | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | − | − |
38 | 43 | O119:H6 | Market raw milk | T, OX, E, NA, SX, AM, CL | 0.5 | + | + | − | − |
39 | 16 | O119:H6 | Kariesh cheese | T, OX, E, SXT, AM, CF | 0.428 | + | + | − | − |
40 | 17 | O119:H6 | Kariesh cheese | T, OX, E, NA, AM, CF, CL | 0.5 | + | + | − | − |
41 | 18 | O119:H6 | Kariesh cheese | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | − | − |
42 | 19 | O119:H6 | Kariesh cheese | T, OX, E, NA, AM, CL | 0.428 | + | + | − | − |
43 | 143 | O119:H6 | White soft cheese | T, OX, E, NA, SXT, AM, CZ | 0.5 | + | + | − | − |
44 | 184 | O119:H6 | Ice cream | T, OX, NA, SXT, AM, CF | 0.428 | + | + | − | − |
45 | 186 | O119:H6 | Ice cream | T, OX, E, NA, SXT, AM, CL | 0.5 | + | + | − | − |
46 | 189 | O119:H6 | Ice cream | T, OX, E, NA, SXT, AM, CF | 0.5 | + | + | − | − |
47 | 190 | O119:H6 | Ice cream | T, OX, E, NA, SX, AM, CZ | 0.5 | + | + | − | − |
48 | 198 | O119:H6 | Ice cream | T, OX, E, NA, SXT, CL | 0.428 | + | + | − | − |
49 | 51 | O159 | Market raw milk | T, OX, E, NA, CF, CZ | 0.428 | + | − | − | − |
50 | 53 | O159 | Market raw milk | T, E, NA, SXT | 0.286 | + | − | − | − |
51 | 60 | O159 | Market raw milk | T, OX, E, SXT, NA | 0.357 | + | − | − | − |
52 | 72 | O159 | Kariesh cheese | T, OX, E, SXT | 0.286 | + | − | − | − |
53 | 74 | O159 | Kariesh cheese | T, OX, E, NA, SXT, AK | 0.428 | + | − | − | − |
54 | 78 | O159 | Kariesh cheese | T, OX, E, SXT, CZ | 0.357 | + | − | − | − |
55 | 81 | O121:H7 | Kariesh cheese | T, OX, E, SXT | 0.286 | + | − | − | + |
56 | 83 | O121:H7 | Kariesh cheese | T, OX, E, SXT, K | 0.357 | + | − | − | + |
57 | 88 | O121:H7 | Kariesh cheese | T, OX, E, SXT | 0.286 | + | − | − | + |
58 | 89 | O17:H18 | Kariesh cheese | T, OX, E, CZ | 0.286 | − | + | − | − |
59 | 201 | O17:H18 | Ice cream | T, OX, E, SXT | 0.286 | − | + | − | − |
60 | 204 | O17:H18 | Ice cream | T, OX, E, SXT | 0.286 | − | + | − | − |
61 | 208 | O17:H18 | Ice cream | T, OX, E, K | 0.286 | − | + | − | − |
62 | 151 | O146:H21 | White soft cheese | T, OX, E, SXT, NA | 0.357 | + | + | − | − |
63 | 91 | O114:H4 | Kariesh cheese | T, OX, E, SXT, CL | 0.357 | − | + | − | − |
64 | 96 | O114:H4 | Kariesh cheese | T, OX, E | 0.214 | − | + | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elafify, M.; Sadoma, N.M.; Abd El Aal, S.F.A.; Bayoumi, M.A.; Ahmed Ismail, T. Occurrence and D-Tryptophan Application for Controlling the Growth of Multidrug-Resistant Non-O157 Shiga Toxin-Producing Escherichia coli in Dairy Products. Animals 2022, 12, 922. https://doi.org/10.3390/ani12070922
Elafify M, Sadoma NM, Abd El Aal SFA, Bayoumi MA, Ahmed Ismail T. Occurrence and D-Tryptophan Application for Controlling the Growth of Multidrug-Resistant Non-O157 Shiga Toxin-Producing Escherichia coli in Dairy Products. Animals. 2022; 12(7):922. https://doi.org/10.3390/ani12070922
Chicago/Turabian StyleElafify, Mahmoud, Noha M. Sadoma, Salah F. A. Abd El Aal, Mohamed A. Bayoumi, and Tamer Ahmed Ismail. 2022. "Occurrence and D-Tryptophan Application for Controlling the Growth of Multidrug-Resistant Non-O157 Shiga Toxin-Producing Escherichia coli in Dairy Products" Animals 12, no. 7: 922. https://doi.org/10.3390/ani12070922
APA StyleElafify, M., Sadoma, N. M., Abd El Aal, S. F. A., Bayoumi, M. A., & Ahmed Ismail, T. (2022). Occurrence and D-Tryptophan Application for Controlling the Growth of Multidrug-Resistant Non-O157 Shiga Toxin-Producing Escherichia coli in Dairy Products. Animals, 12(7), 922. https://doi.org/10.3390/ani12070922