Probiotics: Symbiotic Relationship with the Animal Host
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
Search History
3. Effect of Probiotics on In Vitro Results
4. Effect of Probiotics on Intestinal Environment
5. Effect of Probiotics on Antioxidant Capacity
6. Effect of Probiotics on In Vivo Studies
6.1. Ruminants
6.2. Pigs
6.3. Poultry
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Canny, G.O.; McCormick, B.A. Bacteria in the intestine, helpful residents or enemies from within? Infect. Immun. 2008, 76, 3360–3373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maki, J.J.; Klima, C.L.; Sylte, M.J.; Looft, T. The microbial pecking order: Utilization of intestinal microbiota for poultry health. Microorganisms 2019, 7, 376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okumura, R.; Takeda, K. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm. Regen. 2018, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Skonieczna-Żydecka, K.; Jakubczyk, K.; Maciejewska-Markiewicz, D.; Janda, K.; Kaźmierczak-Siedlecka, K.; Kaczmarczyk, M.; Łoniewski, I.; Marlicz, W. Gut biofactory—Neurocompetent metabolites within the gastrointestinal tract. A scoping review. Nutrients 2020, 12, 3369. [Google Scholar] [CrossRef]
- Zimmermann, J.A.; Fusari, M.L.; Rossler, E.; Blajman, J.E.; Romero-Scharpen, A.; Astesana, D.M.; Olivero, C.R.; Berisvil, A.P.; Signorini, M.L.; Zbrun, M.V.; et al. Effects of Probiotics in swines growth performance: A meta-analysis of randomised controlled trials. Anim. Feed Sci. Technol. 2016, 219, 280–293. [Google Scholar] [CrossRef]
- Dos Santos, V.R.; de Carvalho, G.O.; Silva, J.B.N. Probiotics for the management of sepsis: Advances in animal models and intensive care unit environments. Microbiol. Res. 2021, 12, 553–566. [Google Scholar] [CrossRef]
- Allen, J.; Lavau, S. Just-in-Time Disease. J. Cult. Econ. 2015, 8, 342–360. [Google Scholar] [CrossRef]
- Blajman, J.E.; Zbrun, M.V.; Astesana, D.M.; Berisvil, A.P.; Romero Scharpen, A.; Fusari, M.L.; Soto, L.P.; Signorini, M.L.; Rosmini, M.R.; Frizzo, L.S. Probiotics in broilers’ rearing: A strategy for intensive production models. Rev. Argent. Microbiol. 2015, 47, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Yount, N.Y.; Yeaman, M.R. Peptide antimicrobials: Cell wall as a bacterial target. Ann. N. Y. Acad. Sci. 2013, 1277, 127–138. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling antibiotic resistance with compounds of natural origin: A comprehensive review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef]
- Iramiot, J.S.; Kajumbula, H.; Bazira, J.; Kansiime, C.; Asiimwe, B.B. Antimicrobial resistance at the human-animal interface in the pastoralist communities of Kasese District, South Western Uganda. Sci. Rep. 2020, 10, 14737. [Google Scholar] [CrossRef] [PubMed]
- Anee, I.J.; Alam, S.; Begum, R.A.; Shahjahan, R.M.; Khandaker, A.M. The role of probiotics on animal health and nutrition. J. Basic Appl. Zool. 2021, 82, 52. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim. Nutr. 2017, 3, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Alayande, K.A.; Aiyegoro, O.A.; Ateba, C.N. Probiotics in animal husbandry: Applicability and associated risk factors. Sustainability 2020, 12, 1087. [Google Scholar] [CrossRef] [Green Version]
- FAO/WHO. Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO Food and Nutrition Paper; Food and Agriculture Organization of the United Nations, World Health Organization: Roma, Italy, 2006; p. 85. [Google Scholar]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef] [PubMed]
- Krysiak, K.; Konkol, D.; Korczyński, M. Overview of the use of probiotics in poultry production. Animals 2021, 11, 1620. [Google Scholar] [CrossRef]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef]
- McCoy, S.; Gilliland, S.E. Isolation and characterization of Lactobacillus species having potential for use as probiotic cultures for dogs. J. Food Sci. 2007, 72, 94–97. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, W.S.; Paik, H.D. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Sci. Biotechnol. 2019, 28, 1297–1305. [Google Scholar] [CrossRef]
- Florido, G.M.; Rondón, A.J.; Pérez, M.; Arteaga, F.; Bocourt, R.; Portilla, Y.; Rodríguez, M.; Perez, Y.; Beruvides, A.; Laurencio, M. Methodology for the isolation, identification and selection of Bacillus spp. strains for the preparation of animal additives. Cuban J. Agric. Sci. 2017, 51, 197–207. [Google Scholar]
- Latorre, J.D.; Hernandez-Velasco, X.; Kuttappan, V.A.; Wolfenden, R.E.; Vicente, J.L.; Wolfenden, A.D.; Bielke, L.R.; Prado-Rebolledo, O.F.; Morales, E.; Hargis, B.M.; et al. Selection of Bacillus spp. for cellulase and xylanase production as direct-fed microbials to reduce digesta viscosity and Clostridium perfringens proliferation using an in vitro digestive model in different poultry diets. Front. Vet. Sci. 2015, 2, 25. [Google Scholar] [CrossRef] [PubMed]
- Ugwuoke, J.; Okwesili, O.; Dim, C.; Okonkwo, M.; Harriet-Foleng, N. Carcass and organ characteristics of finishing broilers fed diets containing probiotics (Saccharomyces cerevisiae). Agro-Sci. 2021, 20, 25–30. [Google Scholar] [CrossRef]
- Garcia-Mazcorro, J.F.; Ishaq, S.L.; Rodriguez-Herrera, M.V.; Garcia-Hernandez, C.A.; Kawas, J.R.; Nagaraja, T.G. Review: Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal 2020, 14, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Tortuero, F.; Rioperez, J.; Fernandez, E.; Rodriguez, M.L. Response of piglets to oral administration of lactic acid bacteria. J. Food Prot. 1995, 58, 1369–1374. [Google Scholar] [CrossRef]
- Bauer, E.; Williams, B.A.; Smidt, H.; Mosenthin, R.; Verstegen, M.W.A. Influence of dietary components on development of the microbiota in single-stomached species. Nutr. Res. Rev. 2006, 19, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.B.; Isaacson, R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 2015, 177, 242–251. [Google Scholar] [CrossRef]
- Bernardeau, M.; Lehtinen, M.J.; Forssten, S.D.; Nurminen, P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. J. Food Sci. Technol. 2017, 54, 2570–2584. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Y.; Shen, X.; Mizu, M.; Furuta, T.; Li, C. Effect of dietary supplementation with sugar cane extract on meat quality and oxidative stability in finishing pigs. Anim. Nutr. 2017, 3, 295–299. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Avellaneda, M.C.; Velázquez-Martí, B. In vitro characterization of indigenous probiotic strains isolated from Colombian creole pigs. Animals 2020, 10, 1204. [Google Scholar] [CrossRef]
- Klose, V.; Bayer, K.; Bruckbeck, R.; Schatzmayr, G.; Loibner, A.-P. In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens. Vet. Microbiol. 2010, 144, 515–521. [Google Scholar] [CrossRef]
- Jurado-Gamez, H.; Fajardo-Argoti, C. Determination of the probiotic in vitro effect of Lactobacillus gasseri on a Staphylococcus epidermidis strain. Biosalud 2017, 16, 53–69. [Google Scholar] [CrossRef]
- Giang, H.H.; Viet, T.Q.; Ogle, B.; Lindberg, J.E. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with a complex of lactic acid bacteria alone or in combination with Bacillus subtilis and Saccharomyces boulardii. Livest. Sci. 2012, 143, 132–141. [Google Scholar] [CrossRef]
- Ye, K.; Li, P.; Gu, Q. Complete genome sequence analysis of a strain Lactobacillus pentosus ZFM94 and its probiotic characteristics. Genomics 2020, 112, 3142–3149. [Google Scholar] [CrossRef] [PubMed]
- Sosa-Cossio, D.; García-Hernández, Y.; Dustet-Mendoza, J.C.; García-Curbelo, Y.; Martínez-Pérez, M.; Sosa-Ceijas, A.; García-Quiñones, D. Effect of Lactobacillus Pentosus LB-31 probiotic additive on broilers. Rev. MVZ Córdoba 2021, 26, 1. [Google Scholar]
- Pringsulaka, O.; Rueangyotchanthana, K.; Suwannasai, N.; Watanapokasin, R.; Amnueysit, P.; Sunthornthummas, S.; Sukkhum, S.; Sarawaneeyaruk, S.; Rangsiruji, A. In vitro screening of lactic acid bacteria for multi-strain probiotics. Livest. Sci. 2015, 174, 66–73. [Google Scholar] [CrossRef]
- Vinderola, G.; Gueimonde, M.; Gomez-Gallego, C.; Delfederico, L.; Salminen, S. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends Food Sci. Technol. 2017, 68, 83–90. [Google Scholar] [CrossRef]
- Di Stefano, E.; White, J.; Seney, S.; Hekmat, S.; McDowell, T.; Sumarah, M.; Reid, G. A Novel millet-based probiotic fermented food for the developing world. Nutrients 2017, 9, 529. [Google Scholar] [CrossRef] [Green Version]
- Daba, G.; Elnahas, M.; Elkhateeb, W. Contributions of exopolysaccharides from lactic acid bacteria as biotechnological tools in food, pharmaceutical, and medical applications. Int. J. Biol. Macromol. 2021, 173, 79–89. [Google Scholar] [CrossRef]
- Hughes, D.T.; Sperandio, V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat. Rev. Microbiol. 2008, 6, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Sikdar, R.; Elias, M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: A review of recent advances. Expert. Rev. Anti-Infect. Ther. 2020, 18, 1221–1233. [Google Scholar] [CrossRef]
- Gunaratnam, S.; Millette, M.; McFarland, L.V.; DuPont, H.L.; Lacroix, M. Potential role of probiotics in reducing clostridioides difficile virulence: Interference with quorum sensing systems. Microb. Pathog. 2021, 153, 104798. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Luo, X.M.; Liu, J.; Wang, H. Quorum sensing, biofilm, and intestinal mucosal barrier: Involvement the role of probiotic. Front. Cell. Infect. Microbiol. 2020, 10, 504. [Google Scholar] [CrossRef] [PubMed]
- Kiymaci, M.E.; Altanlar, N.; Gumustas, M.; Ozkan, S.A.; Akin, A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb. Pathog. 2018, 121, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Luo, Y.; Cao, X.; Liu, W.; Song, G.; Zhang, Z. Luxs quorum sensing system mediating Lactobacillus plantarum probiotic characteristics. Arch. Microbiol. 2021, 203, 4141–4148. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, Y.; Pérez-Sánchez, T.; Boucourt, R.; Balcázar, J.L.; Nicoli, J.R.; Moreira-Silva, J.; Rodríguez, Z.; Fuertes, H.; Nuñez, O.; Albelo, N.; et al. Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Res. Vet. Sci. 2016, 108, 125–132. [Google Scholar] [CrossRef]
- Abdelbagi, M.; Ridwan, R.; Fidriyanto, R.; Rohmatussolihat; Nahrowi; Jayanegara, A. Effects of probiotics and encapsulated probiotics on enteric methane emission and nutrient digestibility in vitro. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012050. [Google Scholar] [CrossRef]
- Elghandour, M.M.Y.; Tan, Z.L.; Abu Hafsa, S.H.; Adegbeye, M.J.; Greiner, R.; Ugbogu, E.A.; Cedillo Monroy, J.; Salem, A.Z.M. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A Review. J. Appl. Microbiol. 2020, 128, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, B.; Valdivié, M.; Lezcano, P.; Herrera, M. Evaluation of torula yeast (Candida utilis) grown on distillery vinasse for broilers. Cuban J. Agric. Sci. 2013, 47, 183–188. [Google Scholar]
- Stevens, R.E.; Luo, T.L.J.; Vornhagen, J.; Jakubovics, N.S.; Gilsdorf, J.R.; Marr, C.F.; Møretrø, T.; Rickard, A.H. Coaggregation occurs between microorganisms isolated from different environments. FEMS Microbiol. Ecol. 2015, 91, 123. [Google Scholar] [CrossRef]
- Angulo, M.; Reyes-Becerril, M.; Medina-Córdova, N.; Tovar-Ramírez, D.; Angulo, C. Probiotic and Nutritional Effects of Debaryomyces Hansenii on Animals. Appl. Microbiol. Biotechnol. 2020, 104, 7689–7699. [Google Scholar] [CrossRef]
- Fernandes, T.; Carvalho, B.F.; Mantovani, H.C.; Schwan, R.F.; Ávila, C.L.S. Identification and characterization of yeasts from bovine rumen for potential use as probiotics. J. Appl. Microbiol. 2019, 127, 845–855. [Google Scholar] [CrossRef] [PubMed]
- García-Hernández, Y.; Rodríguez, Z.; Brandão, L.R.; Rosa, C.A.; Nicoli, J.R.; Elías Iglesias, A.; Peréz-Sanchez, T.; Salabarría, R.B.; Halaihel, N. Identification and in vitro screening of avian yeasts for use as probiotic. Res. Vet. Sci. 2012, 93, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, G.; Li, X.; Zheng, F.; Zeng, X. Yeast β-glucan, a potential prebiotic, showed a similar probiotic activity to inulin. Food Funct. 2020, 11, 10386–10396. [Google Scholar] [CrossRef] [PubMed]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yang, X.J. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J. Gastroenterol. 2016, 22, 8905–8909. [Google Scholar] [CrossRef]
- Liu, G.; Guan, G.; Fang, J.; Martínez, Y.; Chen, S.; Bin, P.; Duraipandiyan, V.; Gong, T.; Tossou, M.; Al-Dhabi, N.; et al. Macleaya cordata extract decreased diarrhea score and enhanced intestinal barrier function in growing piglets. BioMed Res. Int. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Schoultz, I.; Keita, Å.V. The intestinal barrier and current techniques for the assessment of gut permeability. Cells 2020, 9, 1909. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, Q.; Evivie, S.E.; Liu, D.; Dong, J.; Ping, L.; Liu, F.; Li, B.; Huo, G. Bifidobacterium dentium N8 with potential probiotic characteristics prevents LPS-induced intestinal barrier injury by alleviating the inflammatory response and regulating the tight junction in Caco-2 cell monolayers. Food Funct. 2021, 12, 7171–7184. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; He, Y.; Wang, Z.; Zhao, H.; Jin, X.; Shi, D.; Wang, X. Enterococcus faecium HDRsEf1 inhibits lipopolysaccharide-induced downregulation of zonula occludens-1 expression via toll-like receptor 2/4-mediated c-Jun N-terminal kinase/activator protein-1 signalling pathways. J. Appl. Microbiol. 2021, 132, 605–617. [Google Scholar] [CrossRef]
- Bilal, M.; Si, W.; Barbe, F.; Chevaux, E.; Sienkiewicz, O.; Zhao, X. Effects of novel probiotic strains of Bacillus pumilus and Bbacillus subtilis on production, gut health and immunity of broiler chickens raised under sub-optimal conditions. Poult. Sci. 2020, 100, 100871. [Google Scholar] [CrossRef] [PubMed]
- Izuddin, W.I.; Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A. Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, K.; Pugin, B.; De Boeck, I.; Spacova, I.; Steelant, B.; Seys, S.F.; Lebeer, S.; Hellings, P.W. Probiotics for the airways: Potential to improve epithelial and immune homeostasis. Allergy 2018, 73, 1954–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Salek Farrokhi, A.; Darabi, N. Probiotics importance and their immunomodulatory properties. J. Cell Physiol. 2019, 234, 8008–8018. [Google Scholar] [CrossRef]
- Jiang, J.; Song, X.; Huang, X.; Zhou, W.; Wu, J.; Zhu, Z.; Zheng, H.; Jiang, Y. Effects of alfalfa meal on growth performance and gastrointestinal tract development of growing ducks. Asian-Australas. J. Anim. Sci. 2012, 25, 1445–1450. [Google Scholar] [CrossRef]
- Bagarolli, R.A.; Tobar, N.; Oliveira, A.G.; Araújo, T.G.; Carvalho, B.M.; Rocha, G.Z.; Vecina, J.F.; Calisto, K.; Guadagnini, D.; Prada, P.O.; et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J. Nutr. Biochem. 2017, 50, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Rodjan, P.; Soisuwan, K.; Thongprajukaew, K.; Theapparat, Y.; Khongthong, S.; Jeenkeawpieam, J.; Salaeharae, T. Effect of organic acids or probiotics alone or in combination on growth performance, nutrient digestibility, enzyme activities, intestinal morphology and gut microflora in broiler chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, e931–e940. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Liu, D.; Guo, Y. Effects of Lactobacillus acidophilus on the growth performance and intestinal health of broilers challenged with Clostridium perfringes. J. Anim. Sci. Biotechnol. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Maison, T.; Koontanatechanon, A.; Prapasarakul, N. Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72n) as replacements for antibiotic-growth promotants in pigs. Sci. Rep. 2021, 11, 12028. [Google Scholar] [CrossRef]
- Joysowal, M.; Saikia, B.; Dowarah, R.; Tamuly, S.; Kalita, D.; Choudhury, K. Effect of probiotic Pediococcus acidilactici FT28 on growth performance, nutrient digestibility, health status, meat quality, and intestinal morphology in growing pigs. Vet. World 2018, 11, 1669–1676. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Sarker, M.; Wan, D. Immunomodulatory effects of probiotics on cytokine profiles. Biomed Res. Int. 2018, 2018, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwandner, R.; Dziarski, R.; Wesche, H.; Rothe, M.; Kirschning, C.J. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2 *. J. Biol. Chem. 1999, 274, 17406–17409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.H.; Zhao, P.Y.; Kim, I.-S. Probiotics as a dietary additive for pigs: A review. J. Anim Vet. Adv. 2011, 10, 2127–2134. [Google Scholar] [CrossRef]
- Galdeano, C.M.; de Moreno de LeBlanc, A.; Vinderola, G.; Bonet, M.E.B.; Perdigón, G. Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clin. Vaccine Immunol. 2007, 14, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, C.J.; Cai, P.P.; Hou, C.; Zeng, X.; Qiao, S. Administration of Lactobacillus fermentum I5007 to young piglets improved their health and growth. J. Anim. Feed Sci. 2014, 23, 222–227. [Google Scholar] [CrossRef]
- Suresh, R.; Brar, A.P.S.; Leishangthem, G.D.; Sandhu, B.S. Immunohistochemical detection of enteropathogens associated with calf diarrhea. Indian J. Vet. Sci. Biotechnol. 2021, 17, 9–13. [Google Scholar] [CrossRef]
- Lee, J.S.; Awji, E.G.; Lee, S.J.; Tassew, D.D.; Park, Y.B.; Park, K.S.; Kim, M.K.; Kim, B.; Park, S.S. Effect of Lactobacillus plantarum CJLP243 on the growth performance and cytokine response of weaning pigs challenged with Enterotoxigenic Escherichia coli. J. Anim. Sci. 2012, 90, 3709–3717. [Google Scholar] [CrossRef] [Green Version]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Castillo, R.; Ding, X. Effect of oral administration with Lactobacillus plantarum CAM6 strain on sows during gestation-lactation and the derived impact on their progeny performance. Mediat. Inflamm. 2021, 2021, 6615960. [Google Scholar] [CrossRef]
- Renaud, D.L.; Kelton, D.F.; Weese, J.S.; Noble, C.; Duffield, T.F. Evaluation of a multispecies probiotic as a supportive treatment for diarrhea in dairy calves: A randomized clinical trial. J. Dairy. Sci. 2019, 102, 4498–4505. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Luo, R.; Chen, H.; Nie, C.; Niu, J.; Chen, C.; Xu, Y.; Li, X.; Zhang, W. Effect of a multispecies probiotic mixture on the growth and incidence of diarrhea, immune function, and fecal microbiota of pre-weaning dairy calves. Front. Microbiol. 2021, 12, 681014. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Mohammed, M.T. Oxidative stress: The role of reactive oxygen species (ROS) and antioxidants in human diseases. Plant. Arch. 2020, 20, 4089–4095. [Google Scholar]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, C.; Marchi, S.; Simoes, I.C.M.; Ren, Z.; Morciano, G.; Perrone, M.; Patalas-Krawczyk, P.; Borchard, S.; Jędrak, P.; Pierzynowska, K.; et al. Mitochondria and reactive oxygen species in aging and age-related diseases. Int. Rev. Cell. Mol. Biol. 2018, 340, 209–344. [Google Scholar] [CrossRef] [Green Version]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future. Eur. J. Heart Fail. 2019, 21, 425–435. [Google Scholar] [CrossRef]
- Hou, C.; Zeng, X.; Yang, F.; Liu, H.; Qiao, S. Study and use of the probiotic Lactobacillus reuteri in pigs: A Review. J. Anim. Sci. Biotechnol. 2015, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Hou, C.; Zeng, X.; Qiao, S. The use of lactic acid bacteria as a probiotic in swine diets. Pathogens 2015, 4, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Knauf, H.J.; Vogel, R.F.; Hammes, W.P. Cloning, sequence, and phenotypic expression of kata, which encodes the catalase of Lactobacillus sake lth677. Appl. Environ. Microbiol. 1992, 58, 832–839. [Google Scholar] [CrossRef] [Green Version]
- de Vos, W. Metabolic engineering of sugar catabolism in lactic acid bacteria. Ant. Leeuwenhoek. 1996, 70, 223–242. [Google Scholar] [CrossRef]
- Dowarah, R.; Verma, A.K.; Agarwal, N.; Singh, P. Efficacy of Species-specific probiotic Pediococcus acidilactici FT28 on blood biochemical profile, carcass traits and physicochemical properties of meat in fattening pigs. Res. Vet. Sci. 2018, 117, 60–64. [Google Scholar] [CrossRef]
- Xiang, Q.; Wang, C.; Zhang, H.; Lai, W.; Wei, H.-K.; Peng, J. Effects of different probiotics on laying performance, egg quality, oxidative status, and gut health in laying hens. Animals 2019, 9, 1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaretti, A.; di Nunzio, M.; Pompei, A.; Raimondi, S.; Rossi, M.; Bordoni, A. Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Appl. Microbiol. Biotechnol. 2013, 97, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Guan, L. Understanding host-microbial interactions in rumen: Searching the best opportunity for microbiota manipulation. J. Anim. Sci. Biotechnol. 2017, 8, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weimer, P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Mahmood, F.A.; Abas, E.R. A review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. J. Entomol. Zool. Stud. 2018, 6, 629–635. [Google Scholar] [CrossRef]
- Doyle, N.; Mbandlwa, P.; Kelly, W.J.; Attwood, G.; Li, Y.; Ross, R.P.; Leahy, S. Use of lactic acid bacteria to reduce methane production in ruminants, a critical review. Front. Microbiol. 2019, 10, 2207. [Google Scholar] [CrossRef] [Green Version]
- Jinturkar, A.; Gujar, B.; Chauhan, D.; Patil, R. Effect of feeding probiotics on the growth performance and feed conversion efficiency in goat. Indian J. Anim. Res. 2009, 43, 49–52. [Google Scholar]
- Abd El-Trwab, M.M.; Youssef, I.M.; Bakr, H.A.; Fthenakis, G.C.; Giadinis, N.D. Role of probiotics in nutrition and health of small ruminants. Pol. J. Vet. Sci. 2016, 19, 893–906. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, C.; Lemme-Dumit, J.M.; Thieblemont, N.; Carmuega, E.; Weill, R.; Perdigón, G. Stimulation of innate immune cells induced by probiotics: Participation of Toll-Like receptors. J. Clin. Cell. Immunol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zapata, O.; Cervantes, A.; Barreras, A.; Monge-Navarro, F.; González-Vizcarra, V.; Estrada-Angulo, A.; Urías-Estrada, J.; Corona, L.; Zinn, R.; Martínez-Alvarez, I.; et al. Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Rumin. Res. 2021, 204, 106538. [Google Scholar] [CrossRef]
- Habeeb, A.A.M. Current view of the significance of yeast for ruminants a review 1- role of yeast and modes of action. Am. J. Inf. Sci. Technol. 2017, 1, 8–14. [Google Scholar] [CrossRef]
- Oskoueian, E.; Faseleh Jahromi, M.; Jafari, S.; Shakeri, M.; Le, H.H.; Ebrahimi, M. Manipulation of rice straw silage fermentation with different types of lactic acid bacteria inoculant affects rumen microbial fermentation characteristics and methane production. Vet. Sci. 2021, 8, 100. [Google Scholar] [CrossRef]
- Liping, T.; Zijun, Y.; Cai, Z.; Jicang, W.; Zhao, H.; Boqiang, D.; Aiqiang, L. Correlation of physiological metabolism and rumen microbes in ruminants. Anim. Husb. Feed Sci. 2017, 9, 200–203. [Google Scholar] [CrossRef]
- Xu, H.; Huang, W.; Hou, Q.; Kwok, L.; Sun, Z.; Ma, H.; Zhao, F.; Lee, Y.K.; Zhang, H. The Effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Sci. Bull. 2017, 62, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Stein, D.R.; Allen, D.T.; Perry, E.B.; Bruner, J.C.; Gates, K.W.; Rehberger, T.G.; Mertz, K.; Jones, D.; Spicer, L.J. Effects of feeding Propionibacteria to dairy cows on milk yield, milk components, and reproduction. J. Dairy Sci. 2006, 89, 111–125. [Google Scholar] [CrossRef]
- Stella, A.V.; Paratte, R.; Valnegri, L.; Cigalino, G.; Soncini, G.; Chevaux, E.; Dell’Orto, V.; Savoini, G. Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin. Res. 2007, 67, 7–13. [Google Scholar] [CrossRef]
- Cruywagen, C.W.; Jordaan, I.; Venter, L. Effect of Lactobacillus acidophilus supplementation of milk replacer on preweaning performance of calves. J. Dairy Sci. 1996, 79, 483–486. [Google Scholar] [CrossRef]
- Apás, A.L.; Arena, M.E.; Colombo, S.; González, S.N. Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats. J. Dairy Sci. 2015, 98, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.-Z.; Cheng, Y.-Y.; Wang, S.-Q.; Ge, J.-Z.; Shi, H.-P.; Kou, J.-C. Positive effects of dietary supplementation of three probiotics on milk yield, milk composition and intestinal flora in Sannan dairy goats varied in kind of probiotics. J. Anim. Physiol. Anim. Nutr. 2020, 104, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Tkalcic, S.; Zhao, T.; Harmon, B.G.; Michael, P.D.; Cathy, A.B.; Ping, Z. Fecal shedding of enterohemorrhagic escherichia coli in weaned calves following treatment with probiotic Escherichia coli. J. Food Prot. 2003, 66, 1184–1189. [Google Scholar] [CrossRef]
- Stanford, K.; Bach, S.; Baah, J.; McAllister, T. A mixture of Lactobacillus casei, Lactobacillus lactis, and Paenibacillus polymyxa Reduces Escherichia coli O157:H7 in finishing feedlot cattle. J. Food Prot. 2014, 77, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, D.; Al-harbi, H.; Gibson, J.; Olchowy, T.; Alawneh, J. On the use of probiotics to improve dairy cattle health and productivity. Microbiol. Aust. 2020, 41, 86. [Google Scholar] [CrossRef]
- Pellegrino, M.S.; Frola, I.D.; Natanael, B.; Gobelli, D.; Nader-Macias, M.E.F.; Bogni, C.I. In vitro characterization of lactic acid bacteria isolated from bovine milk as potential probiotic strains to prevent bovine mastitis. Probiotics Antimicrob. Proteins 2019, 11, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P.; Foucras, G. A critical appraisal of probiotics for mastitis control. Front. Vet. Sci. 2018, 5, 251. [Google Scholar] [CrossRef]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.H.; Zebeli, Q. Practical feeding management recommendations to mitigate the risk of subacute ruminal acidosis in dairy cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, G.; Gao, X.; Duan, J.; Zhang, H.; Zheng, Y.; He, J.; Huo, N.; Pei, C.; Li, H.; Gu, S. Effects of yeasts on rumen bacterial flora, abnormal metabolites, and blood gas in sheep with induced subacute ruminal acidosis. Anim. Feed. Sci. Technol. 2021, 280, 115042. [Google Scholar] [CrossRef]
- Lettat, A.; Nozière, P.; Silberberg, M.; Morgavi, D.; Berger, C. Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep. BMC Microbiol. 2012, 12, 142. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Gupta, S.K.; Sharma, N.; Kumar, A. Bovine ruminal acidosis: Rumen liquor profile and its therapeutic management. J. Anim. Res. 2018, 8, 691–696. [Google Scholar] [CrossRef]
- Hristov, A.N.; Varga, G.; Cassidy, T.; Long, M.; Heyler, K.; Karnati, S.K.R.; Corl, B.; Hovde, C.J.; Yoon, I. Effect of Saccharomyces Cerevisiae fermentation product on ruminal fermentation and nutrient utilization in dairy cows. J. Dairy Sci. 2010, 93, 682–692. [Google Scholar] [CrossRef]
- Goto, H.; Qadis, A.Q.; Kim, Y.H.; Ikuta, K.; Ichijo, T.; Sato, S. Effects of a bacterial probiotic on ruminal pH and volatile fatty acids during subacute ruminal acidosis (SARA) in cattle. J. Vet. Med. Sci. 2016, 78, 1595–1600. [Google Scholar] [CrossRef] [Green Version]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Jeon, J.; Lourenco, J.; Kaiser, E.; Waters, E.; Scheulin, K.; Fang, X.; Kinder, H.; Platt, S.R.; Rothrock, M.J.; Callaway, T.R.; et al. Dynamic changes in the gut microbiome at the acute stage of ischemic stroke in a pig model. Front. Neurosci. 2020, 14, 1219. [Google Scholar] [CrossRef] [PubMed]
- Lassaletta, L.; Estellés, F.; Beusen, A.H.W.; Bouwman, L.; Calvet, S.; van Grinsven, H.J.M.; Doelman, J.C.; Stehfest, E.; Uwizeye, A.; Westhoek, H. Future global pig production systems according to the shared socioeconomic pathways. Sci. Total Environ. 2019, 665, 739–751. [Google Scholar] [CrossRef] [PubMed]
- Grunert, K.G.; Sonntag, W.I.; Glanz-Chanos, V.; Forum, S. Consumer interest in environmental impact, safety, health and animal welfare aspects of modern pig production: Results of a cross-national choice experiment. Meat Sci. 2018, 137, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.E.; Abia, A.L.K.; Amoako, D.G.; Perrett, K.; Bester, L.A.; Essack, S.Y. From farm-to-fork: E. coli from an intensive pig production system in South Africa shows high resistance to critically important antibiotics for human and animal use. Antibiotics 2021, 10, 178. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.H.; Martínez, Y.; Yu, L.; Wang, Y.; Liu, H.B.; Liu, G.; Zhong, J.; Jiang, Y.B.; Yin, Y.L. Effects of dietary supplementation of Lactobacillus plantarum on growth performance and serum concentration of amino acids in weaned piglets. Anim. Nutr. Feed Technol. 2014, 14, 411. [Google Scholar] [CrossRef]
- Grzywacz, K.; Butcher, J.; Romain, G.; Li, J.; Stintzi, A. The impact of probiotics and lactoferrin supplementation on piglet gastrointestinal microbial communities. Biometals 2019, 32, 533–543. [Google Scholar] [CrossRef]
- Barba Vidal, E.; Martín-Orúe, S.; Castillejos, L. Practical aspects of the use of probiotics in pig production: A Review. Livest. Sci. 2019, 223. [Google Scholar] [CrossRef]
- Mingmongkolchai, S.; Panbangred, W. Bacillus probiotics: An alternative to antibiotics for livestock production. J. Appl. Microbiol. 2018, 124, 1334–1346. [Google Scholar] [CrossRef]
- Arsène, M.M.J.; Davares, A.K.L.; Andreevna, S.L.; Vladimirovich, E.A.; Carime, B.Z.; Marouf, R.; Khelifi, I. The use of probiotics in animal feeding for safe production and as potential alternatives to antibiotics. Vet. World 2021, 14, 319–328. [Google Scholar] [CrossRef]
- Padmavathi, T.; Bhargavi, R.; Priyanka, P.R.; Niranjan, N.R.; Pavitra, P.V. Screening of potential probiotic lactic acid bacteria and production of amylase and its partial purification. J. Genet. Eng. Biotechnol. 2018, 16, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.M.; Hashem, A.M.; Ashour, M.S.; Hatti-Kaul, R. 1,2 Propanediol utilization by Lactobacillus reuteri DSM 20016, role in bioconversion of glycerol to 1,3 propanediol, 3-hydroxypropionaldehyde and 3-hydroxypropionic Acid. J. Genet. Eng. Biotechnol. 2013, 11, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Pieper, R.; Janczyk, P.; Urubschurov, V.; Korn, U.; Pieper, B.; Souffrant, W.B. Effect of a single oral administration of Lactobacillus plantarum DSMZ 8862/8866 before and at the time point of weaning on intestinal microbial communities in piglets. Int. J. Food Microbiol. 2009, 130, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Betancur, C.; Martínez, Y.; Merino-Guzman, R.; Hernandez-Velasco, X.; Castillo, R.; Rodríguez, R.; Tellez-Isaias, G. Evaluation of oral administration of lactobacillus plantarum CAM6 strain as an alternative to antibiotics in weaned pigs. Animals 2020, 10, 1218. [Google Scholar] [CrossRef] [PubMed]
- Asml, A.; Agazzi, A.; Invernizzi, G.; Bontempo; Savoini, G. The beneficial role of probiotics in monogastric animal nutrition and health. J. Dairy Vet. Anim. Res. 2015, 2, 116–132. [Google Scholar] [CrossRef] [Green Version]
- Pollmann, M.; Nordhoff, M.; Pospischil, A.; Tedin, K.; Wieler, L.H. Effects of a probiotic strain of Enterococcus faecium on the rate of natural chlamydia infection in swine. Infect. Immun. 2005, 73, 4346–4353. [Google Scholar] [CrossRef] [Green Version]
- Alexopoulos, C.; Georgoulakis, I.E.; Tzivara, A.; Kritas, S.K.; Siochu, A.; Kyriakis, S.C. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 2004, 88, 381–392. [Google Scholar] [CrossRef]
- Knapp, J.; Bartenslager, A.; Winkel, S.; Trenhaile-Grannemann, M.; San Andres, J.; Nguyen, K.; Wittler, J.; Kinstler, S.; Fernando, S.; Miller, P.; et al. The effects of Lactobacillus fermentum on nursery pig performance. J. Anim. Sci. 2021, 99, 159–160. [Google Scholar] [CrossRef]
- Ayala, L.; Bocourt, R.; Castro, M.; Martínez, M.; Herrera, M. Effect of the probiotic additive Bacillus subtilis and their endospores on milk production and immune response of lactating sows. Cuban J. Agric. Sci. 2016, 49, 71–74. [Google Scholar]
- Tian, Z.; Cui, Y.; Lu, H.; Wang, G.; Ma, X. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 2021, 171, 108234. [Google Scholar] [CrossRef]
- Al-Shawi, S.G.; Dang, D.S.; Yousif, A.Y.; Al-Younis, Z.K.; Najm, T.A.; Matarneh, S.K. The potential use of probiotics to improve animal health, efficiency, and meat quality: A Review. Agriculture 2020, 10, 452. [Google Scholar] [CrossRef]
- Tufarelli, V.; Crovace, A.M.; Rossi, G.; Laudadio, V. Effect of a dietary probiotic blend on performance, blood characteristics, meat quality and faecal microbial shedding in growing-finishing pigs. S. Afr. J. Anim. Sci. 2017, 47, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.W.; Yan, L.; Ao, X.; Zhou, T.X.; Wang, J.P.; Lee, J.H.; Kim, I.H. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs. J. Anim. Sci. 2010, 88, 3320–3326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cernauskiene, J.; Bartkevieiute, Z.; Hammerer, J.; Kozłowski, K.; Jeroch, H. The effect of “Bonvital” a probiotic product containing Enterococus faecium on the fattening performance carcass characteristics and meat quality of pigs under production conditions. Vet. Med. Zootech. 2011, 54, 20–25. [Google Scholar]
- Suo, C.; Yin, Y.; Wang, X.; Lou, X.; Song, D.; Wang, X.; Gu, Q. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet. Res. 2012, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.; Belal, S.; Kang, D.; Choi, Y.; Kim, Y.H.; Choe, H.; Heo, J.; Shim, K. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics. Korean J. Food Sci. Anim. Resour. 2018, 38, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Yu, Z. Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes. 2014, 5, 108–119. [Google Scholar] [CrossRef]
- Martínez, Y.; Altamirano, E.; Ortega, V.; Paz, P.; Valdivie, M. Effect of age on the immune and visceral organ weights and cecal traits in modern broilers. Animals 2021, 11, 845. [Google Scholar] [CrossRef]
- Rehman, H.U.; Vahjen, W.; Awad, W.A.; Zentek, J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr. 2007, 61, 319–335. [Google Scholar] [CrossRef]
- Bindari, Y.R.; Moore, R.J.; Van, T.T.H.; Hilliar, M.; Wu, S.-B.; Walkden-Brown, S.W.; Gerber, P.F. Microbial communities of poultry house dust, excreta and litter are partially representative of microbiota of chicken caecum and ileum. PLoS ONE 2021, 16, e0255633. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, C.; Xia, M.; Zhan, X.; Wang, M. Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poult. Sci. 2003, 82, 1030–1036. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Kumar, S.; Oakley, B.; Kim, W.K. Chicken gut microbiota: Importance and detection technology. Front. Vet. Sci. 2018, 5, 254. [Google Scholar] [CrossRef] [PubMed]
- Roto, S.; Kwon, Y.M.; Ricke, S. Applications of in ovo technique for the optimal development of the gastrointestinal tract and the potential influence on the establishment of its microbiome in poultry. Front. Vet. Sci. 2016, 3, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabashsum, Z.; Peng, M.; Alvarado-Martinez, Z.; Aditya, A.; Bhatti, J.; Romo, P.B.; Biswas, D. Competitive reduction of poultry-borne enteric bacterial pathogens in chicken gut with bioactive Lactobacillus casei. Sci. Rep. 2020, 10, 16259. [Google Scholar] [CrossRef]
- Kogut, M.H. The effect of microbiome modulation on the intestinal health of poultry. Anim. Feed Sci. Technol. 2019, 250, 32–40. [Google Scholar] [CrossRef]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and environmental factors affecting the intestinal microbiota in chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Kurzak, P.; Ehrmann, M.A.; Vogel, R.F. Diversity of lactic acid bacteria associated with ducks. Syst. Appl. Microbiol. 1998, 21, 588–592. [Google Scholar] [CrossRef]
- Chambers, J.R.; Gong, J. The Intestinal microbiota and its modulation for salmonella control in chickens. Food Res. Int. 2011, 44, 3149–3159. [Google Scholar] [CrossRef]
- Niewold, T.A. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci. 2007, 86, 605–609. [Google Scholar] [CrossRef]
- Jadhav, K.; Sharma, K.S.; Katoch, S.; Sharma, V.; Mane, B. Probiotics in broiler poultry feeds: A Review. Int. J. Anim. Vet. Sci. 2015, 1, 4–16. [Google Scholar]
- Mahesh, M.; Mohanta, R.; Patra, A. Probiotics in livestock and poultry nutrition and health. In Advances in Probiotics for Sustainable Food and Medicine; Springer: Singapore, 2021; pp. 149–179. ISBN 9789811567957. [Google Scholar]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 2000, 79, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Afsharmanesh, M.; Sadaghi, B. Effects of dietary alternatives (probiotic, green tea powder, and kombucha tea) as antimicrobial growth promoters on growth, ileal nutrient digestibility, blood parameters, and immune response of broiler chickens. Comp. Clin. Pathol. 2014, 23, 717–724. [Google Scholar] [CrossRef]
- Pelicano, E.R.L.; Souza, P.A.; Borba, H.; Oba, A.; Norkus, E.A.; Kodawara, L.M.; Lima, T.M.A. Intestinal mucosa structure and ultrastructure in broilers fed with diets supplemented with different probiotics. Rev. Port. Ciênc. Vet. 2003, 98, 125–134. [Google Scholar]
- Biloni, A.; Quintana, C.F.; Menconi, A.; Kallapura, G.; Latorre, J.; Pixley, C.; Layton, S.; Dalmagro, M.; Hernandez-Velasco, X.; Wolfenden, A.; et al. Evaluation of effects of earlybird associated with floramax-b11 on Salmonella enteritidis, intestinal morphology, and performance of broiler chickens. Poult. Sci. 2013, 92, 2337–2346. [Google Scholar] [CrossRef]
- Abdel-Rahman, H.A.; Shawky, S.M.; Ouda, H.; Nafeaa, A.A.; Orabi, S.H. Effect of two probiotics and bioflavonoids supplementation to the broilers diet and drinking water on the growth performance and hepatic antioxidant parameters. Global Vet. 2013, 10, 734–741. [Google Scholar] [CrossRef]
- Cao, G.T.; Zeng, X.F.; Chen, A.G.; Zhou, L.; Zhang, L.; Xiao, Y.P.; Yang, C.M. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult. Sci. 2013, 92, 2949–2955. [Google Scholar] [CrossRef]
- Chae, B.J.; Ingale, S.L.; Kim, J.; Kim, K.H.; Sen, S.; Lee, S.H.; Khong, C.; Kim, E.K.; Kwon, I.K. Effect of dietary supplementation of probiotics on performance, caecal microbiology and small intestinal morphology of broiler chickens. Anim. Nutr. Feed Technol. 2012, 12, 1–12. [Google Scholar]
- Joshi, H.; Meshram, B. Gross, histomorphological and histochemical studies of the cloaca in white leghorn fowl (Gallus domesticus domesticus). Indian J. Vet. Anat. 2018, 30, 134–136. [Google Scholar]
- Denbow, D.M. Gastrointestinal anatomy and physiology. In Sturkie’s Avian Physiology, 6th ed.; Scanes, C.G., Ed.; Academic Press: San Diego, CA, USA, 2015; pp. 337–366. ISBN 978-0-12-407160-5. [Google Scholar]
- Metges, C.C. Contribution of microbial amino acids to amino acid homeostasis of the host. J. Nutr. 2000, 130, 1857S–1864S. [Google Scholar] [CrossRef]
- Vispo, C.; Karasov, W.H. The Interaction of Avian Gut Microbes and Their Host: An Elusive Symbiosis. In Gastrointestinal Microbiology; Mackie, R.I., White, B.A., Eds.; Chapman & Hall Microbiology Series; Springer: Boston, MA, USA, 1997; pp. 116–155. ISBN 978-1-4615-4111-0. [Google Scholar]
- Khan, S.; Chousalkar, K.K. Functional enrichment of gut microbiome by early supplementation of Bacillus based probiotic in cage free hens: A field study. Anim. Microbiome 2021, 3, 1–18. [Google Scholar] [CrossRef]
- Feng, J.; Liu, X.; Xu, Z.R.; Wang, Y.Z.; Liu, J.X. Effects of fermented soybean meal on digestive enzyme activities and intestinal morphology in broilers. Poult. Sci. 2007, 86, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Haghighi, H.R.; Gong, J.; Gyles, C.L.; Hayes, M.A.; Sanei, B.; Parvizi, P.; Gisavi, H.; Chambers, J.R.; Sharif, S. Modulation of antibody-mediated immune response by probiotics in chickens. Clin. Diagn. Lab. Immunol. 2005, 12, 1387–1392. [Google Scholar] [CrossRef] [Green Version]
- Khochamit, N.; Duangjinda, M.; Siripornadulsil, S.; Wongtangtintharn, S.; Siripornadulsil, W. Effects of dried yeast, a byproduct of the brewery industry, on the egg production and quality and the immune response of laying hens. Ital. J. Anim. Sci. 2021, 20, 1135–1146. [Google Scholar] [CrossRef]
- Stern, N.; Eruslanov, B.; Pokhilenko, V.; Kovalev, Y.; Volodina, L.; Vladimir, P.; Mitsevich, E.; Mitsevich, I.; Borzenkov, V.; Levchuk, V.; et al. Bacteriocins reduce campylobacter jejuni colonization while bacteria producing bacteriocins are ineffective. Microb. Ecol. Health. Dis. 2008, 20, 74–79. [Google Scholar] [CrossRef]
- Haghighi, H.R.; Abdul-Careem, M.F.; Dara, R.A.; Chambers, J.R.; Sharif, S. Cytokine gene expression in chicken cecal tonsils following treatment with probiotics and Salmonella infection. Vet. Microbiol. 2008, 126, 225–233. [Google Scholar] [CrossRef]
- Mao, N.; Cubillos-Ruiz, A.; Cameron, D.; Collins, J. Probiotic strains detect and suppress cholera in Mice. Sci. Transl. Med. 2018, 10, eaao2586. [Google Scholar] [CrossRef] [Green Version]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. In ovo supplementation of probiotics and its effects on performance and immune-related gene expression in broiler chicks. Poult. Sci. 2017, 96, 1052–1062. [Google Scholar] [CrossRef]
- Majidi-Mosleh, A.; Sadeghi, A.A.; Mousavi, S.N.; Chamani, M.; Zarei, A. Ileal MUC2 gene expression and microbial population, but not growth performance and immune response, are influenced by in ovo injection of probiotics in broiler chickens. Br. Poult. Sci. 2017, 58, 40–45. [Google Scholar] [CrossRef]
- Pender, C.M.; Kim, S.; Potter, T.D.; Ritzi, M.M.; Young, M.; Dalloul, R.A. Effects of in ovo supplementation of probiotics on performance and immunocompetence of broiler chicks to an Eimeria challenged. Benef. Microbes 2016, 7, 699–705. [Google Scholar] [CrossRef]
- Youssef, A.; Hassan, H.M.A.; Ali, H.; Mohamed, M.A. Effect of probiotics, prebiotics and organic acids on layer performance and egg quality. Asian J. Poult. Sci. 2013, 7, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Macit, M.; Karaoglu, M.; Celebi, S.; Esenbuga, N.; Yoruk, M.; Kaya, A. Effects of supplementation of dietary humate, probiotic, and their combination on performance, egg quality, and yolk fatty acid composition of laying hens. Trop. Anim. Health Prod. 2021, 53, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sjofjan, O.; Adli, D.N.; Sholikin, M.M.; Jayanegara, A.; Irawan, A. The effects of probiotics on the performance, egg quality and blood parameters of laying hens: A meta-analysis. J. Anim. Feed Sci. 2021, 30, 11–18. [Google Scholar] [CrossRef]
- Nour, M.A.; El-Hindawy, M.M.; Abou-Kassem, D.E.; Ashour, E.A.; Abd El-Hack, M.E.; Mahgoub, S.; Aboelenin, S.M.; Soliman, M.M.; El-Tarabily, K.A.; Abdel-Moneim, A.M.E. Productive performance, fertility and hatchability, blood indices and gut microbial load in laying quails as affected by two types of probiotic bacteria. Saudi J. Biol. Sci. 2021, 28, 6544–6555. [Google Scholar] [CrossRef]
- Świątkiewicz, S.; Arczewska-Włosek, A.; Józefiak, D. Immunomodulatory efficacy of yeast cell products in poultry: A current review. World’s Poult. Sci. J. 2014, 70, 57–68. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Walker, N.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed Sci. Technol. 2008, 145, 5–26. [Google Scholar] [CrossRef]
- Kiarie, E.G.; Leung, H.; Kakhki, R.A.M.; Patterson, R.; Barta, J.R. Utility of feed enzymes and yeast derivatives in ameliorating deleterious effects of coccidiosis on intestinal health and function in broiler chickens. Front. Vet. Sci. 2019, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ogbuewu, I.; Okoro, V.; Mbajiorgu, F.; Mbajiorgu, C. Yeast (Saccharomyces cerevisiae) and Its effect on production indices of livestock and poultry—A review. Comp. Clin. Pathol. 2019, 28, 669–677. [Google Scholar] [CrossRef]
- Feye, K.M.; Carroll, J.P.; Anderson, K.L.; Whittaker, J.H.; Schmidt-McCormack, G.R.; McIntyre, D.R.; Pavlidis, H.O.; Carlson, S.A. Saccharomyces cerevisiae fermentation products that mitigate foodborne salmonella in cattle and poultry. Front. Vet. Sci. 2019, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Bradley, G.; Savage, T.; Timm, K. The effects of supplementing diets with Saccharomyces cerevisiae var. boulardii on male poult performance and ileal morphology. Poult. Sci. 1994, 73, 1766–1770. [Google Scholar] [CrossRef]
- Rodríguez Sánchez, B.; Valdivie, M.; Lezcano, P. Utilization of torula yeast grown on distillery’s vinasse in starter and growth diets in white leghorn L-33 replacement layers. Cuban J. Agric. Sci. 2014, 48, 129–132. [Google Scholar]
- Cunningham, M.; Azcarate-Peril, M.A.; Barnard, A.; Benoit, V.; Grimaldi, R.; Guyonnet, D.; Holscher, D.; Hunter, K.; Manurung, S.; Obis, D.; et al. Shaping the future of probiotics and prebiotics. Trends Microbiol. 2021, 29, 667–685. [Google Scholar] [CrossRef] [PubMed]
Yeast Strain(s) | Type | Effect | Reference |
---|---|---|---|
Saccharomyces cerevisiae | Lyophilized | Reduces the growth of E. coli, Staphylococcus spp., Salmonella spp. and Klebsiella spp. | [49] |
Kodamaea ohmeri, Trichosporon asahii, Trichosporon spp. Pichia kudriavzevii and Wickerhamomyces anomalus | Live yeast | Grows at low pHs and high concentrations of bile salts | [53] |
High adherence and agglutination capacity, reduces intestinal pH and grows under stress conditions | |||
Magnusiomyces capitatus, Candida ethanolica, Candida paraugosa, Candida rugosa and Pichia kudriavzevii Saccharomyces cerevisiae | Live yeast | Reduces intestinal pH and acid build-up and increases the digestibility of neutral detergent fiber | [52] |
Lyophilized commercial yeast | Rapidly reduces yeast population during the first 12 h of fermentation (growth test) | ||
Debaryomyces hansenii | Live yeast | High immunomodulatory activity | [51] |
Strain(s) | Cell Count | Mode of Administration/Dose | Host/Duration | Effect | Reference |
---|---|---|---|---|---|
Lactobacillus acidophillus and Saccharomyces cerevisiae | Individually (2 g) and combination of both in the feed (1 g of each) | Goats (35 days) | Increases the average daily weight gain | [98] | |
Lactobacillus casei and Lactobacillus plantarum | 1.3 × 109 CFU/g | Combination of both in the feed (50 g/day) | Dairy cows (30 days) | Increases the milk production and the contents of milk immunoglobulin G, lactoferrin, lysozyme and lactoperoxidase | [105] |
Propionibacterium spp. and Saccharomyces cerevisiae | 6 × 1011 CFU/cow | Orally, mixed in feed | Dairy cows (25th week of lactation) | Improves the feed conversion rate, milk production and dry matter intake | [106] |
Saccharomyces cerevisiae | 4 × 109 CFU/day | Orally, mixed in feed (0.2 g/day) | Dairy goats (15th week) | Improves the feed conversion rate, milk production and dry matter intake | [107] |
Lactobacillus acidophilus | 5 × 107 CFU/mL at each of two feeds/day | Orally, mixed in feed | Holstein-Friesian calves | Regulates body weight under milk-replacer conditions | [108] |
Lactobacillus reuteri, Lactobacillus alimentarius, Enterococcus faecium and Bifidobacterium bifidum | 109 CFU/mL resuspended in milk | Orally, resuspended in milk (1 mL/two feeds per day) | Goats (42 days) | Improves the microbial environment and intestinal health, as well as the acid profile of milk, with an increase in unsaturated fatty acids, mainly linoleic, linolenic and conjugated linoleic acids, and decrease in the atherogenic index | [109] |
Saccharomyces cerevisiae, Bacillus subtilis and Enterococcus faecalis | 5 × 1011 CFU/day | Orally, mixed in feed (5 g/day) | Saanen dairy goats (56 days) | Increases the feed intake and milk production and improves the intestinal microbiota | [110] |
E. coli | 1010 CFU/calf | Peroral administration (in 200 mL of 10% skim milk) | Weaned calves (32 days) | Reduces the incidence of enterohemorrhagic E. coli | [111] |
Lactobacillus casei, Lactobacillus lactis and Paenibacillus polymyxa | 1.2 × 108 CFU (direct-fed microbial) | Oral | Cattle (84-day fall–winter growing and 140-day spring–summer finishing) | Decreases the spread, frequency and prevalence of Escherichia coli O157: H7 in the stool of cattle | [112] |
Saccharomyces cerevisiae and two strains of rumen-derived Diutina rugosa | 1 × 1010 CFU/mL | Oral administration (100 mL) | Sheep (30 days) | Stabilizes the ruminal pH, improves the richness of rumen microflora, relieves acidosis and inflammation and prevents subacute ruminal acidosis | [117] |
Propionibacterium P63, Lactobacillus plantarum and Lactobacillus rhamnosus | 1 × 1011 CFU/animal/day | Intraruminal cannula (2 g/day) | Sheep (21 days of adaptation and 3 days of challenge) | Stabilizes the pH of the rumen and prevents acidosis | [118] |
Lactobacillus plantarum strain 220 Enterococcus faecium strain 26 and Clostridium butyricum strain Miyari | 9 × 106 CFU/g 9 × 105 CFU/g 9 × 104 CFU/g | Oral administration | Holstein cattle (14 days of challenge) | Reduces the ruminal pH and the concentration of lactic acid in the ruminal fluid, thus preventing acidosis | [119] |
Strain(s) | Cell Count | Mode of Administration/Dose | Host/Duration | Effect | Reference |
---|---|---|---|---|---|
Lactobacillus plantarum | 5 × 1011 CFU/kg | Mixed with the feed | Weaned piglets (28 days) | Improves feed efficiency and decreases rate of diarrhea. Increases serum concentrations of lysine, arginine, serine, glutamate, glycine and alanine, and decreases tyrosine concentration | [127] |
Lactobacillus plantarum (DSMV 8862) and L. plantarum (DSMZ 8866) | Single dose at weaning or suckling of 5 × 109 CFU/mL or 5 × 1010 CFU/mL | Oral administration | Piglets (25 and 28 days, respectively) | Improves body weight and feed conversion ratio | [134] |
Lactobacillus plantarum CAM6 | 5 × 106 CFU/mL | Oral administration (5 mL) | Weaned piglets (28 days, from 21st to 49th day post-weaning) | Promotes body weight and feed efficiency and increases serum IgA concentration | [135] |
Bacillus licheniformis and Bacillus subtilis spores | 1.28 × 106 viable spore/g | Mixed with the feed (400 mg/kg of feed) | Weaned piglets (14 days prior to farrowing) | Improves composition and quality of milk in weaning sows | [138] |
Lactobacillus fermentum LFQI6 | 1010 CFU/animal | Oral administration | Sows | Decreases weight loss of breeders and mortality of piglets and improves body weight of the litter | [139] |
Lactobacillus plantarum CAM6 | 109 CFU/mL | Oral administration (10 mL) | Sows | Improves lactose concentration in milk and decreases diarrheal syndrome and piglet mortality | [79] |
Bacillus subtilis and its endospores | 108 CFU/g | Mixed with the feed | Sows (28 days) | Increases production of milk and plasma proteins and decreases weight loss after lactation | [140] |
Probiotic blend | Oral administration (100 mg/kg) | Fattening pigs (12 weeks) | Improves concentration of protein and essential fatty acids in pork, without changes to other meat indicators | [143] | |
Pediococcus acidilactici FT28 | 2 × 109 CFU/g | Oral administration (200 g/day) | Fattening pigs (28 days) | Improves meat quality with changes to 2-thiobarbituric acid reactive substances, water holding capacity and pH of pork | [91] |
Bacillus subtilis endospore and Clostridium butyricum endospore complex | (B. subtilis) 1010 viable spores/g (C. butyricum) 1.0 × 109 viable spores/g | Mixed with the feed | Growing/finishing pigs (10 weeks) | Increases feed efficiency and meat pigmentation, mainly in redness values and marbling scores | [144] |
Enterococcus faecium | 0.3 × 109 CFU/kg feed | Mixed with the feed | Fattening pigs | Improves meat quality and organoleptic properties such as colorimetry, fat infiltration and meat firmness | [145] |
Lactobacillus plantarum | 1 × 109 CFU/day | Oral administration | Weaned pigs (60 days) | Improves meat pH and various indices of meat texture such as chewiness, restoring force, hardness, stickiness and gumminess | [146] |
Lactobacillus plantarum | 2.2 × 108 CFU/mL | Mixed with the feed (20 mg/kg) | Fattening pigs (42 days) | Change pH, fatty acid and amino acid profile, along with ash, shear force and palatability of the pork | [147] |
Strain(s) | Cell Count | Mode of Administration/Dose | Host/Duration | Effect | Reference |
---|---|---|---|---|---|
Lactobacillus acidophilus and a mixture of 12 Lactobacillus spp. | 0.1% dried culture | Oral, mixed in diet | Broilers | Improves body weight and feed conversion ratio | [163] |
Bacillus subtilis | 8 × 105 CFU/g | Oral, mixed in diet (150 mg/kg) | Broilers | Improves yield traits and increases villus height and villus height/crypt depth ratio in the duodenum | [165] |
Bacillus subtilis | 106 CFU/chick | Oral, mixed in diet | Broilers | Increases villus height and villus/crypt depth ratio in the ileum | [166] |
Enterococcus faecium | 109 CFU/kg of feed | Oral administration with challenge with E. coli K88+ | Broilers | Improves feed efficiency with beneficial changes to intestinal morphology and cecal microflora | [168] |
Lactobacillus acidophilus, Bacillus subtilis, Saccharomyces cerevisiae, | 0.03 mg/kg of feed | Oral, mixed in diet | Broilers | Improves nutrient digestibility, cecal traits and gut morphology | [169] |
Streptococcus faecalis, Bifidobacterium bifidum and Lactobacillus acidophilus | 105 CFU/mL | Oral inoculation (0.5 mL phosphate-buffered saline (PBS)) | Broilers | Improves systemic antibody response to red blood cells | [176] |
Probiotics with lactic acid bacteria (Enterococcus faecium, durans, Lactobacillus salivarius and E. faecalis) | 1 × 107 CFU/12 g of yeast additives | Oral, mixed in diet | Layinghens | Improves immune response due to increased genetic expression of IL-1β, IL-2 and IFNγ. Increases yolk color and thickness of eggshell. Promotes production of jumbo and extra-large-sized eggs | [177] |
Enterococcus durans | 1 × 107 CFU/feed | Oral inoculation (250 mg/kg of feed) | Broilers | Reduces undetectable levels of Campylobacter spp. | [178] |
Lactobacillus acidophilus, Bifidobacterium bifidum and Streptococcus faecalis | Two doses of 1 × 105 and 1 × 106 CFU | Oral inoculation (0.5 mL PBS on day two post-hatch) | Broilers | Decreases expression of IL-12 and IFN-γ and gut protection in broilers challenged with Salmonella enterica serovar Typhimurium | [179] |
Lactobacillus acidophilus, Lactobacillus casei, Enterococcus faecium and Bifidobacterium bifidum | 1 × 106 CFU | In ovo inoculation | Broilers | One week after hatching, productivity increases due to the modulation of gene expression in the ileum. Decreases macroscopic lesions and mortality in broilers | [181,183] |
Bacillus subtilis | 1 × 107 CFU | In ovo inoculation (0.5 mL/egg) | Broilers | Stimulates microbial diversity in the GIT and increases amniotic fluid, and in turn, the genetic expression of MUC2 in the ileum | [182] |
Bacillus subtilis | 0.05% dried culture | Oral, mixed in diet | Laying hens | Improves the performance and egg quality | [184] |
Enterococcus faecium | 10 × 109 CFU/g | Oral, mixed in diet | Laying hens | Increases egg production, yolk color and monounsaturated fatty acid profile | [185] |
Bacillus toyonensis and Bifidobacterium bifidum | 5 × 108 and 6 × 108 CFU/mL | Oral, mixed in diet | Quails | Improves enzyme activity, productivity, egg quality, fertility and hatchability | [187] |
Saccharomyces cerevisiae | 0.02% dried culture | Oral, mixed in diet | Poultry | Increases body weight and decreases number of goblet cells, although without changes for structure of villi | [193] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melara, E.G.; Avellaneda, M.C.; Valdivié, M.; García-Hernández, Y.; Aroche, R.; Martínez, Y. Probiotics: Symbiotic Relationship with the Animal Host. Animals 2022, 12, 719. https://doi.org/10.3390/ani12060719
Melara EG, Avellaneda MC, Valdivié M, García-Hernández Y, Aroche R, Martínez Y. Probiotics: Symbiotic Relationship with the Animal Host. Animals. 2022; 12(6):719. https://doi.org/10.3390/ani12060719
Chicago/Turabian StyleMelara, Elvia Guadalupe, Mavir Carolina Avellaneda, Manuel Valdivié, Yaneisy García-Hernández, Roisbel Aroche, and Yordan Martínez. 2022. "Probiotics: Symbiotic Relationship with the Animal Host" Animals 12, no. 6: 719. https://doi.org/10.3390/ani12060719
APA StyleMelara, E. G., Avellaneda, M. C., Valdivié, M., García-Hernández, Y., Aroche, R., & Martínez, Y. (2022). Probiotics: Symbiotic Relationship with the Animal Host. Animals, 12(6), 719. https://doi.org/10.3390/ani12060719