Effects of In Ovo Injection of Zinc or Diet Supplementation of Zinc on Performance, Serum Biochemical Profiles, and Meat Quality in Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Performance (Weight Gain and Feed Efficiency)
2.3. Haematological Analysis
2.4. Immune Response
2.5. Meat Quality
2.6. Fatty Acid Composition of Meat
2.7. Statistical Analysis
3. Results and Discussion
3.1. Performance
3.2. Serum Biochemistry Characteristics
3.3. Haematological Analysis and IgG of Blood
3.4. Meat Quality
3.5. Fatty Acid Composition of Breast Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandeo-Neto, J.; Stefan, V.; Mendonca, B.; Bloise, W.; Castro, A. Essential role of zinc in growth. Nutr. Res. 1995, 15, 335–358. [Google Scholar] [CrossRef]
- Kidd, M.T.; Ferket, P.R.; Quresh, M.A. Zinc metabolism with special reference to its role in immunity. World’s Poult. Sci. J. 1996, 52, 309–323. [Google Scholar] [CrossRef]
- Sun, X.; Lu, L.; Liao, X.; Zhang, L.; Lin, X.; Luo, X.; Luo, X.; Ma, Q. Effect of in ovo zinc injection on the embryonic development and epigenetics-related indices of zinc-deprived broiler breeder eggs. Biol. Trace Elem. Res. 2018, 185, 456–464. [Google Scholar] [CrossRef]
- Cook-Mills, J.M.; Fraker, P.J. Nutrient modulation of the immune response. In The Role of Metals in the Production of Toxic Oxygen Metabolites by Mononuclear Phagocytes; CRC Press: New York, NY, USA, 1993; pp. 127–140. [Google Scholar]
- Huang, Y.L.; Lu, L.; Li, S.F.; Luo, X.G.; Liu, B. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J. Anim. Sci. 2009, 87, 2038–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, N.E.; Moran, T., Jr. Influence of supplemental manganese and zinc on live performance and carcass quality of broilers. J. Appl. Poult. Res. 1999, 8, 222–227. [Google Scholar] [CrossRef]
- Gonzalez, B.P.; Fong, R.N.; Gibson, C.J.; Fuentealba, I.C.; Cherian, M.G. Zinc supplementation decreases hepatic copper accumulation in LEC rat: A model of Wilson’s disease. Biol. Trace Elem. Res. 2005, 105, 117–134. [Google Scholar] [CrossRef]
- Liu, Z.H.; Lu, L.; Li, S.F.; Zhang, L.Y.; Xi, L.; Zhang, K.Y.; Luo, X.G. Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poult. Sci. 2011, 90, 1782–1790. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lu, L.; Luo, X.G.; Liu, B. An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult. Sci. 2007, 86, 2582–2589. [Google Scholar] [CrossRef]
- Hudson, B.P.; Dozier, W.A., III; Wilson, J.L. Broiler live performance response to dietary zinc source and the influence of zinc supplementation in broiler breeder diets. Anim. Feed Sci. Tech. 2005, 118, 329–335. [Google Scholar] [CrossRef]
- Oliveira, T.F.B.; Bertechini, A.G.; Bricka, R.M.; Kim, E.J.; Gerard, P.D.; Peebles, E.D. Effects of in ovo injection of organic zinc, manganese, and copper on the hatchability and bone parameters of broiler hatchlings. Poult. Sci. 2015, 94, 2488–2494. [Google Scholar] [CrossRef]
- Bello, A.; Zhai, W.; Gerard, P.D.; Peebles, E.D. Effects of the commercial in ovo injection of 25-hydroxycholecalciferol onthe hatchability and hatching chick quality of broilers. Poult. Sci. 2013, 92, 2551–2559. [Google Scholar] [CrossRef] [PubMed]
- Ohta, Y.; Tsushima, N.; Koide, K.; Kidd, M.K.; Ishibashi, T. Effect of amino acid injection in broiler breeder eggs onembryonic growth and hatchability of chicks. Poult. Sci. 1999, 78, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Bennett, L.W.; Gerard, P.D.; Pulikanti, R.; Peebles, E.D. Effects of in ovo injection of carbohydrates on so-matic characteristics and liver nutrient profiles of broiler embryosand hatchlings. Poult. Sci. 2011, 90, 2681–2688. [Google Scholar] [CrossRef] [PubMed]
- Yair, R.; Uni, Z. Content and uptake of minerals in the yolk of broiler embryos during incubation and effect of nutrient enrichment. Poult. Sci. 2011, 90, 1523–1531. [Google Scholar] [CrossRef]
- Zhai, W.; Rowe, D.E.; Peebles, E.D. Effects of commercial in ovo injection of carbohydrates on broiler embryogenesis. Poult. Sci. 2011, 90, 1295–1301. [Google Scholar] [CrossRef]
- Ncho, C.M.; Goel, A.; Jeong, C.M.; Youssouf, M.; Choi, Y.H. In ovo injection of gaba can help body weight gain at hatch, increase chick weight to egg weight ratio, and improve broiler heat resistance. Animals 2021, 11, 1364. [Google Scholar] [CrossRef]
- Gao, T.; Zhao, M.M.; Li, Y.J.; Zhang, L.; Li, J.L.; Yu, L.L.; Gao, F.; Zhou, G.H. Effects of in ovo feeding of L-arginine on the development of digestive organs, intestinal function and post-hatch performance of broiler embryos and hatchlings. J. Anim. Physiol. Anim. Nutr. 2018, 102, e166–e175. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1998. [Google Scholar]
- Kim, H.J.; Kim, H.J.; Jeon, J.; Nam, K.C.; Shim, K.S.; Jung, J.H.; Kim, K.S.; Cho, Y.I.; Kim, S.H.; Jang, A. Comparison of the quality characteristics of chicken breast meat from conventional and animal welfare farms under refrigerated storage. Poult. Sci. 2020, 99, 1788–1796. [Google Scholar] [CrossRef]
- Hajati, H.; Hassanabadi, A.; Golian, A.; Nassiri-Moghaddam, H.; Nassiri, M.R. The effect of in ovo injection of grape seed extract and vitamin C on hatchability, antioxidant activity, yolk sac absorption, performance and ileal micro flora of broiler chickens. Res. Opin. Anim. Vet. Sci. 2014, 4, 633–638. [Google Scholar]
- MacDonald, R.S. The role of zinc in growth and cell proliferation. J. Nutr. 2000, 130, 1500S–1508S. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, J.L.; Cook, M.E.; Greger, J.L. Immune response of chicks fed various levels of zinc. Poult. Sci. 1991, 70, 947–954. [Google Scholar] [CrossRef]
- Jahanian, R.; Nassiri Moghaddam, H.; Rezaei, A.; Haghparast, A.R. The influence of dietary zinc-methionine substitution for zinc sulfate on broiler chick performance. J. Biol. Sci. 2008, 8, 321–327. [Google Scholar] [CrossRef]
- Zakaria, H.A.; Jalal, M.; Al-Titi, H.H.; Souad, A. Effect of sources and levels of dietary zinc on the performance, carcass traits and blood parameters of broilers. Braz. J. Poult. Sci. 2017, 19, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Saenmahayak, S.F.; Bilgilli, J.B.; Singh, H. Live and processing performance of broiler chickens fed diets supplemented with complexed zinc. J. Appl. Poult. Res. 2010, 19, 334–340. [Google Scholar] [CrossRef]
- Jose, N.; Elangovan, A.V.; Awachat, V.B.; Shet, D.; Ghosh, J.; David, C.G. Response of in ovo administration of zinc on egg hatchability and immune response of commercial broiler chicken. J. Anim. Physiol. Anim. Nutr. 2018, 102, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.K.; Patterson, P.H. Effects of dietary zinc supplementation on broiler performance and nitrogen loss from manure. Poult. Sci. 2004, 83, 34–38. [Google Scholar] [CrossRef]
- Rossi, P.; Rutz, F.; Anciuti, M.A.; Rech, J.L.; Zauk, N.H.F. Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. J. Appl. Poult. Res. 2007, 16, 219–225. [Google Scholar] [CrossRef]
- Masoudi, A.; Chagi, M.; Bojaropour, M.; Mirzadeh, K. Effects of different levels of date pits on performance, carcass characteristics and blood parameters of broiler chickens. J. Appl. Anim. Res. 2011, 39, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, L.G.; Stoltenberg, M.; Doering, P.; Flyvbjerg, A.; Rungby, J. Zinc ions in the endocrine andexocrine pancreas of zinc deficient rats. Histol. Histopathol. 2006, 21, 619–625. [Google Scholar]
- Uyanik, F.; Eren, M.; Atasever, A.; Tuncoku, G.; Kolsiz, A.H. Changes in some biochemical parameters and organs of broilers exposed to cadmium and effect of zinc on cadium induced alterations. Israel J. Vet. Med. 2001, 56, 128–134. [Google Scholar]
- Lu, J.; Combs, G.F. Effect of excess dietary zinc on pancreatic exocrine function in the chick. J. Nutr. 1988, 118, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christianson, D.W. The structural biology of zinc. Adv. Protein Chem. 1991, 42, 281–335. [Google Scholar] [PubMed]
- Sridhar, K.; Nagalakshmi, D.; Rao, S.R. Effect of graded concentration of organic zinc (zinc glycinate) on skin quality, hematological and serum biochemical constituents in broiler chicken. Indian J. Anim. Sci. 2015, 85, 643–648. [Google Scholar]
- Sherman, A.R. Zinc, copper, and iron nutriture and immunity. J. Nutr. 1992, 122, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Dardenne, M.; Savino, W.; Berrih, S.; Bach, J.F. A zinc-dependent epitope on the molecule of thymulin, a thymic hormone. Proc. Natl. Acad. Sci. USA 1985, 82, 7035–7038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, K.; Sahin, N.; Kucuk, O.; Hayirli, A.; Prasad, A.S. Role of dietary zinc in heat-stressed poultry: A review. Poult. Sci. 2009, 88, 2176–2183. [Google Scholar] [CrossRef]
- Kwiecień, M.; Winiarska-Mieczan, A.; Milczarek, A.; Klebaniuk, R. Biological response of broiler chickens to decreasing dietary inclusion levels of zinc glycine chelate. Biol. Trace. Elem. Res. 2017, 175, 204–213. [Google Scholar] [CrossRef]
- Hassan, A.M. Effect of in ovo injection with nano-selenium or nano-zinc on post-hatch growth performance and physiological traits of broiler chicks. Int. J. Agric. Environ. Biotechnol. 2018, 3, 239074. [Google Scholar] [CrossRef] [Green Version]
- Lebacq-Verhyden, A.M.; Vaerman, J.P.; Heremans, J.F. Quantification and distribution of chicken immunoglobulins IgA, IgM and IgG in serum and secretions. Immunology 1974, 27, 683–692. [Google Scholar]
- Bartlett, J.R.; Smith, M.O. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult. Sci. 2003, 82, 1580–1588. [Google Scholar] [CrossRef]
- Allen, C.D.; Fletcher, D.L.; Northcutt, J.K.; Rusell, S.M. The relationship of broiler breast color to meat quality and shelf life. Poult. Sci. 1998, 77, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.M.; Lee, H.R.; Jo, C.; Lee, S.K.; Lee, B.D. Effect of sex and dietary organic zinc on growth performance, carcass traits, tissue mineral content, and blood parameters of broiler chickens. Biol. Trace Elem. Res. 2012, 147, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Devrim, S.A.; Taylan, A.; Bülent, Ö. The effects of lower supplementation levels of organically complexed minerals (zinc, copper and manganese) versus inorganic forms on hematological and biochemical parameters in broilers. Kafkas. Univ. Vet. Fak. Derg. 2009, 16, 553–559. [Google Scholar]
- Saenmahayak, B.; Singh, M.; Bilgili, S.F.; Hess, J.B. Influence of dietary supplementation with complexed zinc on meat quality and shelf life of broilers. Int. J. Poult. Sci. 2012, 11, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Hess, J.B.; Bilgili, S.F.; Parson, A.M.; Downs, K.M. Influence of complexed zinc products on live performance and carcass grade of broilers. J. Appl. Anim. Res. 2001, 19, 49–60. [Google Scholar] [CrossRef]
- Rey, C.R.; Kraft, A.A.; Topel, D.G.; Parrish, F.C.; Hotchkiss, K. Microbiology of pale, dark and normal pork. J. Food Sci. 1976, 41, 111–116. [Google Scholar] [CrossRef]
- Allen, C.D.; Russell, S.M.; Fletcher, D.L. The relationship of broiler breast meat color and ph to shelf-life and odor development. Poult. Sci. 1997, 76, 1042–1046. [Google Scholar] [CrossRef]
- Nkukwana, T.T.; Muchenje, V.; Masika, P.J.; Hoffman, L.C.; Dzama, K.; Descalzo, A.M. Fatty acid composition and oxidative stability of breast meat from broiler chickens supplemented with Moringa oleifera leaf meal over a period of refrigeration. Food Chem. 2014, 142, 255–261. [Google Scholar] [CrossRef]
- Mushi, D.E.; Eik, L.O.; Thomassen, M.S.; Sørheim, O.; Ådnøy, T. Suitability of Norwegian short-tail lambs, Norwegian dairy goats and Cashmere goats for meat production-carcass, meat, chemical and sensory characteristics. Meat Sci. 2008, 80, 842–850. [Google Scholar] [CrossRef]
Parameters | Starter Diet (0 to 21 Days) | Grower Diet (22 to 35 Days) |
---|---|---|
Ingredients, % | ||
Corn, US No. 3 | 51.92 | 54.67 |
Soybean meal-44% CP | 28.10 | 23.00 |
Wheat meal | 5.00 | 10.00 |
Corn gluten | 3.84 | 2.01 |
Fish meal | 4.00 | 3.50 |
Tallow | 3.50 | 3.50 |
Dicalcium phosphate | 1.86 | 1.59 |
Limestone | 1.00 | 1.00 |
Sodium chloride | 0.22 | 0.25 |
Choline-50% | 0.06 | 0.04 |
Methionine-99% | 0.11 | 0.11 |
Lysine-78% | 0.14 | 0.11 |
Vitamin and mineral premix 1 | 0.24 | 0.22 |
Total | 100.00 | 100.00 |
Nutrient content | ||
MEn, kcal/kg | 3100 | 3150 |
CP, % | 22.00 | 19.00 |
Ca, % | 1.00 | 0.92 |
Available p, % | 0.51 | 0.45 |
Met + Cys, % | 0.87 | 0.75 |
Parameters | Con | In Ovo | Added Zn (mg/kg) | SEM 1 | p-Value | |
---|---|---|---|---|---|---|
100 | 200 | |||||
Initial weight (g) | 38.73 | 38.70 | 38.73 | 38.73 | 0.035 | 0.911 |
Starter (day 1–21) | ||||||
Weight (g) | 984 | 991 | 990 | 1018 | 10.8 | 0.18 |
Weight gain (g) | 945 | 953 | 951 | 979 | 10.7 | 0.18 |
Feed intake (g) | 839 | 888 | 902 | 892 | 17.1 | 0.09 |
FCR | 0.89 | 0.93 | 0.95 | 0.91 | 0.02 | 0.09 |
Grower (day 22–35) | ||||||
Weight (g) | 1891 b | 1987 a | 1975 a | 1985 a | 24.59 | <0.05 |
Weight gain (g) | 907 | 998 | 983 | 968 | 31.30 | 0.24 |
Feed intake (g) | 1946 | 1952 | 1972 | 1969 | 13.27 | 0.47 |
FCR | 2.17 | 1.96 | 2.01 | 2.04 | 0.06 | 0.18 |
Overall (day 1–35) | ||||||
Weight gain (g) | 1853 b | 1949 a | 1936 a | 1946 a | 9.92 | <0001 |
Feed intake (g) | 2786 b | 2854 ab | 2860 a | 2861 a | 16.53 | <0.05 |
FCR | 1.50 a | 1.46 b | 1.48 ab | 1.47 ab | 0.01 | <0.05 |
Parameters | Con | In Ovo | Added Zn (mg/kg) | SEM 1 | p-Values | |
---|---|---|---|---|---|---|
100 | 200 | |||||
T. chol (mg/dL) 2 | 189 | 196 | 178 | 173 | 9.27 | 0.59 |
GLU (mg/dL) | 295 | 290 | 285 | 280 | 9.67 | 0.72 |
AST (U/L) | 588 | 477 | 575 | 555 | 54.3 | 0.51 |
ALB (g/dL) | 1.37 | 1.38 | 1.21 | 1.28 | 0.07 | 0.32 |
TG (mg/dL) | 125.5 | 111.1 | 98.4 | 99.3 | 12.9 | 0.12 |
TP (g/dL) | 3.17 | 2.50 | 3.00 | 2.57 | 0.39 | 0.58 |
ALT (U/L) | 3.61 | 3.85 | 3.48 | 3.51 | 0.21 | 0.59 |
Parameters | Con | In Ovo | Added Zn (mg/kg) | SEM 1 | p-Values | |
---|---|---|---|---|---|---|
100 | 200 | |||||
Leukocytes | ||||||
WBC (K/μL) 2 | 17.8 | 19.9 | 20.2 | 20.4 | 1.65 | 0.65 |
HE (K/μL) | 4.86 | 5.86 | 6.30 | 5.99 | 0.77 | 0.59 |
LY (K/μL) | 10.4 | 10.8 | 10.6 | 11.2 | 0.52 | 0.68 |
H/L | 0.46 | 0.53 | 0.59 | 0.52 | 0.05 | 0.39 |
MO (K/μL) | 1.78 | 2.20 | 2.00 | 2.14 | 0.20 | 0.47 |
EO (K/μL) | 0.57 | 0.78 | 0.97 | 0.80 | 0.18 | 0.50 |
BA (K/μL) | 0.17 | 0.26 | 0.37 | 0.24 | 0.09 | 0.53 |
Erythrocyte | ||||||
RBC (K/μL) | 2.23 | 2.35 | 2.47 | 2.38 | 0.13 | 0.63 |
Hb | 7.78 | 8.18 | 8.64 | 8.24 | 0.46 | 0.63 |
HCT (%) | 22.9 | 24.4 | 27.6 | 25.1 | 1.49 | 0.20 |
MCH (g/dL) | 34.9 | 34.7 | 34.9 | 34.1 | 0.64 | 0.81 |
MCHC (g/dL) | 33.9 | 33.6 | 31.4 | 28.6 | 2.46 | 0.41 |
Parameters | Con | In Ovo | Added Zn (mg/kg) | SEM 1 | p-Value | |
---|---|---|---|---|---|---|
100 | 200 | |||||
Proximate composition (%) | ||||||
Moisture | 75.9 | 76.0 | 74.6 | 75.0 | 0.26 | 0.05 |
Crude protein | 22.3 | 22.0 | 23.0 | 22.87 | 0.50 | 0.46 |
Crude fat | 2.10 | 2.24 | 2.61 | 2.14 | 0.31 | 0.65 |
Crude ash | 1.18 | 1.19 | 1.23 | 1.26 | 0.04 | 0.51 |
pH | 5.92 ab | 6.01 a | 5.91 b | 5.81 c | 0.03 | <0.05 |
Cooking lose (%) | 18.8 | 18.0 | 17.2 | 15.87 | 0.86 | 0.12 |
WHC 2 (%) | 62.1 | 61.3 | 61.7 | 62.35 | 0.85 | 0.84 |
Shear force (N) | 25.3 | 22.9 | 26.0 | 21.10 | 1.83 | 0.25 |
Parameters | Con | In Ovo | Added Zn (mg/kg) | SEM 1 | p-Value | |
---|---|---|---|---|---|---|
100 | 200 | |||||
Myristic acid (C14:0) | 0.98 | 0.94 | 0.97 | 0.94 | 0.01 | 0.16 |
Palmitic acid (C16:0) | 23.7 | 23.4 | 23.6 | 23.1 | 0.16 | 0.08 |
Palmitoleic acid (C16:ln7) | 6.20 ab | 6.08 b | 6.5 a | 6.36 ab | 0.11 | <0.05 |
Stearic acid (C18:0) | 6.40 | 6.38 | 6.3 | 6.10 | 0.10 | 0.15 |
Oleic acid (C18:ln9) | 45.9 | 46.0 | 45.1 | 45.6 | 0.26 | 0.10 |
Linoleic acid (C18:2n6) | 14.9 | 15.2 | 15.2 | 15.6 | 0.23 | 0.14 |
γ-Linoleic acid (C18:3n6) | 0.23 a | 0.19 b | 0.19 b | 0.20 ab | 0.01 | 0.01 |
Linolenic acid (C18:3n3) | 0.69 | 0.75 | 0.76 | 0.77 | 0.04 | 0.36 |
Eicosenoic acid (C20:ln9) | 0.63 | 0.64 | 0.63 | 0.63 | 0.01 | 0.86 |
Arachidonic acid (C20:4n6) | 0.37 c | 0.41 c | 0.71 a | 0.57 b | 0.04 | <0001 |
SFA 2 | 31.1 a | 30.7 ab | 30.9 ab | 30.2 b | 0.19 | <0.05 |
USFA | 68.9 b | 69.2 ab | 69.1 ab | 69.8 a | 0.19 | <0.05 |
MUFA | 52.7 | 52.7 | 52.3 | 52.6 | 0.25 | 0.51 |
PUFA | 16.1 b | 16.5 b | 16.9 ab | 17.2 a | 0.24 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-J.; Kang, H.-K. Effects of In Ovo Injection of Zinc or Diet Supplementation of Zinc on Performance, Serum Biochemical Profiles, and Meat Quality in Broilers. Animals 2022, 12, 630. https://doi.org/10.3390/ani12050630
Kim H-J, Kang H-K. Effects of In Ovo Injection of Zinc or Diet Supplementation of Zinc on Performance, Serum Biochemical Profiles, and Meat Quality in Broilers. Animals. 2022; 12(5):630. https://doi.org/10.3390/ani12050630
Chicago/Turabian StyleKim, Hee-Jin, and Hwan-Ku Kang. 2022. "Effects of In Ovo Injection of Zinc or Diet Supplementation of Zinc on Performance, Serum Biochemical Profiles, and Meat Quality in Broilers" Animals 12, no. 5: 630. https://doi.org/10.3390/ani12050630
APA StyleKim, H.-J., & Kang, H.-K. (2022). Effects of In Ovo Injection of Zinc or Diet Supplementation of Zinc on Performance, Serum Biochemical Profiles, and Meat Quality in Broilers. Animals, 12(5), 630. https://doi.org/10.3390/ani12050630