Sire Breed, Litter Size, and Environment Influence Genetic Potential for Lamb Growth When Using Sire Breeding Values
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Available
2.3. Statistical Analysis
3. Results
3.1. The Effect of Enrivonment, Production Factors, and Genotype on Lamb Growth
3.2. Breeding Value Effects on Lamb Growth
3.3. Variation in Breeding Value Effects on Lamb Growth between Environment, Production Factors and Genotype
4. Discussion
4.1. Association between Breeding Values and Lamb Growth
4.2. Association between Environment, Production Factors, Genotype, and Lamb Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson, A.N.; Bowen, E.; Keiller, J.; Pegler, D.; Kearney, G.; Rosales-Nieto, C.A. The Number of Offspring Weaned from Ewe Lambs Is Affected Differently by Liveweight and Age at Breeding. Animals 2021, 11, 2733. [Google Scholar] [CrossRef] [PubMed]
- Shahinfar, S.; Kelman, K.; Kahn, L. Prediction of sheep carcass traits from early-life records using machine learning. Comput. Electron. Agric. 2019, 156, 159–177. [Google Scholar] [CrossRef]
- Afolayan, R.A.; Fogarty, N.M.; Ingham, V.M.; Gilmour, A.R.; Gaunt, G.M.; Cummins, L.J.; Pollard, T. Genetic evaluation of crossbred lamb production. 3. Growth and carcass performance of second-cross lambs. Aust. J. Agric. Res. 2007, 58, 457–466. [Google Scholar] [CrossRef]
- Fogarty, N.M.; Hopkins, D.L.; van de Ven, R. Lamb production from diverse genotypes 1. Lamb growth and survival and ewe performance. Anim. Sci. 2000, 70, 135–145. [Google Scholar] [CrossRef]
- Huisman, A.E.; Brown, D.J. Genetic parameters for bodyweight, wool, and disease resistance and reproduction traits in Merino sheep. 2. Genetic relationships between bodyweight traits and other traits. Aust. J. Exp. Agric. 2008, 48, 1186–1193. [Google Scholar] [CrossRef]
- Hegarty, R.S.; Warner, R.D.; Pethick, D.W. Genetic and nutritional regulation of lamb growth and muscle characteristics. Aust. J. Agric. Res. 2006, 57, 721–730. [Google Scholar] [CrossRef]
- Fogarty, N.M.; Banks, R.G.; van der Werf, J.H.J.; Ball, A.J.; Gibson, J.P. The information nucleus-a new concept to enhance sheep industry genetic improvement. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Armidale, NSW, Australia, 23–26 September 2007; pp. 29–32. [Google Scholar]
- Van der Werf, J.H.J.; Kinghorn, B.P.; Banks, R.G. Design and role of an information nucleus in sheep breeding programs. Anim. Prod. Sci. 2010, 50, 998–1003. [Google Scholar] [CrossRef]
- ABARE. Australian Farm Surveys Report; Australian Bureau of Agricultural and Resource Economics (ABARE): Canberra, Australia, 2003. [Google Scholar]
- Ponnampalam, E.N.; Butler, K.L.; Jacob, R.H.; Pethick, D.W.; Ball, A.J.; Hocking Edwards, J.E.; Geesink, G.; Hopkins, D.L. Health beneficial long chain omega-3 fatty acid levels in Australian lamb managed under extensive finishing systems. Meat Sci. 2014, 96, 1104–1110. [Google Scholar] [CrossRef]
- Brown, D.J.; Huisman, A.E.; Swan, A.A.; Graser, H.U.; Woolaston, R.R.; Ball, A.J.; Atkins, K.D.; Banks, R.G. Genetic evaluation for the Australian sheep industry. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics, Armidale, NSW, Australia, 23–26 September 2007; pp. 187–194. [Google Scholar]
- Hadfield, J.D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 2010, 33, 1–22. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Thornton, R.F.; Hood, R.L.; Jones, P.N.; Re, V.M. Compensatory growth in sheep. Aust. J. Agric. Res. 1979, 30, 135–151. [Google Scholar] [CrossRef]
- Dakhlan, A.; Moghaddar, N.; van der Werf, J.H.J. Genotype × birth type or rearing-type interactions for growth and ultrasound scanning traits in Merino sheep. Anim. Prod. Sci. 2018, 59, 1016–1021. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Stanley, D.F.; Martin, L.C.; Gilmour, A.R. Genotype and age effects on sheep meat production 1. Production and growth. Aust. J. Exp. Agric. 2007, 47, 1119–1127. [Google Scholar] [CrossRef]
- Kleemann, D.O.; Dolling, C.H.S.; Ponzoni, R.W. Effect of breed of dam, type of birth and sex of lamb on efficiency of conversion of food to lamb and wool in Merino, Poll Dorset × Merino and Border Leicester × Merino ewes. Aust. J. Agric. Res. 1984, 35, 579–594. [Google Scholar] [CrossRef]
- Gardner, G.E.; Williams, A.; Ball, A.J.; Jacob, R.H.; Refshauge, G.; Hocking Edwards, J.; Behrendt, R.; Pethick, D.W. Carcase weight and dressing percentage are increased using Australian Sheep Breeding Values for increased weight and muscling and reduced fat depth. Meat Sci. 2015, 99, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinckel, P.G.; Short, B.F. Influence of nutritional level during pre-natal and early post-natal life on adult fleece and body characters. Aust. J. Agric. Res. 1961, 12, 176–202. [Google Scholar] [CrossRef]
- Thompson, J.M.; Parks, J.R.; Perry, D. Food intake, growth and body composition in Australian Merino sheep selected for high and low weaning weight. 1. Food intake, food efficiency and growth. Anim. Sci. 1985, 40, 55–70. [Google Scholar] [CrossRef]
- Thatcher, L.P.; Warren, B.; Nicholls, P.J. Effects of sex and year on growth and live assessment of carcass characteristics of lambs grazing annual pastures. Aust. J. Exp. Agric. 1991, 31, 307–314. [Google Scholar] [CrossRef]
- Lawrence, T.L.J.; Fowler, V.R. Compensatory growth. In Growth of Farm Animals; Lawrence, T.L.J., Fowler, V.R., Eds.; CABI Publishing: Oxford, UK, 2002; pp. 229–254. [Google Scholar]
- Greenwood, P.L.; Slepetis, R.M.; Bell, A.W. Influences on fetal and placental weights during mid to late gestation in prolific ewes well nourished throughout pregnancy. Reprod. Fertil. Dev. 2000, 12, 149–156. [Google Scholar] [CrossRef]
- Burris, M.J.; Baugus, C.A. Milk Consumption and Growth of Suckling Lambs. J. Anim. Sci. 1955, 14, 186–191. [Google Scholar] [CrossRef]
- Snowder, G.D.; Glimp, H.A. Influence of breed, number of suckling lambs, and stage of lactation on ewe milk production and lamb growth under range conditions. J. Anim. Sci. 1991, 69, 923–930. [Google Scholar] [CrossRef] [Green Version]
- Morgan, J.E.; Fogarty, N.M.; Nielsen, S.; Gilmour, A.R. Milk yield and milk composition from grazing primiparous non-dairy crossbred ewes. Aust. J. Agric. Res. 2006, 57, 377–387. [Google Scholar] [CrossRef]
- Ali, S.; Hussain, A.; Akhtar, P.; Younas, M.; Khan, M.A. Relationship of birth weight of lambs with age of ewes at service in rambouillet sheep. Pak. Vet. J. 2006, 26, 187–189. [Google Scholar]
- ARC. The Nutrient Requirements of Ruminant Livestock; Commonwealth Agricultural Bureaux: Slough, UK, 1980. [Google Scholar]
- Alexander, G.; Stevens, D.; Kilgour, R.; De Langen, H.; Mottershead, B.E.; Lynch, J.J. Separation of ewes from twin lambs: Incidence in several sheep breeds. Appl. Anim. Ethol. 1983, 10, 301–317. [Google Scholar] [CrossRef]
Growth Measurement | Mean | Minimum | Maximum | Range | Standard Deviation |
---|---|---|---|---|---|
Birth weight (kg) | 4.91 | 1.40 | 10.10 | 8.70 | 1.06 |
Weight 100 days (kg) | 28.70 | 3.38 | 60.76 | 57.38 | 8.17 |
Weight 150 days (kg) | 34.38 | 10.81 | 68.78 | 57.97 | 7.84 |
Weight 240 days (kg) | 43.42 | 21.24 | 74.94 | 53.70 | 8.90 |
Growth rate 100 days (g/day) | 136.96 | −184.43 | 547.70 | 732.13 | 80.52 |
Growth rate 150 days (g/day) | 97.17 | −170.23 | 393.49 | 563.72 | 67.23 |
Growth rate 240 days (g/day) | 125.11 | −559.42 | 897.38 | 1456.80 | 167.58 |
PWTBV | PFATBV | PEMDBV | |
---|---|---|---|
Maternal | |||
PWTBV | 1.00 | −0.18 (0.09) | −0.06 (0.62) |
PFATBV | 1.00 | 0.47 (0.00) | |
PEMDBV | 1.00 | ||
Merino | |||
PWTBV | 1.00 | 0.23 (0.00) | 0.29 (0.00) |
PFATBV | 1.00 | 0.76 (0.00) | |
PEMDBV | 1.00 | ||
Terminal | |||
PWTBV | 1.00 | −0.03 (0.69) | −0.26 (0.00) |
PFATBV | 1.00 | 0.39 (0.00) | |
PEMDBV | 1.00 |
Birth Weight | Day 100 | Day 150 | Day 240 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Weight | Growth Rate | Weight | Growth Rate | Weight | Growth Rate | ||||||
NDF 1; DDF 2 | F-value | NDF; DDF | F-value | F-value | NDF; DDF | F-value | F-value | NDF; DDF | F-value | F-value | |
Site | 7; 5085 | 473.89 ** | 7; 5099 | 778.80 ** | 306.43 ** | 7; 5099 | 1836.24 ** | 69.08 ** | 7; 5099 | 19,950.40 ** | 42.38 ** |
Year | 4; 12,000 | 4.64 ** | 4; 12,000 | 22.19 ** | 5.56 ** | 4; 12,000 | 46.66 ** | 6.49 ** | 4; 12,000 | 275.18 ** | 20.92 ** |
Sex | 1; 5085 | 853.25 ** | 1; 5099 | 480.52 ** | 32.55 ** | 1; 5099 | 954.89 ** | 5.06 * | 1; 5099 | 33,221.30 ** | 409.77 ** |
Birth-type–rear-type | 2; 5085 | 3326.84 ** | 5; 5099 | 724.59 ** | 6.36 ** | 5; 5099 | 1009.60 ** | 10.87 ** | 5; 5099 | 4108.29 ** | NS |
Dam age | 6; 5085 | 29.83 ** | 6; 5099 | 27.64 ** | 48.07 ** | 6; 5099 | 25.46 ** | 32.02 ** | 6; 5099 | 300.10 ** | 17.62 ** |
Sire type | 2; 5085 | 268.01 ** | 2; 5099 | 1140.22 ** | 32.16 ** | 2; 5099 | 2409.76 ** | 56.59 ** | 2; 5099 | 4686.92 ** | 49.80 ** |
Dam breed (sire type) | 1; 5085 | 344.23 ** | 1; 5099 | 719.81 ** | 67.02 ** | 1; 5099 | 1363.61 ** | NS | 1; 5099 | 8350.83 ** | NS |
Sire by year | 27; 5075 | 42.53 ** | 27; 5099 | 167.95 ** | 193.97 ** | 27; 5099 | 128.92 ** | 53.17 ** | 27; 5099 | 80.71 ** | 100.77 ** |
Site by sire type | NS 3 | NS | 14; 5099 | 27.16 ** | 39.86 ** | 14; 5099 | 15.67 ** | NS | 14; 5099 | 11.70 ** | 13.56 ** |
Year by sire type | NS | NS | 8; 5099 | NS | 51.75 ** | NS | NS | NS | NS | NS | 36.57 ** |
Number of Lambs | Weight (kg) | Growth Rate (g/day) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Birth | Day 100 | Day 150 | Day 240 | Day 100 | Day 150 | Day 240 | |||||||||
Mean | s.e. 1 | Mean | s.e. | Mean | s.e. | Mean | s.e. | Mean | s.e. | Mean | s.e. | Mean | s.e. | ||
Sex | |||||||||||||||
Female | 8613 | 4.54 | 0.02 | 26.54 | 0.13 | 32.38 | 0.11 | 40.58 | 0.07 | 136.90 | 1.84 | 101.50 | 2.67 | 96.44 | 3.34 |
Male | 8912 | 4.86 | 0.02 | 28.10 | 0.13 | 34.14 | 0.11 | 43.76 | 0.07 | 141.00 | 1.84 | 105.40 | 2.67 | 127.00 | 3.34 |
Birth-type–rear-type | |||||||||||||||
Single–single | 5888 | 5.62 | 0.02 | 31.87 | 0.12 | 37.47 | 0.10 | 45.47 | 0.07 | 140.20 | 1.69 | 90.53 | 2.26 | NS 3 | NS |
Twin–single | 1440 | - | 0.02 | 29.41 | 0.16 | 35.27 | 0.13 | 43.68 | 0.07 | 143.70 | 2.06 | 97.83 | 3.48 | NS | NS |
Twin–twin | 8470 | 4.60 | - | 26.75 | 0.12 | 32.61 | 0.10 | 41.76 | 0.07 | 135.70 | 1.72 | 104.00 | 2.17 | NS | NS |
Triplet–single | 195 | - | 0.03 | 28.33 | 0.37 | 34.33 | 0.30 | 42.83 | 0.12 | 143.10 | 4.00 | 104.20 | 8.49 | NS | NS |
Triplet–twin | 773 | - | - | 25.12 | 0.23 | 31.21 | 0.19 | 40.61 | 0.09 | 137.60 | 2.86 | 110.01 | 4.84 | NS | NS |
Triplet–triplet | 759 | 3.88 | - | 22.45 | 0.26 | 28.66 | 0.22 | 38.70 | 0.10 | 133.40 | 3.29 | 114.30 | 5.22 | NS | NS |
Dam age | |||||||||||||||
2 | 899 | 4.34 | 0.05 | 27.59 | 0.32 | 31.78 | 0.26 | 38.90 | 0.11 | 118.20 | 3.71 | 58.48 | 6.39 | 137.50 | 8.07 |
3 | 3525 | 4.57 | 0.02 | 27.40 | 0.16 | 33.33 | 0.13 | 42.52 | 0.07 | 136.70 | 2.05 | 100.90 | 3.12 | 116.50 | 3.93 |
4 | 4281 | 4.77 | 0.02 | 27.68 | 0.14 | 33.98 | 0.12 | 42.97 | 0.07 | 148.10 | 1.92 | 109.50 | 2.84 | 107.90 | 3.64 |
5 | 4636 | 4.78 | 0.02 | 27.98 | 0.14 | 33.76 | 0.12 | 42.63 | 0.07 | 138.10 | 1.93 | 99.68 | 2.83 | 118.40 | 3.65 |
6 | 2739 | 4.80 | 0.02 | 28.64 | 0.16 | 33.69 | 0.13 | 42.43 | 0.07 | 124.50 | 2.12 | 78.51 | 3.35 | 137.00 | 4.24 |
7 | 1148 | 4.79 | 0.03 | 26.81 | 0.22 | 33.39 | 0.18 | 42.75 | 0.09 | 144.60 | 2.63 | 120.80 | 4.59 | 93.84 | 5.65 |
8 | 297 | 4.84 | 0.06 | 25.14 | 0.36 | 32.89 | 0.29 | 43.01 | 0.12 | 162.50 | 4.09 | 156.60 | 8.04 | 71.03 | 9.35 |
Dam breed within sire type | |||||||||||||||
Maternal–Merino | 3501 | 4.59 | 0.03 | 27.01 | 0.22 | 33.43 | 0.18 | 42.52 | 0.14 | 146.50 | 3.45 | 114.90 | 3.68 | 99.01 | 6.60 |
Merino–Merino | 6620 | 4.49 | 0.02 | 22.87 | 0.16 | 27.95 | 0.13 | 34.57 | 0.10 | 122.60 | 2.42 | 84.09 | 3.01 | 76.89 | 4.51 |
Terminal–Merino | 3499 | 4.79 | 0.02 | 29.82 | 0.18 | 36.02 | 0.15 | 47.07 | 0.10 | 142.20 | 2.50 | 111.50 | 2.85 | 159.30 | 4.28 |
Terminal–BLM 2 | 3905 | 5.25 | 0.02 | 34.34 | 0.17 | 40.76 | 0.14 | 51.79 | 0.09 | 153.20 | 2.47 | 111.50 | 2.85 | 159.30 | 4.28 |
Weight (kg) | Growth Rate (g/day) | ||||||
---|---|---|---|---|---|---|---|
Birth | Day 100 | Day 150 | Day 240 | Day 100 | Day 150 | Day 240 | |
Site | 1.19 | 10.26 | 13.20 | 17.90 | 79.85 | 88.63 | 74.52 |
Year | 0.12 | 2.72 | 2.79 | 1.95 | 12.16 | 14.28 | 88.72 |
Sex | 0.32 | 1.56 | 1.76 | 3.18 | 4.10 | 3.90 | 30.56 |
Birth-type–rear-type | 1.74 | 9.42 | 8.81 | 6.77 | 10.30 | 23.77 | NS |
Dam age | 0.50 | 3.50 | 2.20 | 4.11 | 44.30 | 98.12 | 66.47 |
Sire type | 0.53 | 9.21 | 10.44 | 14.86 | 25.10 | 30.81 | 82.41 |
Dam breed within sire type | 0.46 | 4.52 | 4.74 | 4.72 | 11.00 | NS | NS |
BWTBV | 0.95 | nm | nm | nm | nm | nm | nm |
WWTBV | nm 1 | 5.98 | nm | nm | NS | nm | nm |
PWTBV | nm | nm | 6.62 | 8.24 | nm | NS | NS |
PFATBV | nm | nm | 1.41 | NS 2 | nm | NS | NS |
PEMDBV | nm | nm | NS | NS | nm | NS | NS |
Birth | Day 100 | Day 150 | Day 240 | |||||
---|---|---|---|---|---|---|---|---|
Coefficient | s.e. 1 | Coefficient | s.e. | Coefficient | s.e. | Coefficient | s.e. | |
BWTBV | WWTBV | PWTBV | PWTBV | |||||
Sire ASBV | 0.59 | 0.09 | 0.19 | 0.12 | 0.17 | 0.05 | 0.45 | 0.03 |
ASBV * Site | ||||||||
Kirby | −0.35 | 0.08 | −0.13 | 0.04 | ||||
Trangie | 0.07 | 0.12 | 0.10 | 0.06 | ||||
Cowra | 0.05 | 0.10 | 0.09 | 0.05 | ||||
Rutherglen | −0.16 | 0.09 | −0.03 | 0.04 | ||||
Hamilton | −0.26 | 0.09 | −0.13 | 0.05 | ||||
Struan | −0.22 | 0.10 | −0.09 | 0.05 | ||||
Turretfield | −0.09 | 0.10 | −0.03 | 0.04 | ||||
Katanning | 0.00 | 0.00 | ||||||
ASBV * Year | ||||||||
2007 | −0.27 | 0.07 | −0.21 | 0.02 | ||||
2008 | −0.22 | 0.07 | −0.05 | 0.02 | ||||
2009 | −0.30 | 0.08 | −0.05 | 0.02 | ||||
2010 | −0.33 | 0.07 | −0.03 | 0.02 | ||||
2011 | 0.00 | 0.00 | ||||||
ASBV * Birth-type–rear-type | ||||||||
Single–single | 0.33 | 0.09 | 0.46 | 0.08 | 0.28 | 0.04 | ||
Twin–single | 0.15 | 0.09 | 0.39 | 0.09 | 0.21 | 0.04 | ||
Twin–twin | 0.23 | 0.08 | 0.15 | 0.04 | ||||
Triplet–single | 0.00 | 0.16 | 0.14 | 0.11 | 0.07 | |||
Triplet–twin | 0.12 | 0.11 | 0.10 | 0.05 | ||||
Triplet–triplet | 0.00 | 0.00 | ||||||
ASBV * Dam age | ||||||||
2 | −0.07 | 0.02 | ||||||
3 | −0.02 | 0.02 | ||||||
4 | −0.01 | 0.02 | ||||||
5 | −0.01 | 0.02 | ||||||
6 | −0.05 | 0.02 | ||||||
7 | −0.03 | 0.02 | ||||||
8 | 0.00 | |||||||
ASBV * Dam breed within sire type | ||||||||
Maternal–Merino | −0.01 | 0.13 | −0.06 | 0.05 | ||||
Merino–Merino | 0.26 | 0.09 | 0.06 | 0.04 | ||||
Terminal–Merino | 0.00 | 0.00 | ||||||
Terminal–BLM 2 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelman, K.R.; Alston-Knox, C.; Pethick, D.W.; Gardner, G.E. Sire Breed, Litter Size, and Environment Influence Genetic Potential for Lamb Growth When Using Sire Breeding Values. Animals 2022, 12, 501. https://doi.org/10.3390/ani12040501
Kelman KR, Alston-Knox C, Pethick DW, Gardner GE. Sire Breed, Litter Size, and Environment Influence Genetic Potential for Lamb Growth When Using Sire Breeding Values. Animals. 2022; 12(4):501. https://doi.org/10.3390/ani12040501
Chicago/Turabian StyleKelman, Khama R., Clair Alston-Knox, David W. Pethick, and Graham E. Gardner. 2022. "Sire Breed, Litter Size, and Environment Influence Genetic Potential for Lamb Growth When Using Sire Breeding Values" Animals 12, no. 4: 501. https://doi.org/10.3390/ani12040501
APA StyleKelman, K. R., Alston-Knox, C., Pethick, D. W., & Gardner, G. E. (2022). Sire Breed, Litter Size, and Environment Influence Genetic Potential for Lamb Growth When Using Sire Breeding Values. Animals, 12(4), 501. https://doi.org/10.3390/ani12040501