An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Mycotoxin Sequestering Agents and Toxin Preparation
2.2. In Vitro Procedure
2.3. Calculation and Statistical Analysis
3. Results
3.1. Sequestering Rates of AFB1 by Mycotoxin Sequestering Agents
3.2. Sequestering Rates of DON by Mycotoxin Sequestering Agents
3.3. Sequestering Rates of ZEA by Mycotoxin Sequestering Agents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, S.Y.; Kong, C.; Kim, I.H.; Kim, B.G. Effects of naturally produced dietary fusarium mycotoxins on weaning pigs. Am. J. Anim. Vet. Sci. 2014, 9, 105–109. [Google Scholar] [CrossRef]
- Holanda, D.M.; Kim, S.W. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Shin, S.Y.; Park, C.S.; Kim, B.G. Effects of feeding barley naturally contaminated with fusarium mycotoxins on growth performance, nutrient digestibility, and blood chemistry of gilts and growth recoveries by feeding a non-contaminated diet. Asian-Australas. J. Anim. Sci. 2015, 28, 662–670. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Kong, C.; Song, M.; Kim, B.G. Effects of dietary deoxynivalenol and zearalenone on apparent ileal digestibility of amino acids in growing pigs. Anim. Feed Sci. Technol. 2016, 219, 77–82. [Google Scholar] [CrossRef]
- Mok, C.H.; Shin, S.Y.; Kim, B.G. Aflatoxin, deoxynivalenol, and zearalenone in swine diets: Predictions on growth performance. Rev. Colomb. De Cienc. Pecu. 2013, 26, 243–254. [Google Scholar]
- Andretta, I.; Kipper, M.; Lehnen, C.R.; Hauschild, L.; Vale, M.M.; Lovatto, P.A. Meta-analytical study of productive and nutritional interactions of mycotoxins in growing pigs. Animal 2012, 6, 1476–1482. [Google Scholar] [CrossRef]
- Kim, J.; Jeong, J.Y.; Sung, J.Y.; Kim, B.G. Equations to predict growth performance changes by dietary deoxynivalenol in pigs. Toxins 2021, 13, 360. [Google Scholar] [CrossRef]
- Clarke, L.C.; Sweeney, T.; Curley, E.; Duffy, S.K.; Vigors, S.; Rajauria, G.; O’Doherty, J.V. Mycotoxin binder increases growth performance, nutrient digestibility and digestive health of finisher pigs offered wheat based diets grown under different agronomical conditions. Anim. Feed Sci. Technol. 2018, 240, 52–65. [Google Scholar] [CrossRef]
- Weaver, A.C.; See, M.T.; Kim, S.W. Protective effect of two yeast based feed additives on pigs chronically exposed to deoxynivalenol and zearalenone. Toxins 2014, 6, 3336–3353. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Wang, W.; Degroote, J.; van Noten, N.; Yan, H.; Majdeddin, M.; van Poucke, M.; Peelman, L.; Goderis, A.; van de Mierop, K.; et al. Mycotoxin binder improves growth rate in piglets associated with reduction of toll-like receptor-4 and increase of tight junction protein gene expression in gut mucosa. J. Anim. Sci. Biotechnol. 2017, 8, 80. [Google Scholar] [CrossRef]
- Diaz, D.E.; Smith, T.K. Mycotoxin sequestering agents: Practical tools for the neutralisation of mycotoxins. In The Mycotoxin Blue Book, 1st ed.; Diaz, D.E., Ed.; Nottingham University Press: Nottingham, UK, 2005; pp. 323–339. [Google Scholar]
- Ha, D.U.; Choi, H.; Kim, B.G. Supplemental protease improves in vitro disappearance of dry matter and crude protein in feather meal and copra meal for pigs. Rev. Bras. De Zootec. 2020, 49, e20200095. [Google Scholar] [CrossRef]
- Diaz, D.E.; Hagler, W.M.; Hopkins, B.A.; Whitlow, L.W. Aflatoxin binders l: In vitro binding assay for aflatoxin b1 by several potential sequestering agents. Mycopathologia 2003, 156, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Marroquin-Cardona, A.; Deng, Y.; Taylor, J.F.; Hallmark, C.T.; Johnson, N.M.; Phillips, T.D. In vitro and in vivo characterization of mycotoxin-binding additives used for animal feeds in mexico. Food Addit. Contam. Part A 2009, 26, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Shin, S.Y.; Kim, B.G. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. Springerplus 2014, 3, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döll, S.; Dänicke, S.; Valenta, H.; Flachowsky, G. In vitro studies on the evaluation of mycotoxin detoxifying agents for their efficacy on deoxynivalenol and zearalenone. Arch. Anim. Nutr. 2004, 58, 311–324. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Havenaar, R.; Visconti, A. Assessment of the multi-mycotoxin-binding efficacy of a carbon/aluminosilicate-based product in an in vitro gastrointestinal model. J. Agric. Food Chem. 2007, 55, 4810–4819. [Google Scholar] [CrossRef]
- Avantaggiato, G.; Solfrizzo, M.; Visconti, A. Recent advances on the use of adsorbent materials for detoxification of fusarium mycotoxins. Food Addit. Contam. Part A 2005, 22, 379–388. [Google Scholar] [CrossRef]
- Vekiru, E.; Fruhauf, S.; Sahin, M.; Ottner, F.; Schatzmayr, G.; Krska, R. Investigation of various adsorbents for their ability to bind aflatoxin B1. Mycotoxin Res. 2007, 23, 27–33. [Google Scholar] [CrossRef]
- Chefchaou, H.; Mzabi, A.; Tanghort, M.; Moussa, H.; Chami, N.; Chami, F.; Remmal, A. A comparative study of different mycotoxin adsorbents against DON, T2 toxin, aflatoxins and fumonisins production in maize flour. Livest. Res. Rural. Dev. 2019, 31, 35. [Google Scholar]
- Boisen, S.; Fernandez, J.A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- Chaytor, A.C.; Hansen, J.A.; van Heugten, E.; See, M.T.; Kim, S.W. Occurrence and decontamination of mycotoxins in swine feed. Asian-Australas. J. Anim. Sci. 2011, 24, 723–738. [Google Scholar] [CrossRef]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: Long-term analysis with special focus on europe and asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Holanda, D.M.; Kim, S.W. Investigation of the efficacy of mycotoxin-detoxifying additive on health and growth of newly-weaned pigs under deoxynivalenol challenges. Anim. Biosci. 2021, 34, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Wahhab, M.A.; Nada, S.A.; Khalil, F.A. Physiological and toxicological responses in rats fed aflatoxin-contaminated diet with or without sorbent materials. Anim. Feed Sci. Technol. 2002, 97, 209–219. [Google Scholar] [CrossRef]
- Sabater-Vilar, M.; Malekinejad, H.; Selman, M.H.; van der Doelen, M.A.; Fink-Gremmels, J. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. Mycopathologia 2007, 163, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Huwig, A.; Freimund, S.; Kappeli, O.; Dutler, H. Mycotoxin detoxication of animal feed by different adsorbents. Toxicol. Lett. 2001, 122, 179–188. [Google Scholar] [CrossRef]
- Piva, G.; Galvano, F.; Pietri, A.; Piva, A. Detoxification methods of aflatoxins: A review. Nutr. Res. 1995, 15, 767–776. [Google Scholar] [CrossRef]
- Galvano, F.; Pietri, A.; Bertuzzi, T.; Piva, A.; Chies, L.; Galvano, M. Activated carbons: In vitro affinity for ochratoxin a and deoxynivalenol and relation of adsorption ability to physicochemical parameters. J. Food Prot. 1998, 61, 469–475. [Google Scholar] [CrossRef]
- Galvano, F.; Pietri, A.; Bertuzzi, T.; Bognanno, M.; Chies, L.; Angelis, A.D.E.; Galvano, M. Activated carbons: In vitro affinity for fumonisin b1 and relation of adsorption ability to physicochemical parameters. J. Food Prot. 1997, 60, 985–991. [Google Scholar] [CrossRef]
- Gallo, A.; Masoero, F. In vitro models to evaluate the capacity of different sequestering agents to adsorb aflatoxins. Ital. J. Anim. Sci. 2010, 9, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Yiannikouris, A.; André, G.; Poughon, L.; François, J.; Dussap, C.-G.; Jeminet, G.; Bertin, G.; Jouany, J.-P. Chemical and conformational study of the interactions involved in mycotoxin complexation with β-d-glucans. Biomacromolecules 2006, 7, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Prapapanpong, J.; Udomkusonsri, P.; Mahavorasirikul, W.; Choochuay, S.; Tansakul, N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J. Adv. Vet. Anim. Res. 2019, 6, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Galvano, F.; Piva, A.; Ritieni, A.; Galvano, G. Dietary strategies to counteract the effects of mycotoxins: A review. J. Food Prot. 2001, 64, 120–131. [Google Scholar] [CrossRef]
- Ramos, A.J.; Fink-Gremmels, J.; Hernandez, E. Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds. J. Food Prot. 1996, 59, 631–641. [Google Scholar] [CrossRef]
- Kim, S.W.; Holanda, D.M.; Gao, X.; Park, I.; Yiannikouris, A. Efficacy of a yeast cell wall extract to mitigate the effect of naturally co-occurring mycotoxins contaminating feed ingredients fed to young pigs: Impact on gut health, microbiome, and growth. Toxins 2019, 11, 633. [Google Scholar] [CrossRef] [Green Version]
- Lemke, S.L.; Grant, P.G.; Phillips, T.D. Adsorption of zearalenone by organophilic montmorillonite clay. J. Agric. Food Chem. 1998, 46, 3789–3796. [Google Scholar] [CrossRef]
- Barrer, R.M. Shape-selective sorbents based on clay minerals: A review. Clays Clay Miner. 1989, 37, 385–395. [Google Scholar] [CrossRef]
- Yiannikouris, A.; Kettunen, H.; Apajalahti, J.; Pennala, E.; Moran, C.A. Comparison of the sequestering properties of yeast cell wall extract and hydrated sodium calcium aluminosilicate in three in vitro models accounting for the animal physiological bioavailability of zearalenone. Food Addit. Contam. Part A 2013, 30, 1641–1650. [Google Scholar] [CrossRef]
Sequestering Agent | Aflatoxin B1, ng/mL | Aflatoxin B1 Sequestering Rate, % | |
---|---|---|---|
Initial | Residual 1 | ||
Bentonite A | 0.33 bcd | 96.7 abc | |
Bentonite B | 0.34 bcd | 96.6 abc | |
Bentonite C | 0.42 abcd | 95.8 abcd | |
Bentonite D | 0.79 a | 92.1 d | |
Bentonite E | 0.47 abc | 95.3 bcd | |
Bentonite F | 0.72 ab | 92.8 cd | |
Bentonite G | 10.00 | 0.17 cd | 98.3 ab |
Aluminosilicate A | 0.50 abd | 95.0 bcd | |
Aluminosilicate B | 0.03 d | 99.7 a | |
Heulandite | 0.41 abcd | 95.9 abcd | |
Activated charcoal | 0.15 cd | 98.5 ab | |
Yeast cell wall | 0.77 a | 92.3 d | |
SEM 2 | 0.08 | 0.77 | |
p-value | <0.001 | <0.001 |
Sequestering Agent | Deoxynivalenol, ng/mL | Deoxynivalenol Sequestering Rate, % | |
---|---|---|---|
Initial | Residual 1 | ||
Bentonite A | 910 ab | 9.0 bc | |
Bentonite B | 836 ab | 16.4 bc | |
Bentonite C | 1067 a | −6.7 c | |
Bentonite D | 661 b | 33.9 b | |
Bentonite E | 1020 a | −2.0 c | |
Bentonite F | 911 ab | 8.9 bc | |
Bentonite G | 1000 | 947 ab | 5.3 bc |
Aluminosilicate A | 918 ab | 8.2 bc | |
Aluminosilicate B | 996 a | 0.4 c | |
Heulandite | 1051 a | −5.1 c | |
Activated charcoal | 9 c | 99.1 a | |
Yeast cell wall | 990 a | 1.0 c | |
SEM 2 | 58.4 | 5.84 | |
p-value | <0.001 | <0.001 |
Sequestering Agent | Zearalenone, ng/mL | Zearalenone Sequestering Rate, % | |
---|---|---|---|
Initial | Residual 1 | ||
Bentonite A | 196.9 b | 21.2 b | |
Bentonite B | 255.9 a | −2.3 c | |
Bentonite C | 242.1 a | 3.2 c | |
Bentonite D | 272.8 a | −9.1 c | |
Bentonite E | 270.9 a | −8.4 c | |
Bentonite F | 7.4 c | 97.0 a | |
Bentonite G | 250.0 | 240.9 a | 3.6 c |
Aluminosilicate A | 1.0 c | 99.6 a | |
Aluminosilicate B | 256.3 a | −2.5 c | |
Heulandite | 254.1 a | −1.6 c | |
Activated charcoal | 0.0 c | 100.0 a | |
Yeast cell wall | 234.9 ab | 6.0 bc | |
SEM 2 | 8.55 | 3.42 | |
p-value | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.Y.; Kim, J.; Cheong, D.H.; Hong, H.; Jeong, J.Y.; Kim, B.G. An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals 2022, 12, 333. https://doi.org/10.3390/ani12030333
Ahn JY, Kim J, Cheong DH, Hong H, Jeong JY, Kim BG. An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals. 2022; 12(3):333. https://doi.org/10.3390/ani12030333
Chicago/Turabian StyleAhn, Jong Young, Jongkeon Kim, Da Hyeon Cheong, Hyosun Hong, Jin Young Jeong, and Beob Gyun Kim. 2022. "An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone" Animals 12, no. 3: 333. https://doi.org/10.3390/ani12030333
APA StyleAhn, J. Y., Kim, J., Cheong, D. H., Hong, H., Jeong, J. Y., & Kim, B. G. (2022). An In Vitro Study on the Efficacy of Mycotoxin Sequestering Agents for Aflatoxin B1, Deoxynivalenol, and Zearalenone. Animals, 12(3), 333. https://doi.org/10.3390/ani12030333