Evaluation of Ingestive Behavior, Ruminal and Blood Parameters, Performance, and Thermography as a Phenotypic Divergence Markers of Residual Feed Intake in Rearing Dairy Heifers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Management
2.2. Feed Intake, Water Intake, Body Weighing, Average Daily Gain, and Ingestive Behavior
2.3. Residual Feed Intake
- Yj: standardized DMI of heifer j;
- β0: is the regression intercept;
- β1: is the regression coefficient on BW**0.75 to animal j,
- β2: is the regression coefficient on ADG to animal j,
- ej: is the associated error to animal j.
2.4. Rumen Variables and Analyses
2.5. Blood Metabolites and Hormones
2.6. Infrared Thermography
2.7. Statistical Analysis
- Y_ijk: dependent variable;
- β_0: intercept;
- β_1 A_ij: regression coefficient for the covariate initial BW;
- β_2 B_ij: regression coefficient for the covariate total serum protein;
- G_i: fixed effect of efficiency group;
- M_k: fixed effect of repeated measure (day or week);
- [GM]_ik: fixed effect of interaction between group and repeated measure;
- δ_ij: random error between animals within treatment;
- ε_ijk: random error between measurements among animals.
3. Results and Discussion
3.1. Residual Feed Intake, Feed and Water Intake, and Performance
3.2. Ingestive Behavior
3.3. Ruminal Fermentation
3.4. Blood Metabolites and Hormones
3.5. Infrared Thermography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.A.; Ruegg, P.S.; Sheldon, I.M.; Stevenson, J.S. Invited review: Learning from the future—A vision for dairy farms and cows in 2067. J. Dairy Sci. 2018, 101, 3722–3741. [Google Scholar] [CrossRef] [Green Version]
- Trevizan, N.; Canesin, R.C.; Branco, R.H.; Batalha, C.D.A.; Cyrillo, J.N.S.G.; Bonilha, S.F.M. Growth, ruminal and metabolic parameters and feeding behavior of Nellore cattle with different residual feed intake phenotypes. Livest. Sci. 2021, 244, 104393. [Google Scholar] [CrossRef]
- Koch, R.M.; Swiger, L.A.; Chambers, D.; Gregory, K.E. Efficiency of feed use in beef cattle. J. Anim. Sci. 1963, 22, 486–494. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. Residual intake and body weight gain: A new measure of efficiency in growing cattle. J. Anim. Sci. 2012, 90, 109–115. [Google Scholar] [CrossRef]
- Elolimy, A.; Alharthi, A.; Zeineldin, M.; Parys, C.; Loor, J.J. Residual feed intake divergence during the preweaning period is associated with unique hindgut microbiome and metabolome profiles in neonatal Holstein heifer calves. J. Anim. Sci. Biotechnol. 2020, 11, 13. [Google Scholar] [CrossRef] [Green Version]
- VandeHaar, M.J.; Armentano, L.E.; Weigel, K.; Spurlock, D.M.; Tempelman, R.J.; Veerkamp, R. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. J. Dairy Sci. 2016, 99, 4941–4954. [Google Scholar] [CrossRef] [Green Version]
- Herd, R.M.; Oddy, V.H.; Richardson, E.C. Biological basis for variation in residual feed intake in beef cattle. 1. Review of potential mechanisms. Aust. J. Exp. Agric. 2004, 44, 423–430. [Google Scholar] [CrossRef]
- Nkrumah, J.D.; Basarab, J.A.; Wang, Z.; Li, C.; Price, M.A.; Okine, E.K.; Crews, D.H., Jr.; Moore, S.S. Genetic and phenotypic relationships of feed and measures of efficiency with growth and carcass merit of beef cattle. J. Anim. Sci. 2007, 85, 2711–2720. [Google Scholar] [CrossRef]
- Kelly, A.K.; McGee, M.; Crews, D.H., Jr.; Fahey, A.G.; Wylie, A.R.; Kenny, D.A. Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers. J. Anim. Sci. 2010, 88, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Montanholi, Y.R.; Swanson, K.C.; Palme, R.; Schenkel, F.S.; McBride, B.W.; Lu, D.; Miller, S.P. Assessing feed efficiency in beef steers trough feeding behavior, infrared thermography and glucocorticoids. Animal 2010, 4, 692–701. [Google Scholar] [CrossRef]
- Leão, J.M.; Coelho, S.G.; Machado, F.S.; Azevedo, R.A.; Lima, J.A.M.; Carneiro, J.C.; Lage, C.F.A.; Ferreira, A.L.; Pereira, L.G.R.; Tomich, T.R.; et al. Phenotypically divergent classification of preweaned heifer calves for feed efficiency indexes and their correlations with heat production and thermography. J. Dairy Sci. 2018, 101, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC. Official Methods of Analysis, 21st ed.; Association of Official Analytic Chemists—AOAC: Gaithersburg, MD, USA, 2019. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council—NRC: Washington, DC, USA, 2001. [Google Scholar]
- Oliveira, B.R., Jr.; Ribas, M.N.; Machado, F.S.; Lima, J.A.M.; Cavalcanti, L.F.L.; Chizzotti, M.L.; Coelho, S.G. Validation of a system for monitoring individual feeding and drinking behavior and intake in young calves. Animal 2018, 12, 634–639. [Google Scholar] [CrossRef] [PubMed]
- INCT-CA. Methods for Food Analysis; INCT: Viçosa, Brazil, 2012; Volume 14, pp. 199–204. [Google Scholar]
- Lage, C.F.A.; Coelho, S.G.; Neto, H.C.D.; Malacco, V.M.R.; Rodrigues, J.P.C.; Sacramento, J.P.; Teixeira, V.A.; Machado, F.S.; Pereira, L.G.R.; Tomich, T.R.; et al. Relationship between feed efficiency indexes and performance, body measurements, digestibility, energy partitioning, and nitrogen partitioning in pre-weaned dairy heifers. PLoS ONE 2020, 15, e0236118. [Google Scholar] [CrossRef]
- Basarab, J.A.; Price, M.A.; Aalhus, J.L.; Okine, E.K.; Snelling, W.M.; Lyle, K.L. Residual feed intake and body composition in young growing cattle. Can. J. Anim. Sci. 2003, 83, 189–204. [Google Scholar] [CrossRef]
- McDonnell, R.P.; Hart, K.J.; Boland, T.M.; Kelly, A.K.; McGee, M.; Kenny, D.A. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets. J. Anim. Sci. 2016, 94, 1179–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beede, D.K. Water nutrition and quality for dairy cattle. In Proceedings of the Western Large Herd Management Conference, Las Vegas, NV, USA, 22–24 April 1993; pp. 193–205. [Google Scholar]
- Wickramasinghe, H.K.J.P.; Kramer, A.J.; Appuhamy, J.A.D.R.N. Drinking water intake of newborn dairy calves and its effects on feed intake, growth performance, health status, and nutrient digestibility. J. Dairy Sci. 2019, 102, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Beede, D.K. The most essential nutrient: Water. In Proceedings of the 7th Western Dairy Management Conference, Reno, NV, USA, 9–11 March 2005; pp. 13–32. [Google Scholar]
- Nkrumah, J.D.; Okine, E.K.; Mathison, G.W.; Schmid, K.; Li, C.; Basarab, J.A.; Price, M.A.; Wang, Z.; Moore, S.S. Relationship of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J. Anim. Sci. 2006, 84, 145–153. [Google Scholar] [CrossRef]
- Green, T.C.; Jago, J.G.; Macdonald, K.A.; Waghorn, G.C. Relationship between residual feed intake, average daily gain, and feed behavior in growing dairy heifers. J. Dairy Sci. 2013, 96, 3098–3107. [Google Scholar] [CrossRef]
- Berry, D.P.; Crowley, J.J. Cell Biology Symposium: Genetics of feed efficiency in dairy and beef cattle1. J. Anim. Sci. 2013, 91, 1594–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, L.L.; Nkrumah, J.D.; Basarab, J.A.; Moore, S.S. Linkage of microbial ecology to phenotype: Correlation of rumen microbial ecology to cattle’s feed efficiency. Microbol. Lett. 2008, 288, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, S.; Munro, J.C.; Zhou, M.; Guan, L.L.; Schenkel, F.S.; Steele, M.A.; Miller, S.P.; Montanholi, Y.R. Associations of rumen parameters with feed efficiency and sampling routine in beef cattle. Animal 2018, 13, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Elolimy, A.A.; Arroyo, J.M.; Batistel, F.; Iakiviak, M.A.; Loor, J.J. Association of residual feed intake with abundance of ruminal bacteria and biopolymer hydrolyzing enzyme activities during the peripartal period and early lactation in Holstein dairy cows. J. Anim. Sci. Biotechnol. 2018, 9, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, D.C.; Ribeiro, L.G.P.; Lima, J.A.M.; Machado, F.S.; Ferreira, A.L.; Tomich, T.R.; Coelho, S.G.; Maurício, R.M.; Campos, M.M. Grouping crossbred Holstein x Gyr heifers according to different feed efficiency indexes and its effects on energy and nitrogen partitioning, blood metabolic variables and gas exchanges. PLoS ONE 2020, 15, e0238419. [Google Scholar] [CrossRef] [PubMed]
- Kariza, B.K.; Thompson, J.; Wang, Z.; Li, C.; Montanholi, Y.R.; Miller, S.P.; Moore, S.S.; Plastow, G.S. Plasma metabolites associated with residual feed intake and other productivity performance traits in beef cattle. Livest. Sci. 2014, 165, 200–211. [Google Scholar] [CrossRef]
- Moore, K.L.; Johnston, D.J.; Graser, H.U.; Herd, R. Genetic and phenotypic relationships between insulin-like growth factor-I (IGF-I) and net feed intake, fat, and growth traits in Angus beef cattle. Aust. J. Res. 2005, 56, 211–218. [Google Scholar] [CrossRef]
- Brown, E.G.; Carstens, G.E.; Fox, J.T.; Curley, K.O., Jr.; Bryan, T.M.; Slay, L.J. Physiological Indicators of Performance and Feed Efficiency Traits in Growing Steers and Bulls; Beef Cattle Research: Collegue Station, TX, USA, 2004; pp. 163–166. [Google Scholar]
- DiGiacomo, K.; Marett, L.C.; Wales, W.J.; Hayes, B.J.; Dunshea, F.R.; Leury, B.J. Thermoregulatory differences in lactating dairy cattle classed as efficient or inefficient based on residual feed intake. Anim. Prod. Sci. 2014, 54, 1877–1881. [Google Scholar] [CrossRef]
- Martello, L.S.; Silva, S.L.; Gomes, R.C.; Corte, R.R.P.S.; Leme, P.R. Infrared thermography as a tool to evaluate body surface temperature and its relationship with feed efficiency in Bos indicus cattle in tropical conditions. Int. J. Biometeorol. 2016, 60, 173–181. [Google Scholar] [CrossRef]
- Thompson, S.; Schaefer, A.L.; Crow, G.H.; Basarab, J.; Colyn, J.; Ominski, K. Relationship between residual feed intake and radiated heat loss using infrared thermography in young bulls. J. Therm. Biol. 2018, 78, 304–311. [Google Scholar] [CrossRef]
Nutritional Composition | Concentrate 1 | Corn Silage | TMR 2 |
---|---|---|---|
DM 3 | 88.45 | 35.10 | 48.40 |
TDN 4 | 85.10 | 75.80 | 77.20 |
CP 5 | 33.31 | 8.10 | 14.41 |
EE 6 | 2.96 | 4.00 | 3.76 |
ASH 7 | 11.87 | 6.10 | 7.54 |
NDF 8 | 11.69 | 42.90 | 35.12 |
ME 9 (kcal/kg) | 3591.00 | 2240.00 | 2577.00 |
GE 10 (kcal/kg) | 4205.84 | 4510.50 | 4433.57 |
Item | RFI 1 | SEM 4 | p-Value | |
---|---|---|---|---|
HE 2 | LE 3 | |||
RFI (kg/d) | −0.358 | 0.337 | 0.06 | <0.0001 |
Intake | ||||
Water (L/d) | 7.2 | 7.0 | 0.50 | 0.024 |
DMI 5 (kg/d) | 2.5 | 3.1 | 0.17 | <0.0001 |
Water: DMI ratio | 3.5 | 2.7 | 0.30 | <0.0001 |
Performance | ||||
ADG 6 (kg/d) | 0.305 | 0.237 | 0.35 | 0.3662 |
Initial weight body (kg) | 106.3 | 107.6 | 1.88 | 0.8214 |
Final weight body (kg) | 133.7 | 128.9 | 4.22 | 0.4682 |
Item | RFI 1 | SEM 4 | p-Value | |
---|---|---|---|---|
HE 2 | LE 3 | |||
Ingestive behavior | ||||
TTB 5 (min) | 152 | 152 | 8.27 | 0.36 |
CTB 6 (min) | 126 | 126 | 7.90 | 0.14 |
NVB 7 (occurrence) | 59 | 71 | 0.80 | <0.0001 |
TTW 8 (min) | 16 | 11 | 0.06 | <0.0001 |
NVW 9 (occurrence) | 5.9 | 5.50 | 0.34 | <0.0001 |
Ruminal parameters | ||||
pH | 6.80 | 6.90 | 0.16 | 0.74 |
N-NH3 10 (mg/dL) | 13.70 | 14.50 | 1.17 | 0.25 |
Acetate (µmol/mL) | 41.60 | 43.10 | 3.34 | 0.45 |
Butyrate (µmol/mL) | 8.70 | 8.80 | 0.86 | 0.72 |
Propionate (µmol/mL) | 7.90 | 7.80 | 0.66 | 0.91 |
Acetate:propionate | 5.30 | 5.20 | 0.41 | 0.60 |
Total VFA (µmol/mL) | 58.80 | 60.40 | 4.45 | 0.53 |
Blood parameters | ||||
Glucose (mg/dL) | 78.80 | 80.20 | 2.98 | 0.42 |
Insulin (uIU/mL) | 11.10 | 11.30 | 2.37 | 0.89 |
IGF-1 11 (ng/mL) | 82.90 | 89.90 | 18.31 | 0.47 |
Ratio glucose:insulin | 9.20 | 9.50 | 1.83 | 0.72 |
Infrared termography (°C) | ||||
Cheek | 35.30 | 34.70 | 0.45 | 0.37 |
Right rib | 35.70 | 35.20 | 0.68 | 0.71 |
Left flank | 36.60 | 34.80 | 0.82 | 0.08 |
Front | 33.20 | 31.40 | 1.30 | 0.24 |
Muzzle | 31.90 | 29.20 | 1.27 | 0.26 |
Front limb | 35.30 | 33.00 | 1.29 | 0.34 |
Hind limb | 30.80 | 29.70 | 1.28 | 0.50 |
Item | DMI 1 | ADG 2 | RFI 3 |
---|---|---|---|
Intake/Performance | |||
RFI | - | - | - |
DMI | - | 0.60 *** | 0.78 *** |
Water intake | - | 0.50 ** | - |
ADG | 0.60 *** | - | - |
Initial body weight | 0.37 * | 0.57 ** | - |
Final body weight | 0.56 ** | 0.91 *** | - |
Ingestive behaviour | |||
TTB 4 | - | 0.06 ** | - |
CTB 5 | - | 0.06 ** | - |
NVB 6 | 0.43 * | - | 0.38 * |
TTW 7 | 0.18 *** | 0.18 *** | −0.13 *** |
NVW 8 | 0.18 *** | 0.18 *** | 0.04 * |
Blood variables | |||
Glucose | 0.33 ** | 0.35 ** | - |
IGF-1 9 | 0.30 ** | 0.31 ** | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, M.C.; Neto, H.d.C.D.; Coelho, S.G.; Machado, F.S.; Pereira, L.G.R.; Tomich, T.R.; Campos, M.M. Evaluation of Ingestive Behavior, Ruminal and Blood Parameters, Performance, and Thermography as a Phenotypic Divergence Markers of Residual Feed Intake in Rearing Dairy Heifers. Animals 2022, 12, 331. https://doi.org/10.3390/ani12030331
Lombardi MC, Neto HdCD, Coelho SG, Machado FS, Pereira LGR, Tomich TR, Campos MM. Evaluation of Ingestive Behavior, Ruminal and Blood Parameters, Performance, and Thermography as a Phenotypic Divergence Markers of Residual Feed Intake in Rearing Dairy Heifers. Animals. 2022; 12(3):331. https://doi.org/10.3390/ani12030331
Chicago/Turabian StyleLombardi, Mayara Campos, Hilton do Carmo Diniz Neto, Sandra Gesteira Coelho, Fernanda Samarini Machado, Luiz Gustavo Ribeiro Pereira, Thierry Ribeiro Tomich, and Mariana Magalhães Campos. 2022. "Evaluation of Ingestive Behavior, Ruminal and Blood Parameters, Performance, and Thermography as a Phenotypic Divergence Markers of Residual Feed Intake in Rearing Dairy Heifers" Animals 12, no. 3: 331. https://doi.org/10.3390/ani12030331
APA StyleLombardi, M. C., Neto, H. d. C. D., Coelho, S. G., Machado, F. S., Pereira, L. G. R., Tomich, T. R., & Campos, M. M. (2022). Evaluation of Ingestive Behavior, Ruminal and Blood Parameters, Performance, and Thermography as a Phenotypic Divergence Markers of Residual Feed Intake in Rearing Dairy Heifers. Animals, 12(3), 331. https://doi.org/10.3390/ani12030331