Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Diets and Housing
2.2. Sample Collection, Measurements and Calculations
2.2.1. Ammonia Emissions from the Animal House
2.2.2. Ammonia Emissions from Floor
2.2.3. Fresh Urine and Feces, Urine Patches and Manure Characteristics
2.2.4. Ammonia Concentration at 1 cm and 10 cm above the Manure Pit
2.2.5. pH and Temperature Gradient in Manure
2.3. Statistical Analysis
3. Results
3.1. Effects of Experimental Diets on Daily Gain, Daily Feed Intake and Feed Efficiency
3.2. Effects of Experimental Diets on Slaughter Quality
3.3. Effects of Experimental Diets on Urine and Feces Characteristics
3.4. Effects of Experimental Diets on Manure Characteristics
3.5. Effects of Experimental Diets on Ammonia Emission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krupa, S.V. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Banhazi, T.M.; Seedorf, J.; Rutley, D.L.; Pitchford, W.S. Identification of risk fac- tors for sub-optimal housing conditions in Australian piggeries: Part 2. Airborne pollutants. J. Agric. Saf. Health 2008, 14, 21–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.A.; Holland, E.A.; et al. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Reidy, B.; Webb, J.; Misselbrook, T.H.; Menzi, H.; Luesink, H.H.; Hutchings, N.J.; Eurich-Menden, B.; Doher, H.; Dammgen, U. Comparison of models used for national agricultural ammonia emission inventories in Europe: Litter-based manure systems. Atmos. Environ. 2009, 43, 1632–1640. [Google Scholar] [CrossRef]
- Olivier, J.G.J.; Bouwman, A.F.; Van der Hoek, K.W.; Berdowski, J.J.M. Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990. Environ. Pollut. 1998, 102, 135–148. [Google Scholar] [CrossRef]
- European Environment Agency. European Community Emission Inventory Report 1990–2008 under the UNECE Convention on Long-Range Transboundary Air Pollution; European Environment Agency: Copenhagen, Denmark, 2010. [Google Scholar]
- Gac, A.; Beline, F.; Bioteau, T.; Maguet, K. A French inventory of gaseous emis- sions (CH4, N2O, NH3) from livestock manure management using a mass-flow approach. Livest. Prod. Sci. 2007, 112, 252–260. [Google Scholar] [CrossRef]
- Webb, J.; Misselbrook, T.H. A mass-flow model of ammonia emissions from UK livestock production. Atmos. Environ. 2004, 38, 2163–2176. [Google Scholar] [CrossRef]
- Cortus, E.L.; Lemay, S.P.; Barber, E.M.; Hill, G.A.; Godbout, S. A dynamic model of ammonia emission from urine puddles. Biosys. Eng. 2008, 99, 390–402. [Google Scholar] [CrossRef]
- Le Dinh, P.; Aarnink, A. Nutritional Strategies to Reduce Emissions from Waste in Pig production. In Achieving Sustainable Production of Pig Meat; Mathew, A., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 227–242. ISBN 978 1 78676 0883. [Google Scholar]
- CVB. PDV, Ed.; Tabellenboek Veevoeding 2012; Productschap Diervoeder: Den Haag, The Netherlands, 2012; p. 50. [Google Scholar]
- Lambooij, E.; Engel, B.; Buist, W.; Vereijken, P. Lean Meat Equation for the Hennessy Grading Probe (HGP7), Capteur Gras Maigre-Sydel (CGM and CSB-Image-Meater (CSB); Wageningen UR Livestock Research: Wageningen, The Netherlands, 2011; p. 39. [Google Scholar]
- Schram, E.; Moore, S.; Bigwood, E.W. Chromatographic determination of cystine as cystic acid. Biochem. J. 1954, 57, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Sato, H.; Seino, T.; Kobayashi, T.; Murai, A.; Yugari, Y. Determination of tryptophan content of feed and feedstuffs by ion exchange liquid chromatography. Agric. Biol. Chem. 1984, 48, 2961–2969. [Google Scholar] [CrossRef]
- Gelder, A.H.; van te Brinke, E.M.; Cone, J.W.; van Lonkhuijsen, H.J.; Jetten, J.M.; Lichtendonk, W.J. Protocol voor de Analyse van Niet-Zetmeel Koolhydraten (Protocol for Analysing Non-Starch Polysaccharides); Kwaliteitsreeks nr. 19; Productschap voor Veevoeder: The Hague, The Netherlands, 1992. [Google Scholar]
- Ogink, N.W.M.; Mosquera, J.; Hol, J.M.G. Protocol voor meting van ammoniakemissie uit huisvestingssystemen in de veehouderij. Livest. Res. 2013, 621, 523976. [Google Scholar]
- Mosquera, J.; Hofschreuder, P.; Erisman, J.W.; Mulder, E.; Van ’t Klooster, C.E.; Ogink, N.; Swierstra, D.; Verdoes, N. Meetmethoden Gasvormige Emissies uit de Veehouderij; Instituut voor Milieu- en Agritechniek, Rapport 2002-12: Wageningen, The Netherlands, 2002; p. 247. [Google Scholar]
- Derikx, P.J.L.; Willers, H.C.; Ten Have, P.J.W. Effect of pH on behaviour of volatile compounds in organic manures during dry-matter determination. Bioresour. Technol. 1994, 49, 41–45. [Google Scholar] [CrossRef]
- Hafner, S.; Bisogni, J.J. A Simple Method for Measurement of Inorganic Carbon Concentration and Carbonate System Alkalinity in Anaerobic Digesters. Agric. Eng. Int. CIGR J. 2007, IX, 1–15. [Google Scholar]
- Bakker, G.C.M.; Hol, J.M.G.; Smits, M.C.J.; Jongbloed, A.W. The Additivity of Feeding Measures to Reduce Ammonia Emission from Pig Houses; 2. Ammonia Emission Measurements at Housing Level and In Vitro for Three Different Diets; Animal Sciences Group: Wageningen, The Netherlands; Lelystad, The Netherlands, 2005; p. 36. [Google Scholar]
- Aarnink, A.J.A. Ammonia Emission from Houses for Growing Pigs as Affected by Pen Design, Indoor Climate and Behaviour; Agricultural University Wageningen: Wageningen, The Netherlands, 1997. [Google Scholar]
- Canh, T.T.; Aarnink, A.J.A.; Mroz, Z.; Jongbloed, A.W. Influence of dietary calcium salts and electrolyte balance on urinary pH, slurry pH and ammonia volatilisation from slurry of growing finishing pigs. J. Anim Sci. 1997, 75 (Suppl. 1), 1989. [Google Scholar]
- Canh, T.T.; Aarnink, A.J.A.; Mroz, Z.; Jongbloed, A.W.; Schrama, J.W.; Verstegen, M.W.A. Influences of electrolyte balance and acidifying calcium salts in the diet of growing-finishing pigs on urinary pH, slurry pH and ammonia volatilisation from slurry. Livest. Prod. Sci. 1998, 56, 1–13. [Google Scholar] [CrossRef]
- Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.; Langhout, D.J.; Verstegen, M.W.A. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–finishing pigs. Livest. Prod. Sci. 1998, 56, 181–191. [Google Scholar] [CrossRef]
- Canh, T.T.; Aarnink, A.J.A.; Verstegen, M.W.A.; Schrama, J.W. Influences of dietary factors on the pH and ammonia emissions of slurry from growing-finishing pigs. J. Anim Sci. 1998, 76, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Martínez, S.; López, C.; Megías, M.; López, M.; Madrid, J. Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs. Animal 2011, 5, 1290–1298. [Google Scholar] [CrossRef]
- Le, P.D.; Aarnink, A.J.A.; Jongbloed, A.W. Odour and ammonia emission from pig manure as affected by dietary crude protein level. Livest. Sci. 2009, 121, 267–274. [Google Scholar] [CrossRef]
- Le, P.D.; Aarnink, A.J.A.; Jongbloed, A.W.; van de Peet-Schwering, C.M.C.; Verstegen, M.W.A.; Ogink, N.W.M. Effects of dietary crude protein level on odor from pig manure. Animal 2007, 1, 734–744. [Google Scholar] [CrossRef] [Green Version]
- United Nations Economic Commission for Europe. Framework Code for Good Agricultural Practice for Reducing Ammonia Emissions; United Nations Economic Commission for Europe: Geneva, Switzerland, 2015; p. 31. [Google Scholar]
- Nørgaard, J.V.; Hansen, M.J.; Soumeh, E.A.; Adamsen, A.P.S.; Poulsen, H.D. Effect of protein level on performance, nitrogen utilisation and carcass composition in finisher pigs. Acta. Agric. Scand. Anim. Sci. 2014, 64, 123–129. [Google Scholar] [CrossRef]
- O’Connell, J.M.; Callan, J.J.; O’Doherty, J.V. The effect of dietary crude protein level, cereal type and exogenous enzyme supplementation on nutrient digestibility, nitrogen excretion, faecal volatile fatty acid concentration and ammonia emissions from pigs. Anim. Feed Sci. Technol. 2006, 127, 73–88. [Google Scholar] [CrossRef]
- Cromwell, G.L.; Coffey, R.D. Future strategies to dinimish nitrogen and phosphorous in swine manure. Meeting the Environmental Challange. In Proceedings of NPPC Environmental Symposium; NPPC: Ames, IA, USA; Minneapolis, NN, USA, 1993. [Google Scholar]
- Jongbloed, A.W.; Lenis, N.P. Excretion of nitrogen and some minerals by livestock. In Nitrogen Flow in Pig Production and Environmental Consequences; Verstegen, M.W.A., den Hartog, L.A., van Kempen, van Metz, G.J.M., Eds.; EAAP Pub No. 69 Pudoc Scientific Publishers: Wageningen, The Netherlands, 1993; pp. 22–36. [Google Scholar]
- Portejoie, S.; Dourmad, J.-Y.; Martinez, J.; Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 2004, 91, 45–55. [Google Scholar] [CrossRef]
- Aarnink, A.J.A.; Verstegen, M.W.A. Nutrition, key factor to reduce environmental load from pig production. Livest. Sci. 2007, 109, 194–203. [Google Scholar] [CrossRef]
- Shriver, J.A.; Carter, S.D.; Sutton, A.L.; Richert, B.T.; Senne, B.W.; Pettey, L.A. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci. 2003, 81, 492–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madrid, J.; Martínez, S.; López, C.; Orengo, J.; López, M.J.; Hernández, F. Effects of low protein diets on growth performance, carcass traits and ammonia emission of barrows and gilts. Anim. Prod. Sci. 2013, 53, 146–153. [Google Scholar] [CrossRef]
- Hansen, M.J.; Nørgaard, J.V.; Adamsen, A.P.S.; Poulsen, H.D. Effect of reduced crude protein on ammonia, methane, and chemical odorants emitted from pig houses. Livest. Sci. 2014, 169, 118–124. [Google Scholar] [CrossRef]
- Kay, R.M.; Lee, P.A. Ammonia emission from pig buildings and characteristics of slurry produced by pigs offered low crude protein diets. In International Symposium on Ammonia and Odour Control from Animal Production Facilities; Voermans, J.A.M., Monteny, G.J., Eds.; NVTL: Rosmalen, The Netherlands; Vinkeloord, The Netherlands, 1997; pp. 253–259. [Google Scholar]
- Aarnink, A.J.A.; Hoeksma, P.; Ouwerkerk, E.N.J. Factors affecting ammonium concentration in slurry from fattening pigs. In Nitrogen Flow in Pig Production and Environmental Consequences; Verstegen, M.W.A., den Hartog, L.A., van Kempen, G.J.M., Eds.; EAAP Pub No. 69 Pudoc Scientific Publishers: Wageningen, The Netherlands, 1993; pp. 413–420. [Google Scholar]
- Bühler, K.; Wenk, C.; Broz, J.; Gebert, S. Influence of benzoic acid and dietary protein level on performance, nitrogen metabolism and urinary pH in growing-finishing pigs. Arch. Anim. Nutr. 2007, 60, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Kluge, H.; Broz, J.; Eder, K. Effects of dietary benzoic acid on urinary pH and nutrient digestibility in lactating sows. Livest. Sci. 2010, 134, 119–121. [Google Scholar] [CrossRef]
- Daumerm, M.-L.; Guiziou, F.; Dourmard, J.-Y. Influence de la teneur en protéines de l’aliment et de l’addition d’acide benzoique et de phytase microbienne sur les caractéristiques des effluents chez le porc à l’engraissement. Journées Rech. Porc. 2007, 39, 13–22. [Google Scholar]
- Kim, I.B.; Ferket, P.R.; Powers, W.J.; Stein, H.H.; Van Kempen, T.A.T.G. Effects of different dietary acidifier sources of calcium and phosphorus on ammonia, methane and odorant emission from growing-finishing pigs. Asian Australas J. Anim. Sci. 2004, 17, 1131–1138. [Google Scholar] [CrossRef]
- Hansen, C.F.; Sørensen, G.; Lyngbye, M. Reduced diet crude protein level, benzoic acid and inulin reduced ammonia, but failed to influence odour emission from finishing pigs. Livest. Sci. 2007, 109, 228–231. [Google Scholar] [CrossRef]
- den Brok, G.M.; Hendriks, J.G.L.; Vrielink, M.G.M.; van der Peet-Schwering, C.M.C. Urinary pH, Ammonia Emission and Performance of Growing/Finishing Pigs after the Addition of a Mixture of Organic Acids, Mainly Benzoic Acid, to the Feed; Experimental Farm for Pig Husbandry: Raalte, The Netherlands, 1999; p. 35. [Google Scholar]
- Oldenburg, J.; Heinrichs, P. Quantitative Aspecte einer proteinreduzierten Schweinemast. Lohamann Inf. 1996, 1, 13–16. [Google Scholar]
- Lopez, J.; Goodband, R.D.; Allee, G.L.; Jesse, G.W.; Nelssen, J.L.; Tokach, M.D.; Spiers, D.; Becker, B.A. The effects of diets formulated on an ideal protein basis on growth performance, carcass characteristics, and thermal balance of finishing gilts housed in a hot, diurnal environment. J. Anim Sci. 1994, 72, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Hahn, J.D.; Biehl, R.R.; Baker, D.H. Ideal digestible lysine level for early- and late-finishing swine. J. Anim Sci. 1995, 73, 773–784. [Google Scholar] [CrossRef]
Composition (%) | Starter Diet | Grower Diet | Finisher Diet | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CON | RCP | AD | CD | CON | RCP | AD | CD | CON | RCP | AD | CD | |
Maize | 11.32 | 12.81 | 11.79 | 12.81 | 5.40 | 5.00 | 5.00 | 5.00 | 5.00 | 5.00 | 5.40 | 5.00 |
Barley | 24.63 | 24.63 | 24.63 | 24.63 | 19.80 | 22.70 | 19.80 | 22.00 | 19.80 | 19.80 | 19.80 | 19.80 |
Wheat | 17.50 | 16.75 | 14.78 | 16.75 | 27.45 | 26.80 | 25.07 | 24.80 | 27.65 | 29.64 | 24.56 | 28.74 |
Maize feed meal | 5.00 | 4.81 | 5.00 | 4.41 | 4.50 | 4.95 | 4.75 | 4.95 | 4.50 | 4.95 | 4.50 | 4.95 |
Wheat middlings | 3.39 | 1.01 | 4.21 | 7.00 | 9.90 | 7.00 | 9.90 | 7.00 | 10.00 | 7.00 | 10.00 | |
Biscuits, ground | 4.93 | 4.38 | 4.93 | 3.94 | 4.30 | 4.00 | 5.00 | 5.00 | 3.50 | 2.80 | 4.50 | 3.00 |
Wheat gluten feed meal | 7.30 | 6.90 | 7.22 | 6.90 | 5.00 | 5.00 | 5.00 | 5.00 | 4.50 | 4.50 | 4.50 | 4.90 |
Vegetable oil | 1.61 | 1.92 | 1.82 | 1.90 | 1.50 | 1.60 | 1.95 | 2.00 | 1.00 | 1.00 | 1.40 | 1.35 |
Potato protein | 0.28 | |||||||||||
Sugar beet pulp | 1.10 | 1.30 | 1.10 | 1.30 | 1.10 | 1.50 | 1.10 | 1.20 | ||||
Soybean meal HIPRO | 17.29 | 14.87 | 17.77 | 16.04 | 10.10 | 7.90 | 11.00 | 8.30 | 8.50 | 5.00 | 9.00 | 5.00 |
Soybean hulls | 1.04 | 0.77 | 1.30 | 2.00 | 1.30 | 2.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||
Rapeseed meal, fat extract | 4.93 | 4.93 | 5.00 | 5.00 | 4.80 | 1.00 | 5.00 | 1.10 | ||||
Sunflower seed meal, fat extract | 1.48 | 0.99 | 1.21 | 4.00 | 2.90 | 3.20 | 3.00 | 3.50 | 3.50 | 3.50 | 3.60 | |
Palm kernel flakes | 4.40 | 4.90 | 3.80 | 5.00 | ||||||||
Whey, concentrated | 0.40 | 3.00 | 0.10 | 2.07 | 1.10 | 3.00 | 1.10 | 2.80 | 1.70 | 3.00 | 1.70 | 1.70 |
Limestone | 1.14 | 1.11 | 0.30 | 0.30 | 0.89 | 0.89 | 0.93 | 0.96 | 0.13 | 0.18 | ||
Salt | 0.28 | 0.20 | 0.29 | 0.21 | 0.20 | 0.22 | 0.20 | 0.12 | 0.19 | 0.09 | 0.19 | 0.08 |
Vitamin extra | 0.19 | 0.19 | 0.19 | 0.19 | ||||||||
Premix 1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.26 | 0.26 | 0.26 | 0.26 | 0.25 | 0.25 | 0.25 | 0.25 |
DL-Methionine | 0.09 | 0.17 | 0.10 | 0.21 | 0.03 | 0.08 | 0.03 | 0.08 | 0.03 | |||
l-Lysine HCL | 0.52 | 0.71 | 0.50 | 0.70 | 0.41 | 0.61 | 0.38 | 0.60 | 0.29 | 0.51 | 0.28 | 0.51 |
l-Threonine | 0.14 | 0.22 | 0.14 | 0.22 | 0.09 | 0.17 | 0.09 | 0.17 | 0.04 | 0.12 | 0.04 | 0.12 |
l-Tryptophan | 0.05 | 0.17 | 0.05 | 0.16 | 0.09 | 0.08 | ||||||
Valine | 0.29 | 0.30 | ||||||||||
Benzoic acid | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||
Calcium formate | 1.04 | 1.03 | 1.00 | 1.00 | 1.00 | 1.00 |
Starter Diet | Grower Diet | Finisher Diet | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Composition | Unit | CON | RCP | AD | CD | CON | RCP | AD | CD | CON | RCP | AD | CD |
Calculated composition | |||||||||||||
Crude protein | % | 18.50 | 16.50 | 18.50 | 16.50 | 16.03 | 14.00 | 16.03 | 14.02 | 15.52 | 13.52 | 15.52 | 13.50 |
Crude fat | % | 4.37 | 4.63 | 4.59 | 4.57 | 4.21 | 4.24 | 4.70 | 4.71 | 3.86 | 3.82 | 4.29 | 4.20 |
Crude fiber | % | 4.20 | 4.04 | 4.20 | 3.84 | 5.85 | 5.48 | 5.64 | 5.49 | 6.21 | 6.05 | 6.13 | 6.08 |
Crude ash | % | 5.00 | 4.95 | 4.99 | 4.92 | 4.81 | 4.75 | 4.70 | 4.54 | 4.69 | 4.50 | 4.68 | 4.44 |
Moisture | % | 10.67 | 11.69 | 10.44 | 11.31 | 11.53 | 12.27 | 11.28 | 11.94 | 11.68 | 12.23 | 11.42 | 11.52 |
Starch | % | 39.48 | 40.12 | 38.40 | 39.93 | 39.01 | 40.46 | 37.89 | 39.32 | 38.33 | 39.94 | 37.17 | 39.55 |
Sugars | % | 5.33 | 5.55 | 5.27 | 5.31 | 5.00 | 5.08 | 5.09 | 5.12 | 4.89 | 4.77 | 5.01 | 4.37 |
Non-starch polysaccharides | % | 16.42 | 16.13 | 16.66 | 16.08 | 19.54 | 19.06 | 19.48 | 19.24 | 21.16 | 21.03 | 21.06 | 21.20 |
Digestible non-starch polysaccharides | % | 9.08 | 8.80 | 9.10 | 8.70 | 10.30 | 9.92 | 10.29 | 9.92 | 11.51 | 11.17 | 11.32 | 11.05 |
Net energy | Kcal | 2396 | 2396 | 2396 | 2396 | 2299 | 2299 | 2304 | 2302 | 2253 | 2255 | 2253 | 2253 |
Apparent ileal digestible amino acids | |||||||||||||
Lys | % | 1.02 | 1.02 | 1.02 | 1.02 | 0.79 | 0.79 | 0.79 | 0.79 | 0.68 | 0.68 | 0.68 | 0.68 |
Met | % | 0.34 | 0.39 | 0.35 | 0.42 | 0.25 | 0.26 | 0.25 | 0.26 | 0.21 | 0.21 | 0.21 | 0.21 |
Met + Cys | % | 0.60 | 0.61 | 0.60 | 0.64 | 0.48 | 0.46 | 0.48 | 0.46 | 0.44 | 0.41 | 0.44 | 0.41 |
Thr | % | 0.66 | 0.66 | 0.66 | 0.66 | 0.51 | 0.51 | 0.52 | 0.52 | 0.44 | 0.44 | 0.45 | 0.44 |
Tryp | % | 0.19 | 0.19 | 0.19 | 0.19 | 0.15 | 0.15 | 0.15 | 0.15 | 0.14 | 0.13 | 0.14 | 0.13 |
Iso-Val | % | 0.61 | 0.53 | 0.61 | 0.53 | 0.50 | 0.41 | 0.50 | 0.42 | 0.47 | 0.38 | 0.47 | 0.38 |
Val | % | 0.70 | 0.64 | 0.70 | 0.64 | 0.59 | 0.50 | 0.59 | 0.50 | 0.56 | 0.47 | 0.57 | 0.47 |
Calcium | % | 0.70 | 0.70 | 0.70 | 0.70 | 0.65 | 0.65 | 0.62 | 0.62 | 0.62 | 0.61 | 0.62 | 0.61 |
Phosphorus total | % | 0.43 | 0.41 | 0.43 | 0.40 | 0.47 | 0.44 | 0.47 | 0.44 | 0.47 | 0.45 | 0.47 | 0.45 |
Potassium | % | 0.85 | 0.86 | 0.85 | 0.84 | 0.80 | 0.78 | 0.80 | 0.78 | 0.78 | 0.74 | 0.79 | 0.74 |
Sodium | % | 0.17 | 0.17 | 0.17 | 0.17 | 0.14 | 0.18 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |
Digestible phosphorus | % | 0.27 | 0.28 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.25 | 0.26 | 0.26 | 0.25 |
Sulfur total | % | 0.27 | 0.28 | 0.27 | 0.28 | 0.24 | 0.23 | 0.23 | 0.23 | 0.22 | 0.21 | 0.22 | 0.21 |
Dietary electrolyte balance | meq | 215 | 220 | 215 | 220 | 198 | 200 | 199 | 201 | 193 | 195 | 194 | 195 |
Vit A -added | IE/kg | 10,000 | 10,000 | 10,000 | 10,000 | 9719 | 9719 | 9719 | 9719 | 7758 | 7758 | 7758 | 7758 |
Vit D3 -added | IE/kg | 2000 | 2000 | 2000 | 2000 | 1996 | 1996 | 1996 | 1996 | 1842 | 1842 | 1842 | 1842 |
Vit E -added | mg/kg | 120 | 120 | 120 | 120 | 101 | 101 | 101 | 101 | 99 | 99 | 99 | 99 |
Phytase-equivalent | FU/kg | 1000 | 1000 | 1000 | 1000 | 758 | 758 | 758 | 758 | 657 | 657 | 657 | 657 |
Analyzed composition | |||||||||||||
Crude protein | % | 18.6 | 16.2 | 17.9 | 16.8 | 16.2 | 15.1 | 15.7 | 14.4 | 15.6 | 13.7 | 15.6 | 13.6 |
Crude fat | % | 5.0 | 4.9 | 5.3 | 5.4 | 4.4 | 4.3 | 4.4 | 4.7 | 4.1 | 4.1 | 4.4 | 4.4 |
Crude fiber | % | 4.2 | 4.2 | 4.3 | 3.9 | 5.5 | 5.2 | 5.2 | 5.7 | 5.7 | 5.7 | 5.8 | 6.2 |
Crude ash | % | 5.1 | 5.7 | 5.0 | 4.9 | 4.8 | 4.9 | 4.6 | 4.7 | 4.6 | 4.4 | 4.6 | 3.9 |
Sugar | % | 5.4 | 4.9 | 5.2 | 6.0 | 5.1 | 5.1 | 5.6 | 5.0 | 5.1 | 4.4 | 5.0 | 4.4 |
Starch | % | 35.7 | 36.8 | 35.9 | 36.2 | 36.8 | 38.7 | 38.2 | 36.4 | 37.5 | 40.0 | 37.2 | 37.5 |
Calcium | % | 0.84 | 1.17 | 0.76 | 0.77 | 0.74 | 0.72 | 0.70 | 0.79 | 0.68 | 0.64 | 0.68 | 0.76 |
Potassium | % | 0.81 | 0.83 | 0.84 | 0.84 | 0.79 | 0.75 | 0.76 | 0.76 | 0.76 | 0.72 | 0.78 | 0.81 |
Sodium | % | 0.15 | 0.15 | 0.17 | 0.17 | 0.14 | 0.15 | 0.13 | 0.13 | 0.13 | 0.13 | 0.14 | 0.13 |
Chlorine | % | 0.25 | 0.25 | 0.27 | 0.28 | 0.23 | 0.27 | 0.23 | 0.22 | 0.23 | 0.21 | 0.24 | 0.16 |
Sulfur total | % | 0.22 | 0.26 | 0.24 | 0.26 | 0.19 | 0.23 | 0.17 | 0.23 | 0.17 | 0.22 | 0.17 | 0.22 |
Benzoic | % | 0.87 | 0.65 | 0.70 | 0.88 | 0.83 | 0.94 | ||||||
Formic acid | % | 0.53 | 0.64 | 0.48 | 0.60 | 0.58 | 0.62 | ||||||
Dietary electrolyte balance | meq | 202 | 207 | 212 | 210 | 198 | 181 | 186 | 189 | 186 | 182 | 193 | 218 |
Items | CON | RCP | AD | CD | p-Value |
---|---|---|---|---|---|
Initial BW (kg) | 24.7 ± 2.59 | 25.2 ± 3.80 | 25.3 ± 3.84 | 24.7 ± 2.58 | 0.95 |
Final BW (kg) | 123.8 ± 2.88 | 125.3 ± 3.67 | 123.0 ± 4.17 | 124.9 ± 2.78 | 0.33 |
Average daily weight gain (g/day) | 876 a ± 18 | 922 b ± 14 | 898 c ± 29 | 894 c ± 19 | <0.001 |
Feed intake (kg/day) | 2.16 a ± 0.04 | 2.30 b ± 0.05 | 2.25 c ± 0.08 | 2.24 c ± 0.03 | <0.001 |
Feed conversion ratio (kg feed/kg weight gain) | 2.47 ± 0.03 | 2.50 ± 0.06 | 2.50 ± 0.10 | 2.50 ± 0.05 | 0.46 |
Items | CON | RCP | AD | CD | p-Value |
---|---|---|---|---|---|
Slaughtering BW (kg) | 93.6 ± 1.8 | 96.1 ± 3.0 | 95.1 ± 3.1 | 96.0 ± 2.5 | 0.10 |
Lean meat (%) | 59.3 ± 0.5 | 58.9 ± 0.5 | 59.1 ± 0.6 | 59.0 ± 0.4 | 0.34 |
Muscle thickness (mm) | 65.0 ab ± 2.0 | 63.2 c ± 1.6 | 63.5 ac ± 2.6 | 66.5 b ± 1.8 | 0.001 |
Back fat thickness (mm) | 13.7 ± 0.72 | 14.2 ± 0.8 | 14.0 ± 0.9 | 14.1 ± 0.6 | 0.34 |
Items | CON | RCP | AD | CD | p-Value | |
---|---|---|---|---|---|---|
Protein | Acidifying | |||||
Total N in feces (g/kg) | 9.23 ± 1.10 | 8.84 ± 0.98 | 9.55 ± 0.77 | 8.21 ± 1.06 | 0.01 | 0.61 |
NH4-N in feces (g/kg) | 1.02 ± 0.18 | 0.95 ± 0.19 | 0.96 ± 0.05 | 0.99 ± 0.09 | 0.79 | 0.90 |
K in feces (g/kg) | 3.34 ± 0.28 | 3.10 ± 0.18 | 3.12 ± 0.29 | 2.98 ± 0.09 | 0.11 | 0.15 |
pH fresh urine at the spot | 7.08 ± 0.18 | 7.38 ± 0.43 | 6.26 ± 0.68 | 6.37 ± 0.76 | 0.28 | 0.001 |
Urinary NH4-N in jar without acid (g/kg) | 7.89 ± 2.30 | 5.82 ± 4.83 | 6.60 ± 1.99 | 6.39 ± 2.37 | 0.38 | 0.77 |
Urinary total N in jar without acid (g/kg) | 8.86 ± 2.59 | 6.92 ± 5.80 | 8.17 ± 1.94 | 8.14 ± 2.52 | 0.48 | 0.85 |
Urinary K in jar without acid (g/kg) | 5.29 ± 2.07 | 5.24 ± 2.48 | 5.21 ± 0.47 | 5.87 ± 1.66 | 0.66 | 0.68 |
Urinary NH4-N in jar with acid (mg/kg) | 849 ± 574 | 519 ± 320.68 | 648 ± 164 | 977 ± 364 | 0.09 | 0.63 |
pH of urine patches in jar with water at the spot | 8.59 ± 0.50 | 8.25 ± 0.50 | 8.01 ± 0.01 | 8.14 ± 0.28 | 0.59 | 0.10 |
pH of urine soiled | 8.46 ± 0.13 | 7.89 ±0.22 | 7.83± 0.44 | 7.76 ± 0.55 | 0.12 | 0.07 |
NH4-N of urine patches in jar with water (mg/kg) | 3483 ± 3447 | 7338 ± 1121 | 3451 ± 1753 | 2879 ± 1964 | 0.51 | 0.40 |
K of urine patches in jar with water (mg/kg) | 1152 ± 526 | 672 ± 347 | 697 ± 480 | 1209 ± 705 | 0.94 | 0.85 |
NH4-N of urine patches in jar with acid (mg/kg) | 2737 ± 1538 | 1391 ± 1677 | 1940 ± 1182 | 1800 ± 1215 | 0.09 | 0.63 |
pH of upper manure in jar with water at the spot | 7.90 ± 0.21 | 7.90 ± 0.20 | 8.00 ± 0.01 | 8.03 ± 0.05 | 0.12 | 0.77 |
NH4-N of upper manure in jar with water (mg/kg) | 4151 ± 1235 | 2891 ± 1135 | 2548 ± 1328 | 3562 ± 1096 | 0.58 | 0.06 |
Items | CON | RCP | AD | CD | p-Value | |
---|---|---|---|---|---|---|
Protein | Acidifying | |||||
pH at the spot | 7.39 ± 0.46 | 6.94 ± 0.08 | 7.03 ± 0.12 | 6.99 ± 0.04 | 0.06 | 0.20 |
Dry matter (g/kg) | 97.7 ± 9.2 | 93.2 ± 8.9 | 86.4 ± 15.9 | 104.5 ± 10.4 | 0.15 | 0.99 |
Ash (g/kg) | 18.90 ± 1.56 | 19.27 ± 1.62 | 18.77 ± 2.40 | 19.65 ± 1.38 | 0.30 | 0.83 |
NH4-N (g/kg) | 4.03 ± 0.51 | 3.23 ± 0.52 | 4.62 ± 0.73 | 3.90 ± 0.47 | 0.02 | 0.04 |
Total-N (g/kg) | 6.88 ± 0.53 | 5.93 ± 0.58 | 7.28 ± 0.59 | 6.75 ± 0.42 | 0.04 | 0.07 |
K (g/kg) | 3.98 ± 0.39 | 3.70 ± 0.10 | 4.19 ± 0.18 | 4.08 ± 0.45 | 0.20 | 0.07 |
Na (g/kg) | 0.65 ± 0.09 | 0.64 ± 0.09 | 0.69 ± 0.02 | 0.68 ± 0.10 | 0.82 | 0.43 |
P (g/kg) | 1.32 ± 0.12 | 1.24 ± 0.09 | 1.18 ± 0.15 | 1.36 ± 0.17 | 0.44 | 0.87 |
Cl (g/kg) | 0.64 ± 0.07 | 0.69 ± 0.06 | 0.74 ± 0.08 | 0.67 ± 0.17 | 0.91 | 0.51 |
Ca (g/kg) | 1.89 ± 0.14 | 2.25 ± 0.52 | 1.85 ± 0.65 | 2.25 ± 0.38 | 0.06 | 0.90 |
Acetic acid (g/kg) | 6.56 ± 1.86 | 6.79 ± 1.91 | 7.18 ± 2.05 | 9.35 ± 0.90 | 0.19 | 0.09 |
Propionic acid (g/kg) | 2.44 ± 0.37 | 2.97 ± 0.62 | 2.56 ± 0.61 | 2.62 ± 0.46 | 0.26 | 0.64 |
Iso-Butyric acid (g/kg) | 0.72 ± 0.08 | 0.70 ± 0.10 | 0.72 ± 0.17 | 0.63 ± 0.08 | 0.28 | 0.46 |
Butyric acid (g/kg) | 3.04 ± 0.67 | 2.65 ± 0.40 | 2.36 ± 0.89 | 3.24 ± 0.74 | 0.31 | 0.85 |
Iso-Pentanoic (g/kg) | 1.00 ± 0.09 | 0.97 ± 0.11 | 1.00 ± 0.18 | 0.96 ± 0.10 | 0.41 | 0.82 |
Pentanoic acid (g/kg) | 0.38 ± 0.07 | 0.49 ± 0.09 | 0.35 ± 0.12 | 0.41 ± 0.08 | 0.08 | 0.25 |
Total VFA (g/kg) | 14.14 ± 2.76 | 14.57 ± 2.52 | 14.17 ± 3.70 | 17.20 ± 2.27 | 0.19 | 0.31 |
Buffer capacity | 0.026 ± 0.003 | 0.040 ± 0.005 | 0.036± 0.004 | 0.034± 0.004 | 0.001 | 0.10 |
Manure TIC (mol/kg) | 0.184 ± 0.034 | 0.114 ± 0.016 | 0.105 ± 0.008 | 0.112 ± 0.017 | 0.009 | 0.002 |
Items | CON | RCP | AD | CD | p-Value | |
---|---|---|---|---|---|---|
Protein | Acidifying | |||||
pH at 0.5 cm depth from the manure surface | 8.48 ± 0.41 | 7.56 ± 0.13 | 7.79 ± 0.13 | 8.01 ± 0.52 | 0.07 | 0.49 |
pH at 5 cm depth from the manure surface | 7.79 ± 0.31 | 6.94 ± 0.23 | 7.19 ± 0.08 | 7.11 ± 0.23 | 0.003 | 0.09 |
Ammonia concentration at 1 cm above ( the manure surface (mg/m3) | 15.66 ± 6.12 | 8.02 ± 2.19 | 9.89 ± 1.82 | 6.50 ± 1.43 | 0.02 | 0.09 |
Ammonia concentration at 10 cm above (the manure surface (mg/m3) | 9.55 ± 3.31 | 7.23 ± 2.53 | 8.96 ± 3.43 | 5.79 ± 1.83 | 0.02 | 0.42 |
NH3 emission from the floor (g/day) | 1.91 ± 1.18 | 1.03 ± 0.67 | 1.34 ± 1.19 | 1.35 ± 0.90 | 0.06 | 0.41 |
NH3 emission from animal house (g/day) | 3.90 ± 1.38 | 2.68 ± 1.01 | 3.03 ± 1.57 | 3.03 ± 0.74 | 0.08 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Dinh, P.; van der Peet-Schwering, C.M.C.; Ogink, N.W.M.; Aarnink, A.J.A. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals 2022, 12, 229. https://doi.org/10.3390/ani12030229
Le Dinh P, van der Peet-Schwering CMC, Ogink NWM, Aarnink AJA. Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs. Animals. 2022; 12(3):229. https://doi.org/10.3390/ani12030229
Chicago/Turabian StyleLe Dinh, Phung, Carola M. C. van der Peet-Schwering, Nico W. M. Ogink, and André J. A. Aarnink. 2022. "Effect of Diet Composition on Excreta Composition and Ammonia Emissions from Growing-Finishing Pigs" Animals 12, no. 3: 229. https://doi.org/10.3390/ani12030229