Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Body-Weight-Supported Treadmill Training
1.2. Proprioceptive Sensory System
2. When to Perform the Locomotor Training?
Repetitions Number
3. How to Perform the Locomotor Training?
Locomotor Exercises
4. Muscle Fatigue
5. Anti-Inflammatory Role
6. Regenerative Role
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Côté, M.P.; Murray, L.M.; Knikou, M. Spinal Control of locomotion: Individual neurons, their circuits and functions. Front. Physiol. 2018, 9, 784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shmuelof, L.; Huang, V.S.; Haith, A.M.; Delnicki, R.J.; Mazzoni, P.; Krakauer, J.W. Overcoming motor “forgetting” through reinformcement of learned actions. J. Neurosci. 2012, 32, 14617–14621. [Google Scholar] [CrossRef] [Green Version]
- Tansey, K.E. Neural plasticity and locomotor recovery after spinal cord injury. PM R 2010, 2, 220–226. [Google Scholar]
- Dimitrijevic, M. Residual motor function after spinal cord injury. In Restorative Neurology of Spinal Cord Injury; Dimitrijevic, M., Kakulas, B., McKay, W., Vrbová, G., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 1–9. [Google Scholar]
- Kakulas, B.A.; Kaelan, C. The neuropathological foundations for the restorative neurology of spinal cord injury. Clin. Neurol. Neurosurg. 2015, 129, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Barbeau, H.; Rossignol, S. Recovery of locomotion after chronic spinalisation in the adult cat. Brain Res. 1987, 412, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Courtine, G.; van den Brand, R.; Roy, R.R.; Edgerton, V.R. Multisystem neurorehabilitation in rodents with spinal cord injury. In Neurorehabilitation Technology, 2nd ed.; Reinkensmeyer, D.J., Dietz, V., Eds.; Springer: Cham, Switzerland, 2016; pp. 59–79. [Google Scholar]
- Smith, A.C.; Knikou, M. A review on locomotor training after spinal cord injury: Reorganisation of spinal neuronal circuits and recovery of motor function. Neural. Plast. 2016, 1216258, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Harkema, S.J.; Schmidt-Read, M.; Lorenz, D.J.; Edgerton, V.R.; Behrman, A.L. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation. Arch Phys. Med. Rehabil. 2012, 93, 1508–1517. [Google Scholar] [CrossRef]
- Rossignol, S.; Frigon, A. Recovery of locomotion after spinal cord injury: Some facts and mechanisms. Annu. Rev. Neurosci. 2011, 34, 413–440. [Google Scholar] [CrossRef] [Green Version]
- Bouyer, L.J.G.; Rossignol, S. Contribution of cutaneous inputs from the hindpaw to the control of locomotion in intact cats. J Neurophysiol. 2003, 90, 3625–3639. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.G. On The Nature of The Fundamental Activity of The Nervous Centers; Together With an Analysis of The Conditioning of Rhythmic Activity in Progression, and a Theory of The Evolution of Functional in The Nervous System. J. Physiol. 1914, 48, 18–46. [Google Scholar] [CrossRef]
- Grillner, S.; Zangger, P. On the Central Generation of Locomotion in the Low Spinal Cat. Exp. Brain Res. 1979, 34, 241–261. [Google Scholar] [CrossRef] [PubMed]
- Grillner, S.; Wallen, P. Central pattern generators for locomotion, with special reference to vertebrates. Ann. Rev. Neurosci. 1985, 8, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Grillner, S.; Dubuc, R. Control of locomotion in vertebrates: Spinal and supraspinal mechanisms. Adv. Neurol. 1988, 47, 425–453. [Google Scholar] [PubMed]
- Robinson, G.A.; Goldberger, M.E. The development and recovery of motor function in spinal cats, I: The infant lesion effect. Exp. Brain Res. 1986, 62, 373–386. [Google Scholar] [CrossRef] [PubMed]
- Howland, D.R.; Bregman, B.S.; Tessler, A.; Goldberger, M.E. Development of locomotor behaviour in the spinal kitten. Exp. Neurol. 1995, 135, 108–122. [Google Scholar] [CrossRef]
- Martins, Â.; Silva, C.; Gouveia, D.; Cardoso, A.; Coelho, T.; Gamboa, Ó.; Marcelino, E.; Ferreira, A. Spinal Locomotion in Cats Following Spinal Cord Injury: A Prospective Study. Animals 2021, 11, 1994. [Google Scholar] [CrossRef]
- Martins, Â.; Gouveia, D.; Cardoso, A.; Carvalho, C.; Coelho, T.; Silva, C.; Viegas, I.; Gamboa, Ó.; Ferreira, A. A controlled clinical study of intensive neurorehabilitation in post-surgical dogs with severe acute intervertebral disc extrusion. Animals 2021, 11, 3034. [Google Scholar] [CrossRef]
- Martins, Â.; Gouveia, D.; Cardoso, A.; Carvalho, C.; Silva, C.; Coelho, T.; Gamboa, Ó.; Ferreira, A. Functional neurorehabilitation in dogs with an incomplete recovery 3 months following intervertebral disc surgery: A case series. Animals 2021, 11, 2442. [Google Scholar] [CrossRef]
- Edgerton, V.R.; Courtine, G.; Gerasimenko, Y.P.; Lavrov, I.; Ichiyama, R.M.; Fong, A.J.; Cai, L.L.; Otoshi, C.K.; Tillakaratne, N.J.K.; Burdick, J.W.; et al. Training locomotor networks. Brain Res. Rev. 2008, 57, 241–254. [Google Scholar] [CrossRef] [Green Version]
- Lovely, R.G.; Gregor, R.J.; Roy, R.R.; Edgerton, V.R. Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 1986, 92, 421–435. [Google Scholar] [CrossRef]
- De Leon, R.D.; Hodgson, J.A.; Roy, R.R.; Edgerton, V.R. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J. Neurophysiol. 1998, 80, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.L.; Courtine, G.; Fong, A.J.; Burdick, J.W.; Roy, R.R.; Edgerton, V.R. Plasticity of functional connectivity in the adult spinal cord. Philos Trans. R Soc. Land B Biol Sci. 2006, 361, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Hubli, M.; Dietz, V. The physiological basis of neurorehabilitation—locomotor training after spinal cord injury. J. Neuroeng. Rehabil. 2013, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthélemy, D.; Willerslev-Olsen, M.; Lundell, H.; Biering-Sorensen, F.; Bo Nielsen, J. Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury. Prog. Brain Res. 2015, 218, 79–101. [Google Scholar] [PubMed]
- Harel, N.Y.; Tansey, K.E. Spasticity. In Neurological Aspects of Spinal Cord Injury; Weidner, N., Ed.; Springer International: Cham, Switzerland, 2017; pp. 303–324. [Google Scholar]
- Bradbury, E.J.; McMahon, S.B. Spinal cord repair strategies: Why do they work? Nat. Rev. Neurosci. 2006, 7, 644–653. [Google Scholar] [CrossRef]
- Dobkin, B. Functional rewiring of brain and spinal cord after injury: The three R´s of neural repair and neurological rehabilitation. Curr. Opin. Neurol. 2000, 13, 655–659. [Google Scholar] [CrossRef]
- Edgerton, V.; de Leon, R.; Harkema, S.; Hodgson, J.A.; London, N.; Reinkensmeyer, D.J.; Roy, R.R.; Talmadge, R.J.; Tillakaratne, N.J.; Timoszyk, W.; et al. Retraining the injured spinal cord. J. Physiol. 2001, 533, 15–22. [Google Scholar] [CrossRef]
- Edgerton, V.; Harkema, S.; Dobkin, B. I am retraining the human spinal cord. In Spinal Cord Medicine: Principles and Practice; Lin, V., Ed.; Demos Medical: New York, NY, USA, 2003; pp. 817–828. [Google Scholar]
- Barbeau, H.; Fung, J. The role of rehabilitation in the recovery of walking in the neurological population. Curr. Opin. Neurol. 2001, 14, 735–740. [Google Scholar] [CrossRef]
- Colombo, G.; Joerg, M.; Schreider, R.; Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000, 37, 693–700. [Google Scholar]
- Swinnen, E.; Duerinck, S.; Baeyens, J.-P.; Meeusen, R.; Kerckhofs, E. Effectiveness of robot-assisted gait training in persons with spinal cord injury: A systematic review. J. Rehabil. Med. 2010, 42, 520–526. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.M.; Hicks, A.L. Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury. J. Spinal Cord Med. 2011, 34, 488–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexeeva, N.; Sames, C.; Jacobs, P.L.; Hobday, L.; Distasio, M.M.; Mitchell, S.A.; Calancie, B. Comparison of training methods to improve walking in persons with chronic spinal cord injury: A randomised clinical trial. J. Spinal Cord Med. 2011, 34, 362–379. [Google Scholar] [CrossRef] [PubMed]
- Tefertiller, C.; Pharo, B.; Evans, N.; Winchester, P. Efficacy of rehabilitation robotics for walking training in neurological disorders: A review. J. Rehabil. Res. Dev. 2011, 48, 387–416. [Google Scholar] [CrossRef] [PubMed]
- Morawietz, C.; Moffat, F. Effects of locomotor training after incomplete spinal cord injury: A systematic review. Arch. Phys. Med. Rehabil. 2013, 94, 2297–2308. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.L.; Gorassini, M.A. Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury. J. Neurophysiol. 2005, 94, 2844–2855. [Google Scholar] [CrossRef] [Green Version]
- Norton, J.A.; Gorassini, M.A. Changes in cortically related intermuscular coherence accompanying improvements in locomotor skills in incomplete spinal cord injury. J. Neurophysiol. 2006, 95, 2580–2589. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, I.; Courtine, G.; Dy, C.J.; Brand, R.; Fong, A.J.; Gerasimenko, Y.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Facilitation of stepping with epidural stimulation in spinal rats: Role of sensory input. J. Neurosci. 2008, 28, 7774–7780. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, S.; Dubuc, R.; Gossard, J.P. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 2006, 86, 89–154. [Google Scholar] [CrossRef]
- Takeoka, A.; Vollenweider, I.; Courtine, G.; Arber, S. Muscle Spindle Feedback Directs Locomotor Recovery and Circuit Reorganization after Spinal Cord Injury. Cell 2014, 159, 1626–1639. [Google Scholar] [CrossRef] [Green Version]
- Jordan, L.M.; McVagh, J.R.; Noga, B.R.; Cabaj, A.M.; Majczynski, H.; Slawinska, U.; Provencher, J.; Leblond, H.; Rossignol, S. Cholinergic mechanisms in spinal locomotion—potential target for rehabilitation approaches. Front. Neural. Circ. 2014, 8, 1–25. [Google Scholar]
- Behrman, A.L.; Harkema, S.J. Locomotor Training After Human Spinal Cord Injury: A Series of Case Studies. Phys. Ther. 2000, 80, 688–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, P.K.; Sureddi, S.; Alam, M.; Zhong, H.; Roy, R.R.; Edgerton, V.R.; Gerasimenko, Y. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury. J. Neurotr. 2016, 33, 1709–1723. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Atkinson, D.; Boakye, M.; Tolfo, C.Z.; Aslan, S.; Green, M.; Mckay, B.; Ovechkin, A.; Harkema, S.J. Quantitative and sensitive assessment of neurophysiological status after human spinal cord injury. J. Neurosurg. Spine 2012, 17, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Mckay, W.B.; Ovechkin, A.V.; Vitaz, T.W.; De Paleville, D.G.L.T.; Harkema, S.J. Neurophysiological characterization of motor recovery in acute spinal cord injury. Spinal Cord 2011, 49, 421–429. [Google Scholar] [CrossRef]
- Barbeau, H.; Rossignol, S. Enhancement of locomotor recovery following spinal cord injury. Curr. Opin. Neurol. 1994, 7, 517–524. [Google Scholar] [CrossRef]
- Powers, R.K.; Turker, K.S.; Binder, M.D. What can be learned about motoneurone properties from studying firing patterns? Adv. Exp. Med. Biol. 2002, 508, 199–205. [Google Scholar]
- Binder, M.D. Intrinsic dendritic currents make a major contribution to the control of motoneurone discharge. J. Physiol. 2003, 552, 665. [Google Scholar] [CrossRef]
- Heckman, C.J.; Lee, R.H.; Brownstone, R.M. Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behaviour. Trends Neurosci. 2003, 26, 688–695. [Google Scholar] [CrossRef]
- Heckman, C.J.; Gorassini, M.A.; Bennett, D.J. Persistent inward currents in motoneuron dendrites: Implications for motor output. Muscle Nerve 2005, 31, 135–156. [Google Scholar] [CrossRef]
- Powers, R.K.; Binder, M.D. Input-output functions of mammalian motoneurons. Rev. Physiol. Biochem. Pharmacol. 2001, 143, 137–263. [Google Scholar]
- Alaburda, A.; Perrier, J.F.; Hounsgaard, J. Mechanisms causing plateau potentials in spinal motoneurones. Adv. Exp. Med. Biol. 2002, 508, 219–226. [Google Scholar] [PubMed]
- Olby, N.J.; Moore, S.A.; Brisson, B.; Fenn, J.; Flegel, T.; Kortz, G.; Lewis, M.; Tipold, A. ACVIM consensus statement on diagnosis and management of acute canine thoracolumbar intervertebral disc extrusion. J. Vet. Intern. Med. 2022, 36, 1570–1596. [Google Scholar] [CrossRef] [PubMed]
- Mojarradi, A.; Decker, S.D.; Backstrom, C.; Bergknut, N. Safety of early postoperative hydrotherapy in dogs undergoing thoracolumbar hemilaminectomy. J. Small Anim. Pract. 2021, 62, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Hensel, C.; Kaschuba, R.; Schmidt, E.-M. Neurological Aspects of Spinal Cord Injury; Weidner, N., Ed.; Springer International: Cham, Switzerland, 2017; pp. 649–688. [Google Scholar]
- Knikou, M. Plasticity of corticospinal neural control after locomotor training in human spinal cord injury. Neural Plast. 2012, 254948. [Google Scholar] [CrossRef] [Green Version]
- Harkema, S.; Behrman, A.; Barbeau, H. Evidence-based therapy for recovery of function after spinal cord injury. Handb. Clin. Neurol. 2012, 109, 259–274. [Google Scholar]
- Nooijen, C.F.; Ter Hoeve, N.; Field-Fote, E.C. Gate quality is improved by locomotor training in individuals with SCI regardless of training approach. J. Neuroeng. Rehabil. 2009, 6, 36. [Google Scholar] [CrossRef]
- Gouveia, D.; Carvalho, C.; Cardoso, A.; Gamboa, Ó.; Almeida, A.; Ferreira, A.; Martins, Â. Early locomotor training in tetraplegic post-surgical dogs with cervical intervertebral disc disease. Animals 2022, 12, 2369. [Google Scholar] [CrossRef]
- Gouveia, D.; Cardoso, A.; Carvalho, C.; Gonçalves, A.R.; Gamboa, Ó.; Canejo-Teixeira, R.; Ferreira, A.; Martins, Â. Influence of spinal shock on the neurorehabilitation of ANNPE dogs. Animals 2022, 12, 1557. [Google Scholar] [CrossRef]
- Martins, A.; Gouveia, D.; Cardoso, A.; Viegas, I.; Gamboa, O.; Ferreira, A. A comparison between body weight-supported treadmill training and conventional over-ground training in dogs with incomplete spinal cord injury. Front. Vet. Sci. 2021, 8, 1–14. [Google Scholar] [CrossRef]
- Wirz, M.; Colombo, G.; Dietz, V. Long-term effects of locomotor training in spinal humans. J. Neurol. Neurosurg. Psychiatry 2001, 71, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Hicks, A.L.; Adams, M.M.; Martin, G.K.; Giangregorio, L.; Latimer, A.; Phillips, S.M.; McCartney, N. Long-term body-weight-supported treadmill training and subsequent follow-up in persons with chronic SCI: Effects on functional walking ability and measures of subjective well-being. Spinal Cord 2005, 43, 291–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobkin, B.; Apple, D.; Barbeau, H.; Basso, M.; Behrman, A.; Deforge, D.; Ditunno, J.; Dudley, G.; Elashoff, R.; Fugate, L.; et al. Weight-supported treadmill vs. over-ground training for walking after acute incomplete SCI. Neurology 2006, 66, 484–493. [Google Scholar] [CrossRef] [PubMed]
- Harkema, S.J.; Hillyer, J.; Schmidt-Read, M.; Ardolino, E.; Sisto, S.A.; Behrman, A.L. Locomotor training: As a treatment of spinal cord injury and in the progression of neurologic rehabilitation. Arch. Phys. Med. Rehabil. 2012, 93, 1588–1597. [Google Scholar] [CrossRef]
- Field-Fote, E.C.; Tepavac, D. It improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys. Ther. 2002, 82, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Juvin, L.; Simmers, J.; Morin, D. Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J. Neurosci. 2005, 25, 6025–6035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escalona, M.; Delivet-Mongrain, H.; Kundu, A.; Gossard, J.P.; Rossignol, S. Ladder treadmill: A method to assess locomotion in cats with an intact or lesioned spinal cord. J. Neurosci. 2017, 37, 5429–5446. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.E.; Liu, M.; Bose, P.; O´Steen, W.A.; Thompson, F.J.; Anderson, D.K.; Vandenborne, K. Changes in soleus muscle function and fibre morphology with one week of locomotor training in spinal cord contusion injured rats. J. Neurotrauma 2006, 23, 1671–1681. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.A.T.; Cunha, R.C.; Vialle, E.M.; Osiecki, R.; Moreira, G.H.G.; Simeoni, R.B.; Francisco, J.C.; Guarita-Souza, L.C.; Oliveira, L.; Zocche, L.; et al. Functional outcome of bone marrow stem cells (CD45(+)/CD34(-)) after cell therapy in acute spinal cord injury: In exercise training and in sedentary rats. Transplant 2008, 40, 847–849. [Google Scholar] [CrossRef]
- Heng, C.; de Leon, R.D. Treadmill training enhances the recovery of normal stepping patterns in spinal cord contused rats. Exp. Neurol. 2009, 216, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Ichiyama, R.; Potuzak, M.; Balak, M.; Kalderon, N.; Edgerton, V.R. Enhanced motor function by training in spinal cord contused rats following radiation therapy. PLoS ONE 2009, 4, e6862. [Google Scholar] [CrossRef]
- Oh, M.J.; Seo, T.B.; Kwon, K.B.; Yoon, S.J.; Elzi, D.J.; Kim, B.G.; Namgung, U. Axonal outgrowth and Erk1/2 activation by training after spinal cord injury in rats. J. Neurotrauma 2009, 26, 2071–2082. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Murray, M.; Houle, J.D. A training paradigm to enhance motor recovery in contused rats: Effects of staircase training. Neurorehabil. Neural. Repair. 2011, 25, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Moshonkina, T.; Avelev, V.; Gerasimenko, Y.; Mathur, R.; Bijlani, R.L. Treadmill training accelerates restoration of locomotion after complete spinal cord transection in the rat. Indian J. Physiol. Pharmacol. 2002, 46, 499–503. [Google Scholar] [PubMed]
- Nothias, J.M.; Mitsui, T.; Shumsky, J.S.; Fischer, I.; Antonacci, M.D.; Murray, M. Combined effects of neurotrophin-secreting transplants, exercise, and serotonergic drug challenge improve function in spinal rats. Neurorehabil. Neural. Repair. 2005, 19, 296–312. [Google Scholar] [CrossRef]
- Foret, A.; Quertainmont, R.; Botman, O.; Bouhy, D.; Amabili, P.; Brook, G.; Schoenen, J.; Frazen, R. Stem cells in the adult rat spinal cord: Plasticity after injury and treadmill training exercise. J. Neurochem. 2010, 112, 762–772. [Google Scholar] [CrossRef] [Green Version]
- Engesser-Cesar, C.; Anderson, A.J.; Basso, D.M.; Edgerton, V.R.; Cotman, C.W. Voluntary wheel running improves recovery from a moderate spinal cord injury. J. Neurotrauma 2005, 22, 157–171. [Google Scholar] [CrossRef]
- Kuerzi, J.; Brown, E.H.; Shum-Siu, A.; Siu, A.; Burke, D.; Morehouse, J.; Smith, R.R.; Magnuson, D.S.K. Task-specificity vs ceiling effect: Step-training in shallow water after spinal cord injury. Exp. Neurol. 2010, 224, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Zdunowski, S.; Edgerton, V.R.; Roy, R.R.; Zhong, H.; Hsiao, I.; Lin, V.W. Improvement of gait patterns in step-trained, complete spinal cord-transected rats treated with a peripheral nerve graft and acidic fibroblast growth factor. Exp. Neurol. 2010, 224, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Tillakaratne, N.J.K.; Guu, J.J.; de Leon, R.D.; Bigbee, A.J.; London, N.J.; Zhong, H.; Ziegler, M.D.; Joynes, R.L.; Roy, R.R.; Edgerton, V.R. Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site. Neuroscience 2010, 166, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Zidan, N.; Sims, C.; Fenn, J.; Williams, K.; Griffith, E.; Early, P.J.; Mariani, C.; Munana, K.R.; Guevar, J.; Olby, N.J. A randomised, blinded, prospective clinical trial of postoperative rehabilitation in dogs after surgical decompression of acute thoracolumbar intervertebral disc herniation. J. Vet. Intern. Med. 2018, 32, 1133–1144. [Google Scholar] [CrossRef] [Green Version]
- Gallucci, A.; Dragone, L.; Menchetti, M.; Gagliardo, T.; Pietra, M.; Cardinali, M.; Gandini, G. Acquisition of involuntary spinal locomotion (spinal walking) in dogs with irreversible thoracolumbal spinal cord lesion: 81 dogs. J. Vet. Intern. Med. 2017, 31, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Kugler, J.; Pohl, M. Locomotor training for walking after spinal cord injury. Cochran. Data. Syst. Rev. 2008, 11, CD006676. [Google Scholar]
- Lewis, M.J.; Bowditch, J.; Laflen, B.; Perry, N.; Yoquelet, R.; Thomovsky, S.A. Pilot Study on Feasibility of Sensory-Enhanced Rehabilitation in Canine Spinal Cord Injury. Front. Vet. Sci. 2022, 9, 921471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-X.; Huang, F.; Gates, M.; White, J.; Holmberg, E.G. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury. J. Neurosci. Methods 2010, 187, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Angeli, C.A.; Edgerton, V.R.; Gerasimenko, Y.P.; Harkema, S.J. Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 2014, 137, 1394–1409. [Google Scholar] [CrossRef] [Green Version]
- Harkema, S.; Gerasimenko, Y.; Hodes, J.; Burdick, J.; Angeli, C.; Chen, Y.; Ferreira, C.; Willhite, A.; Rejc, E.; Grossman, R.G.; et al. Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: A case study. Lancet 2011, 377, 1938–1947. [Google Scholar] [CrossRef] [Green Version]
- Cramer, S.C.; Sur, M.; Dobkin, B.H.; O’Brien, C.; Sanger, T.D.; Trojanowski, J.Q.; Rumsey, J.M.; Hicks, R.; Cameron, J.; Chen, D.; et al. Harnessing neuroplasticity for clinical applications. Brain 2011, 134, 1591–1609. [Google Scholar] [CrossRef]
- Khan, F.; Amatya, B.; Galea, M.P.; Gonzenbach, R.; Kesselring, J. Neurorehabilitation: Applied neuroplasticity. J. Neurol. 2017, 264, 603–615. [Google Scholar] [CrossRef]
- Rossignol, S.; Chau, C.; Giroux, N.; Brustein, E.; Bouyer, L.; Marcoux, J.; Langlet, C.; Barthel6my, D.; Provencher, J.; Leblond, H.; et al. The cat model of spinal injury. Prog. Brain Res. 2002, 137, 151–168. [Google Scholar]
- Muir, G.D.; Steeves, J.D. Sensorimotor stimulation to improve locomotor recovery after spinal cord injury. Trends Neurosci. 1997, 20, 72–77. [Google Scholar] [CrossRef]
- Engesser-Cesar, C.; Ichiyama, R.M.; Nefas, A.L.; Hill, M.A.; Edgerton, V.R.; Cotman, C.W.; Anderson, A.J. Wheel running following spinal cord injury improves locomotor recovery and stimulates serotonergic fibre growth. Eur. J. Neurosci. 2007, 25, 1931–1939. [Google Scholar] [CrossRef] [PubMed]
- Mucha, M. Aquatic Therapy. In Essential Facts of Physical Medicine, Rehabilitation and and Sports Medicine in Companion Animal; Bockstahler, B., Wittek, K., Levine, D., Maierl, J., Millis, D., Eds.; VBS GmbH: Babenhausen, Germany, 2019; pp. 175–188. [Google Scholar]
- English, A.W.; Wilhelm, J.C.; Ward, P.J. Exercise, Neurotrophins, and Axon Regeneration in the PNS. Physiology 2014, 29, 437–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remple, M.S.; Bruneau, R.M.; VandenBerg, P.M.; Goertzen, C.; Kleim, J.A. Sensitivity of cortical movement representations to motor experience: Evidence that skill learning but not strength training induces cortical reorganisation. Behaviour. Brain Res. 2001, 123, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Sale, D.G. Neural adaptation to resistance training. Med. Sci. Sports Exerc. 1988, 20, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Sale, D.G.; MacDougall, J.D.; Upton, A.R.; MacComas, A.J. Effect of strength training upon motoneuron excitability in man. Med. Sci. Sports Exerc. 1983, 15, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M. Muscle strength and its development. New perspectives. Sports Med. 1988, 6, 146–168. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M. Neural adaptations with chronic physical activity. J. Biomech. 1977, 30, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Duffell, L.D.; Donaldson, N.N.; Perkins, T.A.; Rushton, D.N.; Hunt, K.J.; Kakebeeke, T.H.; Newham, D.J. Long-term intensive electrically stimulated cycling by spinal cord-injured people: Effect on muscle properties and their relation to power output. Muscle Nerve 2008, 38, 1304–1311. [Google Scholar] [CrossRef]
- Schilling, N.; Carrier, D.R. Function of the epaxial muscles during trotting. J. Exp. Biol. 2009, 212, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Schilling, N.; Fischbein, T.; Yang, E.P.; Carrier, D.R. Function of the extrinsic hindlimb muscles in trotting dogs. J. Exp. Bio. 2009, 212, 1036–1052. [Google Scholar] [CrossRef] [Green Version]
- Millis, D.L.; Drum, M.; Levine, D. Therapeutic exercises: Joint motion, strengthening, endurance, and speed exercises. In Canine Rehabilitation and Physical Therapy, 2nd ed.; Millis, D.L., Levine, D., Eds.; Elsevier Saunders: Philadephia, PA, USA, 2014; pp. 506–525. [Google Scholar]
- Kidgell, D.J.; Frazer, A.K.; Daly, R.M.; Ruotsalainen, I.; Ahtiainen, J.; Avela, J.; Howatson, G. Increased cross-education of muscle strength and reduced corticospinal inhibition following eccentric strength training. Neuroscience 2015, 300, 566–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerrits, H.L.; de Hann, A.; Sargeant, A.J.; Dallmeijer, A.; Hopman, M.T.E. Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training. Spinal Cord 2000, 98, 31–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harridge, S.D.R.; Anderson, J.L.; Hartkopp, A.; Zhou, S.; Biering-Sorensen, F.; Sandri, C.; Kjaer, M. Training by low-frequency stimulation of tibialis anterior in spinal cord injured men. Muscle Nerve 2002, 25, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Rochester, L.B.M.; Chandler, C.S.; Johnson, M.A.; Sutton, R.A.; Miller, S. Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects.1. Contractile properties. Paraplegia 1995, 33, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.B.; Gordon, J.; Jefferson, A.; Sharfenberger, J.F.; Yang, J.; Totosy, D.Z.; Belanger, M. Optimal stimulation of paralysed muscle after human spinal cord injury. J. Appl. Physiol. 1992, 72, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Rochester, L.B.M.; Barrow, M.J.; Chandler, C.S.; Sutton, R.A.; Miller, S.; Johnson, M.A. Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia 1995, 33, 514–522. [Google Scholar] [CrossRef]
- Gerrits, H.L.; Hopman, M.T.; Offringa, C.; Engelen, B.G.; Sargeant, A.J.; Jones, D.A.; De Haan, A. Variability in fibre properties in paralysed human quadriceps muscles and effects of training. Pflugers Arch. 2003, 445, 734–740. [Google Scholar] [CrossRef] [Green Version]
- Harness, E.T.; Yozbatiran, N.; Cramer, S.C. Effects of intense exercise in chronic spinal cord injury. Spinal Cord 2008, 46, 733–737. [Google Scholar] [CrossRef]
- Burns, A.S.; Ditunno, J.F. Establishing prognosis and maximising functional outcomes in rehabilitation management. Spine 2001, 26, S137–S145. [Google Scholar] [CrossRef]
- Jones, T.A.; Chu, C.J.; Grande, L.A.; Gregory, A.D. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J. Neurosci. 1999, 19, 10153–10163. [Google Scholar] [CrossRef] [Green Version]
- Billman, G.E.; Schwartz, P.J.; Gagnol, J.P.; Stone, H.L. Cardiac response to submaximal exercise in dogssusceptible to sudden cardiac death. J. Appl. Physiol. 1985, 59, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Musch, T.I.; Friedman, D.B.; Pitetti, K.H.; Haidet, G.C.; Stray-Gundersen, J.; Mitchell, J.H.; Ordway, G.A. Regional distribution of blood flow of dogs during graded dynamic exercise. J. Appl. Physiol. 1985, 63, 2269–2277. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, D.S.; Rossi, N.F.; Churchill, P.C. Substantial cardiac parasympathetic activity exists during heavy dynamic exercise in dogs. Am. J. Physiol. Heart Circ. Physiol. 1997, 273, H2135–H2140. [Google Scholar] [CrossRef] [PubMed]
- Poole, D.C.; Copp, S.W.; Colburn, T.D.; Craig, J.C.; Allen, D.L.; Sturek, M.; O´Leary, D.D.; Zucker, I.H.; Musch, T.I. Guidelines for animal exercise and training protocols for cardiovascular studies. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H1100–H1138. [Google Scholar] [CrossRef]
- Moore, S.A.; Tipold, A.; Olby, N.J.; Stein, V.; Granger, N. Cansort- Canine Spinal Cord Injury Consortium (CANSORT SCI) Current Approaches to the Management of Acute Thoracolumbar Disc Extrusion in Dogs. Front. Veter. Sci. 2020, 7, 610. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, V.R.; Roy, R.R. Robotic training and spinal cord plasticity. Brain Res. Bull. 2009, 15, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Drew, T.; Jiang, W.; Widajewicz, W. Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res. Brain Res. Rev. 2002, 40, 178–191. [Google Scholar] [CrossRef]
- Sadowsky, C.L.; Hammond, E.R.; Strohl, A.B.; Commean, P.K.; Eby, S.A.; Damiano, D.L.; Wingert, J.R.; Bae, K.T.; McDonald, J.W. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J. Spinal Cord Med. 2013, 36, 623–631. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.; Sadowsky, C.; Stampas, A. The changing field of rehabilitation: Optimisation of spontaneous regeneration and recovery of function. In Handbook of Clinical Neurology. Spinal Cord Injury Edition; McDonald, J., Verhaagen, J., Eds.; Elsevier: New York, NY, USA, 2012; p. 109. [Google Scholar]
- Silver, J.; Miller, J.H. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 2004, 5, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Satake, K.; Matsuyama, Y.; Kamiya, M.; Kawakami, H.; Iwata, H.; Adachi, K.; Kiuchi, K. Nitric oxide via macrophage iNOS induces apoptosis following traumatic spinal cord injury. Mol. Brain Res. 2000, 85, 114–122. [Google Scholar] [CrossRef]
- Salem, H.R.; Faried, M.A. Treadmill exercise training ameliorates functional and structural age-associated kidney changes in male albino rats. Sci. World J. 2021, 2021, 1393372. [Google Scholar] [CrossRef] [PubMed]
- Dugan, E.A.; Jergova, S.; Sagen, J. Mutually beneficial effects of intensive exercise and GABAergic neural progenitor cell transplants in reducing neuropathic pain and spinal pathology in rats with spinal cord injury. Exp. Neurol. 2020, 327, 113208. [Google Scholar] [CrossRef] [PubMed]
- Côté, M.P.; Murray, M.; Lemay, M.A. Rehabilitation strategies after spinal cord injury: Inquiry into success and failure mechanisms. J. Neurotrauma 2017, 34, 1841–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leardini-Tristão, M.; Andrade, G.; Garcia, C.; Reis, A.P.; Lourenço, M.; Moreira, E.; Lima, F.; Castro-Faria-Neto, H.C.; Tibirica, E.; Estato, V. Physical exercise promotes astrocyte coverage of microvessels in a model of chronic cerebral hypoperfusion. J. Neuroinflammation 2020, 17, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, N. Spinal cord elasticity: A physical parameter to guide treatment. In Proceedings of the 2022 34th ESVN-ECVN Symposium Spinal Cord Injury-Taking Steps Forward, Maiorca, Spain, 23–24 September 2022; p. 48. [Google Scholar]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, M.; Sun, H.; Liu, D. Interleukin-6 gene transfer reverses body weight gain and fatty liver in obese mice. Biochim. Biophys. Acta 2015, 1852, 1001–1011. [Google Scholar] [CrossRef] [Green Version]
- Grisouard, J.; Bouillet, E.; Timper, K.; Radimerski, T.; Dembinski, K.; Frey, D.M.; Peterli, R.; Zulewski, H.; Keller, U.; Müller, B.; et al. Both inflammatory and classical lipolytic pathways are involved in lipopolysaccharide-induced lipolysis in human adipocytes. Innate Immun. 2012, 18, 25–34. [Google Scholar] [CrossRef]
- Geng, C.; Cao, H.; Ying, X.; Zhang, H.; Yu, H. The effects of hyperbaric oxygen on macrophage polarisation after rat spinal cord injury. Sci. Direct. 2015, 1606, 68–76. [Google Scholar]
- Prager, J.; Fenn, J.; Plested, M.; Escauriaza, L.; van der Merwe, T.; King, B.; Chari, D.; Wong, L.F.; Granger, N. Transplantation of encapsulated autologous olfactory ensheathing cell populations expressing chondroitinase for spinal cord injury: A safety and feasibility study in companion dogs. J. Tissue Eng. Regen. Med. 2022, 16, 788–798. [Google Scholar] [CrossRef]
- Liu, Y.; Chu, J.; Yan, T.; Zhang, Y.; Chen, Y.; Chang, R.; Wong, G. Short-term resistance exercise inhibits neuroinflammation and attenuates neuropathological changes in 3xTg Alzheimer´s disease mice. J. Neuroinflamm. 2020, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Gomes da Silva, S.; Simões, P.; Mortara, R.A.; Scorza, F.A.; Cavalheiro, E.A.; Naffah-Mazzacoratti, M.G.; Arida, R.M. Exercise-induced hippocampal anti-inflammatory response in aged rats. J. Neuroinflamm. 2013, 10, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stranahan, A.M.; Martin, B.; Maudsley, S. Anti-inflamma.atory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer’s disease. Curr. Alzheimer. Res. 2012, 9, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majdinasab, N.; Motl, R.W.; Mokhtarzade, M.; Zimmer, P.; Ranjbar, R.; Keytsman, C.; Cullen, T.; Negaresh, R.; Baker, J.S. Acute responses of cytokines and adipokines to aerobic exercise in relapsing vs. remitting women with multiple sclerosis. Complement. Ther. Clin. Pract. 2018, 31, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Murray, K.C.; Stephens, M.J.; Ballou, E.W.; Heckman, C.J.; Bennett, D.J. Motorneuronexcitability and muscle spasms are regulated by 5-HT2B and 5 HT2C receptor activity. J. Neurophysiol. 2011, 105, 731–748. [Google Scholar] [CrossRef] [Green Version]
- Dietz, V.; Colombo, G.; Jensen, L.; Baumgartner, L. Locomotor capacity of the spinal cord in paraplegic patients. Ann. Neurol. 1995, 37, 574–582. [Google Scholar] [CrossRef]
- Van de Crommert, H.W.; Mulder, T.; Duysens, J. Neural control of locomotion: Sensory control of the central pattern generator and its relation to treadmill training. Gait. Post. 1998, 7, 251–263. [Google Scholar] [CrossRef]
- Cassilhas, R.C.; Tufik, S.; Mello, M.T. Physical exercise, neuroplasticity, spatial learning and memory. Cell Mol. Life Sci. 2015, 73, 975–983. [Google Scholar] [CrossRef]
- Knikou, M.; Mummidisetty, C.K. Locomotor training improves premotoneuronal control after chronic spinal cord injury. J. Neurophysiol. 2014, 111, 2264–2275. [Google Scholar] [CrossRef] [Green Version]
- Alen, J.F. Traumatic spinal cord injury repair and regeneration. In Proceedings of the 2022 34th ESVN-ECVN Symposium Spinal Cord Injury—Taking Steps Forward, Maiorca, Spain, 23–24 September 2022; pp. 38–39. [Google Scholar]
- Knikou, M. Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin. Neurophysiol. 2010, 121, 1655–1668. [Google Scholar] [CrossRef]
- Lavrov, I.; Gerasimenko, Y.P.; Ichiyama, R.M.; Courtine, G.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Plasticity of spinal cord reflexes after a complete transection in adult rats: Relationship to stepping ability. J. Neurophysiol. 2006, 96, 1699–1710. [Google Scholar] [CrossRef]
- Olby, N.J.; Lim, J.; Wagner, N.; Zidan, N.; Early, P.J.; Mariani, C.L.; Muñana, K.R.; Laber, E. Time course and prognostic value of serum GFAP, pNFH, and S100þ concentrations in dogs with complete spinal cord injury because of intervertebral disc extrusion. J. Vet. Intern. Med. 2019, 33, 726–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olby, N. Treatment of Paralysis in Dogs. In Proceedings of the 2022 34th ESVN-ECVN Symposium Spinal Cord Injury—Taking Steps Forward, Maiorca, Spain, 23–24 September 2022; pp. 45–47. [Google Scholar]
- Barrett, A.M.; Oh-Park, M.; Chen, P.; Ifejika, N.L. Neurorehabilitation: Five new things. Neurol. Clin. Pract. 2013, 3, 384–492. [Google Scholar] [CrossRef] [PubMed]
Keypoint n° 1: “Locomotor training is an extrinsic source of stimulation that may improve glutamatergic input, promoting the activation of intrafusal muscle fibres, proprioceptors, cholinergic propriospinal cells and interneural networks.” |
Keypoint n° 2: “Locomotor training is safe and may be implemented at least until 3 days after surgery or even 24 h post-injury in conservative treatment.” |
Keypoint n° 3: “The outcome of neurorehabilitation depends on the type, number and time duration of repetitions. Also, on the quality of the motor functions.” |
Land Treadmill | UWTM | ||
---|---|---|---|
Extrusion IVDD | Post-surgical subacute dogs [64] | Speeds: 1–2.5 km/h Duration: 20–30 min Repetitions: 2–3 times/day, 6 days/week Slope: 10 to 25° | Speeds: 1st day ≤ 0.8 km/h. progressively increasing to 1.2, 1.9, and 2.5 km/h. Duration: first for 3–10 min and extending to 20 min Repetitions: once a day within the first 2 weeks Water temperature: 24 and 26 °C Water level: between the lateral malleolus of the tibia and the lateral condyle of the femur |
Post-surgical acute dogs [19] | Speeds: 0.8 km/h (0.5 mph) to a maximum of 1.9 km/h (1.2 mph). Duration: start 5 min with the aim of reaching 20 min. Repetitions: start 4–6 times/day, 6 days/week with the aim of reaching 2 times/day, 6 days/week Goal: reach 30–40 min (2 to 3 times/day, 6 days/week). Slope: 10 to 25° | 1st: 2–7 days after admission. Speeds: 1–3.5 km/h (2.2 mph) Duration: first for 5 min until reaching 1 h (5 days a week) Repetitions: once a day Water temperature: 26 °C | |
Post-surgical chronic dogs [20] | 1st: second day of admission. Quadrupedal step training Speeds: start 0.8 km/h (0.5 mph) with a maximum of 1.9 km/h (1.2 mph); Duration: start 5 min to achieve 20 min. Repetitions: start 4–6 times/day, 6 days/week to achieve 2–3 times/day, 6 days/week. Goal: reach 30–40 min (2 to 3 times/day, 5–6 days/week). Slope: 10 to 25° | 1st: 48 h after admission Speeds: 1–3.5 km/h (2.2 mph) Duration: first for 5 min until reaching 1 h (5 days a week) Repetitions: once a day, 5 days/week Water temperature: 26 °C Note: Four sessions with good performance indicated a 10% increase in speed and duration. | |
Protocol: 1st–2nd week: 5–10 min, 0.8–1.9 km/h, 4–6 times/day, 6 days/week; 3rd–4th week: 20 min, 2 km/h, 2–4 times/day, 6 days/week; 5th–6th week: 30 min, 2.2 km/h, 2–3 times/day, 6 days/week; 7th–8th week: 40 min, 2.5 km/h, 2 times/day, 6 days/week, 5° slope; 9th–10th week: 40 min, 2.5 km/h, 2 times/day, 5 days/week, 10° slope; 11th–12th week: 40 min, 2.5 km/h, 1 time/day, 5 days/week; 25° slope | Protocol: 1st–2nd week: 5–10 min, 1–1.2 km/h; 3rd–4th week: 10–20 min, 1.8–2 km/h; 5th–6th week: 30 min, 2–2.5 km/h, 5° slope; 7th–8th week: 40 min, 2.8–3 km/h, 5° slope; 9th–10th week: 40 min, 3–3.5 km/h, 5° slope; 11th–12th week: 60 min, 3.5 km/h, 10° slope | ||
Trauma | Spinal cord contusion cats [18] |
Duration: started 2–5 min, increasing progressively to achieve 20 min Repetitions: started 3–6 times/day, to achieve 3 times/day; 6 days/week. Slope: without a slope. | Duration: first for 5 min until reaching 40 min Repetitions: once a day, 5 days/week. Slope: 10%. Water temperature: 24–26 °C |
Duration: start 2–5 min, aiming sessions longer than 30 min Repetitions: start 4–8 times/day aiming sessions 3 times/day; 6 days/week. Slope: 10–25% | |||
ANNPE Dogs [63] | 1st Phase:
Duration: 3–10 min Repetitions: 6–8 times/day; 6 days/week Slope: 2–5% | 1st Phase:
Duration: 10–20 min Repetitions: 1 time/day; 5 days/week Slope: no slope | |
Duration: 3–10 min Repetitions: 4–6 times/day; 6 days/week Slope: no slope |
Duration: 5–10 min Repetitions: 1 time/day; 5 days/week Slope: no slope | ||
2nd Phase:
Duration: 10–40 min Repetitions: 2–3 times/day; 5 days/week Slope: 2–5% | 2nd Phase:
Duration: 40 min Repetitions: 1 time/day; 5 days/week Slope: 5–10% | ||
Speeds: 2–2.5 km/h Duration: 10–40 min Repetitions: 2–3 times/day; 3 days/week Slope: 2–5% |
Speeds: 2–2.5 km/h Duration: 30 min Repetitions: 1 time/day; 3 days/week Slope: 2–5% | ||
Cervical Extrusion IVDD post-surgical dogs [62] | Speeds: starts 0.8–1 km/h Duration: Starts with 2–5 min and progressively increase up to 30 min. Repetitions: 4–6 times/day; 3–5 days/week Slope: no slope | 1st: 48 h after admission Speeds: start 1.2 km/h Duration: first for 2–5 min until reaching 40 min Repetitions: once a day, 5 days/week. Slope: 10%. Water temperature: 24–26 °C Water line: near the tibial proximal epiphysis | |
Protocol: 1st day: 0.8–1 km/h, 2–5 min, 2–5 times 2nd day: 0.8–1.2 km/h, 2–5 min, 3–5 times 3rd day: 1 km/h, 5 min, 4–5 times 4th day: 1.2 km/h, 5 min, 4 times 5th day: 1.8 km/h, 5 min, 4 times 6th day: 2 km/h, 10 min, 4 times 7th–12th day: 2.5 km/h, 10 min, 3 times 13th–14th days: 3 km/h, 15–30 min, 2 times | Protocol: 2nd–5th days: 1.2 km/h, 2–5 min 6th day: 1.5 km/h, 5 min 7th day: 1.8 km/h, 5 min 8th day: 2 km/h, 10 min 9th day: 2 km/h, 15 min 10th–11th days: 2.2 km/h, 15 min 12th–13th days: 2.5 km/h, 15–30 min 14th–15th days: 3 km/h, 30–40 min | ||
Degenerative Myelopathy | Speeds: start with 0.9–1.2 km/h, increasing to 1.2–2 km/h, following 2–2.8 km/h. Duration: start with 10–20 min, increasing to 20–30 min, following 30–40 min. Repetitions: 3 times/day; 6 day/week. Goal: 2.8–3.2 km/h, 60 min, 2 times/day, slope 10%. | Speeds: start with 0.9–1.2 km/h, increasing to 1.2–2 km/h, following 2–2.8 km/h. Duration: 10 min, increasing to 20 min, following 30 min. Repetitions: 1 time/day; 5 days/week. Goal: 2.8–3.2 km/h, 60 min, 2 times/day, slope 5–10%. Water line: lateral condyle of the femur. | |
Protocol: 1st week: 0.9–1.2 km/h; 10–20 min; 5 times/day 2nd week: 1.2–2 km/h; 20–30 min; 4 times/day 3rd week: 2–2.8 km/h; 30–40 min; 3 times/day 4th week: 2.8–3.2 km/h; 40–60 min; 2 times/day | Protocol: 1st week: 0.9–1.2 km/h; 10 min 2nd week: 1.2–2 km/h; 20 min 3rd week: 2–2.8 km/h; 30 min 4th week: 2.8–3.2 km/h; 60 min |
Keypoint n° 4: “Locomotor training is essential manly in subacute dogs and cats deep pain negative (DPN) or deep pain positive (DPP) of grade 1 (according to the modified Frankel scale).” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, D.; Cardoso, A.; Carvalho, C.; Almeida, A.; Gamboa, Ó.; Ferreira, A.; Martins, Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals 2022, 12, 3582. https://doi.org/10.3390/ani12243582
Gouveia D, Cardoso A, Carvalho C, Almeida A, Gamboa Ó, Ferreira A, Martins Â. Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals. 2022; 12(24):3582. https://doi.org/10.3390/ani12243582
Chicago/Turabian StyleGouveia, Débora, Ana Cardoso, Carla Carvalho, António Almeida, Óscar Gamboa, António Ferreira, and Ângela Martins. 2022. "Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update" Animals 12, no. 24: 3582. https://doi.org/10.3390/ani12243582
APA StyleGouveia, D., Cardoso, A., Carvalho, C., Almeida, A., Gamboa, Ó., Ferreira, A., & Martins, Â. (2022). Approach to Small Animal Neurorehabilitation by Locomotor Training: An Update. Animals, 12(24), 3582. https://doi.org/10.3390/ani12243582