Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phenotypic Data
2.2. Genotyping
2.3. GEBVs Prediction
2.4. Genome-Wide Association Study
- (1)
- Creation of an identity matrix of SNP weights (D = I) where di is the ith diagonal element of D which represents the variance of the SNP effect:
- (2)
- Calculation of the G matrix [38]:
- (3)
- GEBV calculation to obtain the direct additive effect of individuals (û)
- (4)
- Decomposition of the GEBV (û) into the SNP effect (â)
- (6)
- Normalization of matrix D and construction of matrix D based on the estimated SNP weights.
- (7)
- Running of the next iteration or stopping the loop. Only two iterations were used in our procedure to maximize accuracy [40]. The estimated weights were used in the GWAS analysis.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Womack, J.E.; Jang, H.J.; Lee, M.O. Genomics of complex traits. Ann. N. Y. Acad. Sci. 2012, 1271, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Z.; Wang, S.; Li, H. Progress of genome wide association study in domestic animals. J. Anim. Sci. Biotech. 2012, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.; Hayes, B.J.; Goddard, M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; Hayes, B.; Goddard, M. Genomic selection: A paradigm shift in animal breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef]
- Ibanez-Escriche, N.; Simianer, H. From the Editors: Animal breeding in the genomics era. Anim. Front. 2016, 6, 4–5. [Google Scholar] [CrossRef]
- Schaeffer, L.R. Strategy for applying genome-wide selection in dairy cattle. J. Anim. Breed. Genet. 2006, 123, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Reinoso, M.A.; Aponte, P.M.; Garcia-Herreros, M. Genomic Analysis, Progress and Future Perspectives in Dairy Cattle Selection: A Review. Animals 2021, 11, 599. [Google Scholar] [CrossRef]
- Ma, L. Methods of genome-wide association studies and their applications in dairy cattle. J. Anim. Sci. 2020, 98 (Suppl. S4), 31. [Google Scholar] [CrossRef]
- Yudin, N.S.; Voevoda, M.I. Molecular Genetic Markers of Economically Important Traits in Dairy Cattle. Russ. J. Genet. 2015, 51, 506–517. [Google Scholar] [CrossRef]
- Yurchenko, A.; Yudin, N.; Aitnazarov, R.; Plyusnina, A.; Brukhin, V.; Soloshenko, V.; Lhasaranov, B.; Popov, R.; Paronyan, I.A.; Plemyashov, K.V.; et al. Genome-wide genotyping uncovers genetic profiles and history of the Russian cattle breeds. Heredity 2018, 120, 125–137. [Google Scholar] [CrossRef]
- Yudin, N.S.; Yurchenko, A.A.; Larkin, D.M. Signatures of selection and candidate genes for adaptation to extreme environmental factors in the genomes of Turano-Mongolian cattle breeds. Vavilov J. Genet. Breed. 2021, 25, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Yudin, N.S.; Larkin, D.M. Whole genome studies of origin, selection and adaptation of the Russian cattle breeds. Vavilov J. Genet. Breed. 2019, 23, 559–568. [Google Scholar] [CrossRef]
- Moravčíková, N.; Kasarda, R.; Vostrý, L.; Krupová, Z.; Krupa, E.; Lehocká, K.; Olšanská, B.; Trakovická, A.; Nádaský, R.; Židek, R.; et al. Analysis of selection signatures in the beef cattle genome. Czech J. Anim. Sci. 2019, 64, 491–503. [Google Scholar] [CrossRef]
- Kasarda, R.; Moravčikova, N.; Olšanska, B.; Meszaros, G.; Vostry, L.; Vostra-Vydrova, H.; Lehocka, K.; Prišťak, J.; Candrak, J. The evaluation of genomic diversity and selection signals in the autochthonous Slovak Spotted cattle. Czech J. Anim. Sci. 2021, 66, 251–261. [Google Scholar] [CrossRef]
- Bouwman, A.C.; Daetwyler, H.D.; Chamberlain, A.J.; Ponce, C.H.; Sargolzaei, M.; Schenkel, F.S.; Sahana, G.; Govignon-Gion, A.; Boitard, S.; Dolezal, M.; et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 2018, 50, 362–367. [Google Scholar] [CrossRef]
- Igoshin, A.V.; Yudin, N.S.; Belonogova, N.M.; Larkin, D.M. Genome-wide association study for body weight in cattle populations from Siberia. Anim. Genet. 2019, 50, 250–253. [Google Scholar] [CrossRef]
- Kosinska-Selbi, B.; Suchocki, T.; Egger-Danner, C.; Schwarzenbacher, H.; Fraszczak, M.; Szyda, J. Exploring the Potential Genetic Heterogeneity in the Incidence of Hoof Disorders in Austrian Fleckvieh and Braunvieh Cattle. Front. Genet. 2020, 11, 577116. [Google Scholar] [CrossRef]
- Zhang, X.; Chu, Q.; Guo, G.; Dong, G.; Li, X.; Zhang, Q.; Zhang, S.; Zhang, Z.; Wang, Y. Genome-wide association studies identified multiple genetic loci for body size at four growth stages in Chinese Holstein cattle. PLoS ONE 2017, 12, e0175971. [Google Scholar] [CrossRef]
- Fang, Z.-H.; Pausch, H. Multi-trait meta-analyses reveal 25 quantitative trait loci for economically important traits in Brown Swiss cattle. BMC Genom. 2019, 20, 695. [Google Scholar] [CrossRef]
- Gurrieri, F.; Everman, D.B. Clinical, genetic, and molecular aspects of split-hand/foot malformation: An update. Am. J. Med. Genet. Part A 2013, 161, 2860–2872. [Google Scholar] [CrossRef]
- Guo, J.; Jorjani, H.; Carlborg, O. A genome-wide association study using international breeding-evaluation data identifies major loci affecting production traits and stature in the Brown Swiss cattle breed. BMC Genet. 2012, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Batista, J.L.; Núñez-Domínguez, R.; Ramírez-Valverde, R.; Jahuey-Martínez, F.J.; Herrera-Ojeda, J.B.; Parra-Bracamonte, G.M. Discovering of Genomic Variations Associated to Growth Traits by GWAS in Braunvieh Cattle. Genes 2021, 12, 1666. [Google Scholar] [CrossRef] [PubMed]
- An, B.; Xu, L.; Xia, J.; Wang, X.; Miao, J.; Chang, T.; Song, M.; Ni, J.; Xu, L.; Zhang, L.; et al. Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genet. 2020, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zinovieva, N.A.; Dotsev, A.V.; Sermyagin, A.A.; Deniskova, T.E.; Abdelmanova, A.S.; Kharzinova, V.R.; Solkner, J.; Reyer, H.; Wimmers, K.; Brem, G. Selection signatures in two oldest Russian native cattle breeds revealed using high density single nucleotide polymorphism analysis. PLoS ONE 2020, 15, e0242200. [Google Scholar] [CrossRef]
- Zhong, J.L.; Xu, J.W.; Wang, J.; Wen, Y.F.; Niu, H.; Zheng, L.; He, H.; Peng, K.; He, P.; Shi, S.-Y.; et al. A novel SNP of PLAG1 gene and its association with growth traits in Chinese cattle. Gene 2019, 689, 166–171. [Google Scholar] [CrossRef]
- Hou, J.; Qu, K.; Jia, P.; Hanif, Q.; Zhang, J.; Chen, N.; Dang, R.; Chen, H.; Huang, B.; Lei, C. A SNP in PLAG1 is associated with body height trait in Chinese cattle. Anim. Genet. 2019, 51, 87–90. [Google Scholar] [CrossRef]
- Lu, X.; Abdalla, I.M.; Nazar, M.; Fan, Y.; Zhang, Z.; Wu, X.; Xu, T.; Yang, Z. Genome-Wide Association Study on Reproduction-Related Body-Shape Traits of Chinese Holstein Cows. Animals 2021, 11, 1927. [Google Scholar] [CrossRef]
- Wu, X.; Fang, M.; Liu, L.; Wang, S.; Liu, J.; Ding, X.; Zhang, S.; Zhang, Q.; Zhang, Y.; Qiao, L.; et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genom. 2013, 14, 897. [Google Scholar] [CrossRef]
- Bolormaa, S.; Hayes, B.J.; van der Werf, J.H.J.; Pethick, P.; Goddard, M.E.; Daetwyler, H.D. Detailed phenotyping identifies genes with pleiotropic effects on body composition. BMC Genom. 2016, 17, 224. [Google Scholar] [CrossRef]
- Přibyl, J.; Bauer, J.; Pešek, P.; Přibylová, J.; Vostrý, L.; Zavadilová, L. Domestic and Interbull information in the single step genomic evaluation of Holstein milk production. Czech J. Anim. Sci. 2014, 59, 409–415. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D.H. BLUPF90 and related programs. (BGF90) 2. In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production, Montpelier, France, 19–23 August 2002. [Google Scholar]
- Němcová, E.; Štípková, M.; Zavadilová, L. Genetic parameters for linear type traits in Czech Holstein cattle. Czech. J. Anim. Sci. 2011, 56, 157–162. [Google Scholar] [CrossRef]
- Zavadilová, L.; Přibyl, J.; Vostrý, L.; Bauer, J. Single-step genomic evaluation for linear type traits of Holstein cows in Czech Republic. Anim. Sci. Pap. Rep. 2014, 32, 201–208. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2022; Available online: www.R-project.org (accessed on 9 December 2022).
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.; Legarra, A.; Tsuruta, S.; Masuda, Y.; Aguilar, I.; Misztal, I. Single-Step Genomic Evaluations from Theory to Practice: Using SNP Chips and Sequence Data in BLUPF90. Genes 2020, 11, 790. [Google Scholar] [CrossRef]
- Atashi, H.; Salavati, M.; De Koster, J.; Crowe, M.A.; Opsomer, G.; Hostens, M.; The GplusE Consortium. A Genome-Wide Association Study for Calving Interval in Holstein Dairy Cows Using Weighted Single-Step Genomic BLUP Approach. Animals 2020, 10, 500. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- Cole, J.B.; VanRaden, P.M.; O’Connell, J.R.; Van Tassell, C.P.; Sonstegard, T.S.; Schnabel, R.D.; Taylor, J.F.; Wiggans, G.R. Distribution and location of genetic effects for dairy traits. J. Dairy Sci. 2009, 92, 2931–2946. [Google Scholar] [CrossRef]
- Fragomeni, B.O.; Lourenco, D.A.L.; Legarra, A.; VanRaden, P.M.; Misztal, I. Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants. J. Dairy Sci. 2019, 102, 10012–10019. [Google Scholar] [CrossRef]
- van den Berg, S.; Vandenplas, J.; van Eeuwijk, F.A.; Lopes, M.S.; Veerkamp, R.F. Significance testing and genomic inflation factor using high-density genotypes or whole-genome sequence data. J. Anim. Breed. Genet. 2019, 136, 418–429. [Google Scholar] [CrossRef]
- Narum, S.R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 2006, 7, 783–787. [Google Scholar] [CrossRef]
- Yang, Q.; Cui, J.; Chazaro, I.; Cupples, L.A.; Demissie, S. Power and type I error rate of false discovery rate approaches in genome-wide association studies. BMC Genet. 2005, 6, S134. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, I.; Legarra, A.; Cardoso, F.; Masuda, Y.; Lourenco, D.; Misztal, I. Frequentist p-values for large-scale-single step genome-wide association, with an application to birth weight in American Angus cattle. Genet. Sel. Evol. 2019, 51, 28. [Google Scholar] [CrossRef]
- Su, G.; Christensen, O.F.; Janss, L.; Lund, M.S. Comparison of genomic predictions using genomic relationship matrices built with different weighting factors to account for locus-specific variances. J. Dairy Sci. 2014, 97, 6547–6559. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, D.A.L.; Fragomeni, B.O.; Bradford, H.L.; Menezes, I.R.; Ferraz, J.B.S.; Aguilar, I.; Tsuruta, S.; Misztal, I. Implications of SNP weighting on single-step genomic predictions for different reference population sizes. J. Anim. Breed. Genet. 2017, 134, 463–471. [Google Scholar] [CrossRef]
- Buaban, S.; Lengnudum, K.; Boonkum, W.; Phakdeedindan, P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J. Dairy Sci. 2022, 105, 468–494. [Google Scholar] [CrossRef] [PubMed]
- Sweett, H.; Fonseca, P.A.S.; Suárez-Vega, A.; Livernois, A.; Miglior, F.; Cánovas, A. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle. Sci. Rep. 2020, 10, 20102. [Google Scholar] [CrossRef]
- Baldwin-Brown, J.G.; Long, A.D.; Thornton, K.R. The power to detect quantitative trait loci using resequenced, experimentally evolved populations of diploid, sexual organisms. Mol. Biol. Evol. 2014, 31, 1040–1055. [Google Scholar] [CrossRef]
- Chen, Z.; Yao, Y.; Ma, P.; Wang, Q.; Pan, Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLoS ONE 2018, 13, e0192695. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Cant, J.P.; Brito, L.F.; Feitosa, F.L.B.; Chud, T.C.S.; Fonseca, P.A.S.; Jamrozik, J.; Silva, F.F.; Lourenco, D.A.L.; Schenkel, F.S. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J. Dairy Sci. 2019, 102, 8159–8174. [Google Scholar] [CrossRef]
- Yue, S.J.; Zhao, Y.Q.; Gu, X.R.; Yin, B.; Jiang, Y.L.; Wang, Z.H.; Shi, K.R. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Anim. Genet. 2017, 48, 677–681. [Google Scholar] [CrossRef]
- Cole, J.B.; Wiggans, G.R.; Ma, L.; Sonstegard, T.S.; Lawlor, T.J., Jr.; Crooker, B.A.; Van Tassell, C.P.; Yang, J.; Wang, S.; Matukumalli, L.K.; et al. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genom. 2011, 12, 408. [Google Scholar] [CrossRef]
- Abdalla, I.M.; Lu, X.; Nazar, M.; Arbab, A.A.I.; Xu, T.; Yousif, M.H.; Mao, Y.; Yang, Z. Genome-Wide Association Study Identifies Candidate Genes Associated with Feet and Leg Conformation Traits in Chinese Holstein Cattle. Animals 2021, 11, 2259. [Google Scholar] [CrossRef] [PubMed]
- Jardim, J.G.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Association analysis for udder index and milking speed with imputed whole-genome sequence variants in Nordic Holstein cattle. J. Dairy Sci. 2018, 101, 2199–2212. [Google Scholar] [CrossRef] [PubMed]
- Wientjes, Y.C.J.; Bijma, P.; Calus, M.P.L.; Zwaan, B.J.; Vitezica, Z.G.; van den Heuvel, J. The long-term effects of genomic selection: 1. Response to selection, additive genetic variance, and genetic architecture. Genet. Sel. Evol. 2022, 54, 19. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Tsuruta, S.; Lourenco, D.; Masuda, Y.; Huang, Y.; Gray, K.A.; Misztal, I. Changes in genetic parameters for fitness and growth traits in pigs under genomic selection. J. Anim. Sci. 2020, 98, skaa032. [Google Scholar] [CrossRef]
- Hidalgo, J.; Lourenco, D.; Tsuruta, S.; Masuda, Y.; Breen, V.; Hawken, R.; Bermann, M.; Misztal, I. Investigating the persistence of accuracy of genomic predictions over time in broilers. J. Anim. Sci. 2021, 99, skab239. [Google Scholar] [CrossRef]
- Nazar, M.; Abdalla, I.M.; Chen, Z.; Ullah, N.; Liang, Y.; Chu, S.; Xu, T.; Mao, Y.; Yang, Z.; Lu, X. Genome-Wide Association Study for Udder Conformation Traits in Chinese Holstein Cattle. Animals 2022, 12, 2542. [Google Scholar] [CrossRef]
- Weikard, R.; Demasius, W.; Kuehn, C. Mining long noncoding RNA in livestock. Anim. Genet. 2016, 48, 3–18. [Google Scholar] [CrossRef]
- Jevsinek Skok, D.; Godnic, I.; Zorc, M.; Horvat, S.; Dovc, P.; Kovac, M.; Kunej, T. Genome-wide in silico screening for microRNA genetic variability in livestock species. Anim. Genet. 2013, 44, 669-667. [Google Scholar] [CrossRef]
- Kyselova, J.; Tichý, L.; Jochová, K. (2021): The role of molecular genetics in animal breeding: A minireview. Czech J. Anim. Sci. 2021, 66, 107–111. [Google Scholar] [CrossRef]
- Kosovsky, G.Y.; Glazko, V.I.; Glazko, G.V.; Zybaylov, B.L.; Glazko, T.T. Leukocytosis and Expression of Bovine Leukemia Virus microRNAs in Cattle. Front. Vet. Sci. 2020, 7, 272. [Google Scholar] [CrossRef] [PubMed]
SNP Chip | Genotyped Animals | SNPs |
---|---|---|
Illumina BovineSNP50 BeadChip V3 | 15,979 | 53,218 |
Illumina BovineSNP50 BeadChip V2 | 4256 | 54,609 |
Euro G MD v1 | 1408 | 44,847 |
Euro G MD v2 | 1332 | 51,376 |
Geenseek GGP 150 k | 1313 * | 140,668 |
Geenseek GGP HD_T | 1198 * | 77,376 |
Total | 25,486 |
Trait | Mean | Variance | SD | Min | Max | h2 |
---|---|---|---|---|---|---|
Angularity | 0.49 | 0.44 | 0.66 | −4.51 | 4.12 | 0.29 |
Body condition score | −0.13 | 0.09 | 0.29 | −2.11 | 1.46 | 0.28 |
Body depth | 0.03 | 0.09 | 0.30 | −3.36 | 2.76 | 0.27 |
Bone quality | 0.25 | 0.09 | 0.31 | −1.20 | 1.59 | 0.26 |
Central ligament | 0.20 | 0.11 | 0.32 | −2.42 | 2.96 | 0.18 |
Foot angle | 0.04 | 0.06 | 0.24 | −2.91 | 2.24 | 0.10 |
Fore udder attachment | 0.23 | 0.19 | 0.44 | −2.03 | 3.13 | 0.24 |
Front teat placement | 0.34 | 0.25 | 0.50 | −2.24 | 3.09 | 0.27 |
Chest width | −0.01 | 0.08 | 0.28 | −3.20 | 2.66 | 0.18 |
Locomotion | 0.10 | 0.03 | 0.18 | −1.37 | 1.81 | 0.07 |
Rear legs rear view | 0.10 | 0.04 | 0.19 | −1.99 | 2.10 | 0.14 |
Rear legs side view | 0.00 | 0.06 | 0.24 | −2.68 | 2.68 | 0.16 |
Rear teat placement | 0.17 | 0.08 | 0.29 | −1.47 | 1.52 | 0.27 |
Rear udder height | 0.42 | 0.33 | 0.57 | −3.00 | 3.33 | 0.23 |
Rear udder width | 0.28 | 0.07 | 0.26 | −0.71 | 1.23 | 0.19 |
Rump angle | −0.06 | 0.16 | 0.40 | −3.01 | 2.96 | 0.32 |
Rump width | −0.06 | 0.16 | 0.40 | −3.01 | 2.96 | 0.40 |
Stature | 0.48 | 0.46 | 0.68 | −2.72 | 3.83 | 0.49 |
Teat length | −0.05 | 0.12 | 0.35 | −2.85 | 3.42 | 0.32 |
Udder depth | 0.24 | 0.25 | 0.50 | −2.42 | 3.23 | 0.32 |
Composite dairy character score | 0.01 | 0.00 | 0.02 | −0.09 | 0.12 | 0.36 |
Composite body weight score | 0.42 | 0.23 | 0.48 | −2.04 | 2.30 | 0.26 |
Composite feet and leg score | 0.28 | 0.11 | 0.33 | −2.23 | 2.70 | 0.12 |
Composite udder score | 0.38 | 0.34 | 0.59 | −2.39 | 2.83 | 0.20 |
Composite conformation score | 0.56 | 0.44 | 0.66 | −2.23 | 3.51 | 0.25 |
Trait | SNP Name | BTA | Position (bp) | rs SNP Name | p Value | Gene | Description |
---|---|---|---|---|---|---|---|
Linear composite traits | |||||||
Dairy capacity composite | ARS-BFGL-NGS-105821 | 4 | 58,072,287 | rs109967006 | 1.51×10−6 | IMMP2L | Mitochondrial membrane peptidase subunit |
Feet and legs composite | BTA-52458-no-rs | 21 | 46,984,914 | rs41643772 | 1.46 × 10−6 | Non-c. seq. | MAP3K12 binding inhibitory protein, 67,979 bp |
Total score | ARS-BFGL-NGS-57057 | 10 | 101,168,543 | rs108945111 | 9.81 × 10−7 * | Non-c. seq. | SPATA7- spermatogenesis associated 7, 17,602 bp |
Linear traits | |||||||
Stature | ARS-BFGL-NGS-112610 | 24 | 2,347,580 | rs110254857 | 8.03 × 10−7 * | Non-c. seq. | Myelin basic protein—2,224,045 -> 2,328,579, 136,978 bp |
Body depth | ARS-BFGL-NGS-83035 | 6 | 13,085,315 | rs43013615 | 1.46 × 10−6 | CAMK2D, intron | Calcium/calmodulin-dependent protein kinase, involvement in regulation of Ca ionts |
Angularity | ARS-BFGL-BAC-27938 | 20 | 2,997,285 | rs208553021 | 9.96 × 10−7 * | RANBP17, intron | RAN-binding protein-17—nucl. transport receptor |
Fore udder attachment | Hapmap36641-SCAFFOLD21136_2257 | 10 | 47,924,420 | rs29020064 | 4.78 × 10−8 ** | Non-c. seq. | Nearest gene LOC101902325, 6576 bp |
Trait | SNP Name | BTA | Position (bp) | rs SNP Name | p Value | Gene | Description |
---|---|---|---|---|---|---|---|
Linear composite traits | |||||||
Dairy capacity composite | BTB-00025760 | 1 | 53,238,076 | rs43241717 | 8.22 × 10−6 | Non-c. seq. | CD47 (Integrin-ass. prot.), 45830bp; intraflag. transport 5,756,143 bp |
BTA-101359-no-rs | 2 | 56,409,074 | rs41570485 | 9.97 × 10−6 | LOC101908548, intr. | ||
ARS-BFGL-NGS-105821 | 4 | 58,072,287 | rs109967006 | 1.51 × 10−6 | IMMP2L intron | inner mitochondrial membrane peptidase subunit 2 | |
Hapmap52961-rs29016208 | 5 | 69,453,205 | rs29016208 | 8.68 × 10−6 | Non-c. seq. | Nearest gene chromosome 5 C12orf75 homolog, 200,946 bp | |
Hapmap43767-BTA-113302 | 6 | 85,646,902 | rs41618641 | 5.64 × 10−6 | LOC100140029 intr. | ||
Hapmap47403-BTA-76048 | 6 | 45,153,190 | rs41567027 | 1.00 × 10−5 | PPARGC1A, intr. | Transcription coactivator regul. gene inv. in energy metabolism | |
ARS-BFGL-NGS-103385 | 7 | 6,413,319 | rs110733477 | 1.00 × 10−5 | CHERP, intron | Calcium Homeostasis Endoplasmic Reticulum Protein | |
Hapmap43119-BTA-07287 | 8 | 104,273,040 | rs29026953 | 9.64 × 10−6 | WDR31, cod. seq. | Participation in cell processes, cell cycle, apoptosis, signal transduction, gene regulation | |
BTB-01915527 | 18 | 39,480,387 | rs380111366 | 8.87 × 10−6 | AP1G1, intron | adaptor rel. protein complex | |
Hapmap38047-BTA-101643 | 22 | 14,472,226 | rs451483233 | 8.30 × 10−6 | ABHD5, intron | abhydrolase domain containing 5, lysophosphatidic acid acyltransferase | |
ARS-BFGL-NGS-16187 | 25 | 7,992,272 | rs109583598 | 6.91 × 10−6 | Non-c. seq. | C25H16orf72, neg. regulation of signal transduction by p53 class mediator, 35,118 bp | |
BTB-00928670 | 26 | 19,189,998 | rs42092107 | 7.83 × 10−6 | R3HCC1L, intr. | ||
ARS-BFGL-NGS-106765 | 28 | 33,405,497 | rs109179573 | 5.81 × 10−6 | KCNMA1, intr. | potassium calcium-activated channel subfamily M alpha 1 | |
Feet and legs composite | BTA-37234-no-rs | 15 | 61,893,000 | 9.70 × 10−6 | |||
BTA-52458-no-rs | 21 | 46,984,914 | 1.46 × 10−6 | Non-c. seq. | MAP3K12 binding inhib. prot. | ||
Total score | ARS-BFGL-NGS-57057 | 10 | 101,168,543 | 9.81 × 10−7 * | Non-c. seq. | SPATA7- spermatogenesis ass. 7 | |
Linear traits | |||||||
Stature | ARS-BFGL-NGS-112610 | 24 | 2,347,580 | rs110254857 | 8.03 × 10−7 * | Non-c. seq. | Myelin basic protein—2,224,045 -> 2,328,579, 136,978 bp |
Body depth | ARS-BFGL-NGS-83035 | 6 | 13,085,315 | rs43013615 | 1.46 × 10−6 | CAMK2D, intr. | Calcium/calmodulin-dependent protein kinase |
ARS-BFGL-NGS-4240 | 23 | 28,087,630 | rs110742604 | 2.23 × 10−6 | Non-c. seq. | IER3 (immediate early response 3) and Flotilin1 | |
Angularity | ARS-BFGL-BAC-27938 | 20 | 2,997,285 | 9.96 × 10−7 * | RANBP17, intr. | RAN-binding protein-17—nuclear transport receptor | |
Rump angle | BTB-00087067 | 2 | 24,285,533 | rs43296861 | 8.55 × 10−6 | Non-c. seq. | ITGA6—integrin subulin alpha 6, 67593 bp |
Rear legs (rear view) | ARS-BFGL-NGS-37099 | 9 | 87,378,346 | rs109492604 | 1.00 × 10−5 | UST, intron | uronyl-2-sulfotransferase |
BTB-01901596 | 10 | 99,234,390 | rs43010749 | 9.23 × 10−6 | Non-c. seq. | LOC785091, 38,696 bp | |
Rear legs (side view) | ARS-USMARC-Parent-DQ404152 | 2 | 5,306,838 | rs29022245 | 4.58 × 10−6 | Non-c. seq. | bridging integrator 1, 43,570 bp |
Hapmap53154-ss46527107 | 19 | 54,044,562 | rs46527107 | 8.71 × 10−6 | |||
Fore udder attachment | Hapmap36641-SCAFFOLD21136_2257 | 10 | 47,924,420 | 4.78 × 10−8 * | Non-c. seq. | Nearest gene LOC101902325 | |
Udder depth | ARS-BFGL-NGS-18407 | 2 | 77,175,718 | 3.34 × 10−6 | CNTNAP5, intr. | Contactin ass. prot. fam. member 5 | |
Rear udder height | BTB-00431144 | 10 | 55,323,184 | rs43635289 | 6.47 × 10−6 | Non-c. seq. | RAB27A RAS oncogene family member, 162,534 bp |
Central ligament | Hapmap52274-rs29017133 | 12 | 43,799,317 | rs29017133 | 9.39 × 10−6 | Non-c. seq. | KLHL1, kelch like family member 1, 1,021,225 bp |
Rear teat placement | ARS-BFGL-BAC-31288 | 24 | 4,273,189 | rs42042322 | 2.25 × 10−6 | CNDP2 | cytosolic non-specific dipeptidase |
Rear udder width | Hapmap50787-BTA-80934 | 8 | 36,191,988 | rs41659555 | 2.04 × 10−6 | Non-c. seq. | PTPRD, 32,780 bp, protein PTP signaling molecule regulating cell processes |
ARS-BFGL-NGS-73148 | 29 | 40,281,016 | rs109455421 | 3.86 × 10−6 | Non-c. seq. | LOC100296410, LOC521301, 12,529 bp and 3302 bp |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čítek, J.; Brzáková, M.; Bauer, J.; Tichý, L.; Sztankóová, Z.; Vostrý, L.; Steyn, Y. Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins. Animals 2022, 12, 3522. https://doi.org/10.3390/ani12243522
Čítek J, Brzáková M, Bauer J, Tichý L, Sztankóová Z, Vostrý L, Steyn Y. Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins. Animals. 2022; 12(24):3522. https://doi.org/10.3390/ani12243522
Chicago/Turabian StyleČítek, Jindřich, Michaela Brzáková, Jiří Bauer, Ladislav Tichý, Zuzana Sztankóová, Luboš Vostrý, and Yvette Steyn. 2022. "Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins" Animals 12, no. 24: 3522. https://doi.org/10.3390/ani12243522
APA StyleČítek, J., Brzáková, M., Bauer, J., Tichý, L., Sztankóová, Z., Vostrý, L., & Steyn, Y. (2022). Genome-Wide Association Study for Body Conformation Traits and Fitness in Czech Holsteins. Animals, 12(24), 3522. https://doi.org/10.3390/ani12243522