Effects of a Dietary Multi-Strain Probiotic and Vaccination with a Live Anticoccidial Vaccine on Growth Performance and Haematological, Biochemical and Redox Status Indicators of Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds, Diets, and Experimental Design
2.2. Experimental Factors
2.3. Sample Collection and Analytical Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-Calculating the Cost of Coccidiosis in Chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Li, Y.; Zhang, X.; Wang, Y.; Huang, Z.; Yin, G.; Zhang, Z. Development of CRISPR-CAS9 Based RNA Drugs against Eimeria tenella Infection. Genomics 2021, 113, 4126–4135. [Google Scholar] [CrossRef]
- Lin, X.; Mohsin, M.; Abbas, R.Z.; Li, L.; Chen, H.; Huang, C.; Li, Y.; Goraya, M.U.; Huang, Z.; Yin, G. Evaluation of Immunogenicity and Protective Efficacy of Eimeria maxima Immune Mapped Protein 1 with EDA Adjuvant in Chicken. Pak. Vet. J. 2020, 40, 209–213. [Google Scholar] [CrossRef]
- Mohsin, M.; Li, L.; Huang, X.; Aleem, M.T.; Habib, Y.J.; Ismael, A.; Afzal, M.Z.; Abbas, R.Z.; Abbas, A.; Yin, G. Immunogenicity and Protective Efficacy of Probiotics with EtIMP1C against Eimeria tenella Challenge. Pak. Vet. J. 2021, 41, 274–278. [Google Scholar] [CrossRef]
- Vermeulen, A.N.; Schaap, D.C.; Schetters, T.P.M. Control of Coccidiosis in Chickens by Vaccination. Vet. Parasitol. 2001, 100, 13–20. [Google Scholar] [CrossRef]
- Williams, R.B. Intercurrent Coccidiosis and Necrotic Enteritis of Chickens: Rational, Integrated Disease Management by Maintenance of Gut Integrity. Avian Pathol. 2005, 34, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.D.; Cherry, T.E.; Danforth, H.D.; Richards, G.; Shirley, M.W.; Williams, R.B. Sustainable Coccidiosis Control in Poultry Production: The Role of Live Vaccines. Int. J. Parasitol. 2002, 32, 617–629. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.; Moran, E.T.; Hess, J.B. Response of Coccidiostat- versus Vaccination-Protected Broilers to Gelatin Inclusion in High and Low Crude Protein Diets. Poult. Sci. 2009, 88, 984–993. [Google Scholar] [CrossRef]
- Orso, C.; Stefanello, T.B.; Franceschi, C.H.; Mann, M.B.; Varela, A.P.M.; Castro, I.M.S.; Frazzon, J.; Frazzon, A.P.G.; Andretta, I.; Ribeiro, A.M.L. Changes in the Ceca Microbiota of Broilers Vaccinated for Coccidiosis or Supplemented with Salinomycin. Poult. Sci. 2021, 100, 100969. [Google Scholar] [CrossRef]
- Sharman, P.A.; Smith, N.C.; Wallach, M.G.; Katrib, M. Chasing the Golden Egg: Vaccination against Poultry Coccidiosis. Parasite Immunol. 2010, 32, 590–598. [Google Scholar] [CrossRef]
- Arczewska-Włosek, A.; Świątkiewicz, S. Nutrition as a Modulatory Factor of the Efficacy of Live Anticoccidial Vaccines in Broiler Chickens. Worlds Poult. Sci. J. 2014, 70, 81–92. [Google Scholar] [CrossRef]
- Dalloul, R.A.; Lillehoj, H.S. Recent Advances in Immunomodulation and Vaccination Strategies Against Coccidiosis. Avian Dis. 2005, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Z.; Ho, Y.W.; Abdullah, N.; Jalaludin, S. Probiotics in Poultry: Modes of Action. Worlds Poult. Sci. J. 1997, 53, 351–368. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.-M.E.; Alagawany, M. Probiotics in Poultry Feed: A Comprehensive Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef]
- Dhama, K.; Verma, V.; Sawant, P.M.; Tiwari, R.; Vaid, R.; Chauhan, R. Applications of Probiotics in Poultry: Enhancing Immunity and Beneficial Effects on Production Performances and Health—A Review. J. Immunol. Immunopathol. 2011, 13, 1–19. [Google Scholar]
- Ritzi, M.M.; Abdelrahman, W.; van-Heerden, K.; Mohnl, M.; Barrett, N.W.; Dalloul, R.A. Combination of Probiotics and Coccidiosis Vaccine Enhances Protection against an Eimeria Challenge. Vet. Res. 2016, 47, 111. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lv, X.; Li, X.; Zhao, J.; Zhang, K.; Hao, X.; Liu, K.; Liu, H. Protective Effect of Lactobacillus plantarum P8 on Growth Performance, Intestinal Health, and Microbiota in Eimeria-Infected Broilers. Front. Microbiol. 2021, 12, 705758. [Google Scholar] [CrossRef] [PubMed]
- Aida, M.; Yamada, R.; Nakamura, S.; Imaoka, T.; Shimonishi, H.; Matsuo, T.; Taniguchi, I.; Tsukahara, T. The Effect of Supplementation with Weizmannia coagulans Strain SANK70258 to Coccidia-Infected Broilers Is Similar to That of a Coccidiostat Administration. Vet. Sci. 2022, 9, 406. [Google Scholar] [CrossRef]
- Mohsin, M.; Zhang, Z.; Yin, G. Effect of Probiotics on the Performance and Intestinal Health of Broiler Chickens Infected with Eimeria tenella. Vaccines 2022, 10, 97. [Google Scholar] [CrossRef]
- Awais, M.M.; Jamal, M.A.; Akhtar, M.; Hameed, M.R.; Anwar, M.I.; Ullah, M.I. Immunomodulatory and Ameliorative Effects of Lactobacillus and Saccharomyces Based Probiotics on Pathological Effects of Eimeriasis in Broilers. Microb. Pathog. 2019, 126, 101–108. [Google Scholar] [CrossRef]
- Dalloul, R.; Lillehoj, H.; Shellem, T.; Doerr, J. Enhanced Mucosal Immunity against Eimeria acervulina in Broilers Fed a Lactobacillus-Based Probiotic. Poult. Sci. 2003, 82, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Stringfellow, K.; Caldwell, D.; Lee, J.; Mohnl, M.; Beltran, R.; Schatzmayr, G.; Fitz-Coy, S.; Broussard, C.; Farnell, M. Evaluation of Probiotic Administration on the Immune Response of Coccidiosis-Vaccinated Broilers. Poult. Sci. 2011, 90, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.H.; Rehman, A.; Sardar, R.; Khawaja, T. The Effect of Probiotic Supplementation on the Growth Performance, Blood Biochemistry and Immune Response of Reciprocal F1 Crossbred (Rhode Island Red×Fayoumi) Cockerels. J. Appl. Anim. Res. 2013, 41, 417–426. [Google Scholar] [CrossRef]
- Sabry Abd Elraheam Elsayed, M.; Shehata, A.A.; Mohamed Ammar, A.; Allam, T.S.; Ali, A.S.; Ahmed, R.H.; Abeer Mohammed, A.B.; Tarabees, R. The Beneficial Effects of a Multistrain Potential Probiotic, Formic, and Lactic Acids with Different Vaccination Regimens on Broiler Chickens Challenged with Multidrug-Resistant Escherichia coli and Salmonella. Saudi J. Biol. Sci. 2021, 28, 2850–2857. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. Poultry Feeding Standards, 4th ed.; The Kielanowski Institute of Animal Physiology and Nutrition, PAS, Polish Branch of WPSA: Jabłonna, Poland, 2005; ISBN 83-917097-7-9. (In Polish) [Google Scholar]
- World’s Poultry Science Association; Nutrition of the European Federation of Branches; Subcommittee Energy of the Working Group. European Table of Energy Values for Poultry Feedstuffs, 3rd ed.; WPSA: Beekbergen, The Netherlands, 1989; ISBN 90-71463-00-0. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005; ISBN 978-0935584752. [Google Scholar]
- FAO. Epidemiology, Diagnosis and Control of Poultry Parasites; Manuel FAO de Santé Animale; FAO: Rome, Italy, 1998; ISBN 92-5-104215-2. [Google Scholar]
- Feldman, B.V.; Zinkl, J.G.; Nemi, C.J. Schalm’s Veterinary Hematology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; ISBN 978-0-683-30692-7. [Google Scholar]
- Jahanian, R.; Rasouli, E. Dietary Chromium Methionine Supplementation Could Alleviate Immunosuppressive Effects of Heat Stress in Broiler Chicks. J. Anim. Sci. 2015, 93, 3355–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentfer, T.L.; Pendl, H.; Gebhardt-Henrich, S.G.; Fröhlich, E.K.F.; Borell, E.V. H/L Ratio as a Measurement of Stress in Laying Hens—Methodology and Reliability. Br. Poult. Sci. 2015, 56, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Siwicki, A.K.; Anderson, D.P. Nonspecific Defense Mechanisms Assay in Fish: II. Potential Killing Activity of Neutrophils and Macrophages, Lysozyme Activity in Serum and Organs and Total Immunoglobulin (Ig) Level in Serum. In Fish Diseases Diagnosis and Prevention Methods; Inland Fisheries Institute: Olsztyn, Poland, 1993; pp. 105–112. [Google Scholar]
- Park, B.H.; Fikrig, S.M.; Smithwick, E.M. Infection and Nitroblue-Tetrazolium Reduction by Neutrophils: A Diagnostic Aid. Lancet 1968, 292, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Ognik, K.; Wertelecki, T. Effect of Different Vitamin E Sources and Levels on Selected Oxidative Status Indices in Blood and Tissues as Well as on Rearing Performance of Slaughter Turkey Hens. J. Appl. Poult. Res. 2012, 21, 259–271. [Google Scholar] [CrossRef]
- Arczewska-Włosek, A.; Świątkiewicz, S.; Kowal, J.; Józefiak, D.; Długosz, J. The Effect of Increased Crude Protein Level and/or Dietary Supplementation with Herbal Extract Blend on the Performance of Chickens Vaccinated against Coccidiosis. Anim. Feed Sci. Technol. 2017, 229, 65–72. [Google Scholar] [CrossRef]
- Lee, S.; Lillehoj, H.S.; Park, D.W.; Hong, Y.H.; Lin, J.J. Effects of Pediococcus- and Saccharomyces-Based Probiotic (MitoMax®) on Coccidiosis in Broiler Chickens. Comp. Immunol. Microbiol. Infect. Dis. 2007, 30, 261–268. [Google Scholar] [CrossRef]
- Shanmugasundaram, R.; Sifri, M.; Selvaraj, R.K. Effect of Yeast Cell Product Supplementation on Broiler Cecal Microflora Species and Immune Responses during an Experimental Coccidial Infection. Poult. Sci. 2013, 92, 1195–1201. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Farnell, Y.Z.; Kiess, A.S.; Peebles, E.D.; Wamsley, K.G.S.; Zhai, W. Effects of Bacillus subtilis and Coccidial Vaccination on Cecal Microbial Diversity and Composition of Eimeria-Challenged Male Broilers. Poult. Sci. 2019, 98, 3839–3849. [Google Scholar] [CrossRef] [PubMed]
- Harmon, B. Avian Heterophils in Inflammation and Disease Resistance. Poult. Sci. 1998, 77, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Thiam, M.; Barreto Sánchez, A.L.; Zhang, J.; Wen, J.; Zhao, G.; Wang, Q. Investigation of the Potential of Heterophil/Lymphocyte Ratio as a Biomarker to Predict Colonization Resistance and Inflammatory Response to Salmonella enteritidis Infection in Chicken. Pathogens 2022, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Thiam, M.; Wang, Q.; Barreto Sánchez, A.L.; Zhang, J.; Ding, J.; Wang, H.; Zhang, Q.; Zhang, N.; Wang, J.; Li, Q.; et al. Heterophil/Lymphocyte Ratio Level Modulates Salmonella Resistance, Cecal Microbiota Composition and Functional Capacity in Infected Chicken. Front. Immunol. 2022, 13, 816689. [Google Scholar] [CrossRef] [PubMed]
- Al-Murrani, W.K.; Al-Rawi, I.K.; Raof, N.M. Genetic Resistance to Salmonella typhimurium in Two Lines of Chickens Selected as Resistant and Sensitive on the Basis of Heterophil/Lymphocyte Ratio. Br. Poult. Sci. 2002, 43, 501–507. [Google Scholar] [CrossRef]
- Perez-Carbajal, C.; Caldwell, D.; Farnell, M.; Stringfellow, K.; Pohl, S.; Casco, G.; Pro-Martinez, A.; Ruiz-Feria, C.A. Immune Response of Broiler Chickens Fed Different Levels of Arginine and Vitamin E to a Coccidiosis Vaccine and Eimeria Challenge. Poult. Sci. 2010, 89, 1870–1877. [Google Scholar] [CrossRef]
- Muthamilselvan, T.; Kuo, T.-F.; Wu, Y.-C.; Yang, W.-C. Herbal Remedies for Coccidiosis Control: A Review of Plants, Compounds, and Anticoccidial Actions. Evid. Based Complement. Alternat. Med. 2016, 2016, 9459047. [Google Scholar] [CrossRef] [Green Version]
- Koinarski, V.; Gabrashanska, M.; Georgieva, N.; Petkov, P. Antioxidant Parameters in Eimeria acervulina Infected Chicks after Treatment with a New Zinc Compound. Bull. Vet. Inst. Pulawy 2006, 50, 55–61. [Google Scholar]
- Ognik, K.; Krauze, M. The Potential for Using Enzymatic Assays to Assess the Health of Turkeys. Worlds Poult. Sci. J. 2016, 72, 535–550. [Google Scholar] [CrossRef]
- Azadegan Mehr, M.; Hassanabadi, A.; Nassiri Moghaddam, H.; Kermanshahi, H. Supplementation of Clove Essential Oils and Probiotic to the Broiler’s Diet on Performance, Carcass Traits and Blood Components. Iran. J. Appl. Anim. Sci. 2014, 4, 117–122. [Google Scholar]
- Pourakbari, M.; Seidavi, A.; Asadpour, L.; Martínez, A. Probiotic Level Effects on Growth Performance, Carcass Traits, Blood Parameters, Cecal Microbiota, and Immune Response of Broilers. An. Acad. Bras. Ciênc. 2016, 88, 1011–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamid, F.M.; El-Gohary, A.; Risha, E.F. Incorporation Efficacy Comparison of Probiotic and Antibiotic on Growth Performance, Some Immunological and Biochemical Parameters in Salmonella entertidis Challenged Chicks. Life Sci. J. 2013, 10, 3550–3558. [Google Scholar]
- Klaver, F.A.; van der Meer, R. The Assumed Assimilation of Cholesterol by Lactobacilli and Bifidobacterium bifidum Is Due to Their Bile Salt-Deconjugating Activity. Appl. Environ. Microbiol. 1993, 59, 1120–1124. [Google Scholar] [CrossRef]
Ingredient [g/kg]: | Starter | Grower-Finisher |
---|---|---|
Maize | 579.3 | 597.5 |
Soybean meal | 360 | 323 |
Soybean oil | 18 | 38 |
Limestone | 16 | 16 |
Monocalcium phosphate | 14.5 | 14.0 |
Sodium chloride | 3 | 3 |
DL-Methionine | 2 | 2 |
L-Lysine hydrochloride | 1.2 | 1.5 |
Vitamin-mineral premix * | 6 | 5 |
Calculated nutritional value per kg of feed: | ||
Metabolizable energy (MJ/kg) | 12.3 | 13.0 |
Analysed chemical composition (g/kg): | ||
Dry matter | 891 | 892 |
Crude ash | 70.2 | 58.1 |
Crude protein | 221 | 212 |
Crude fat | 19.7 | 32.5 |
Crude fibre | 24.5 | 22.0 |
Calcium | 10.6 | 9.57 |
Phosphorus | 7.82 | 7.25 |
Asp | 22.09 | 20.34 |
Tre | 8.54 | 7.66 |
Ser | 11.56 | 10.19 |
Glu | 39.37 | 36.97 |
Pro | 12.53 | 11.81 |
Gly | 9.13 | 8.33 |
Ala | 10.74 | 10.19 |
Val | 9.96 | 9.13 |
Ile | 8.89 | 8.09 |
Leu | 18.39 | 17.26 |
Tyr | 8 | 6.61 |
Fen | 11.23 | 10.13 |
His | 5.41 | 4.91 |
Lys | 12.99 | 11.59 |
Arg | 15.82 | 12.68 |
Cys | 3.26 | 3.15 |
Met | 5.39 | 5.04 |
Trp | 2.18 | 1.93 |
1–21 d of Age | 22–42 d of Age | 1–42 d of Age | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Factors | BWG | FI | FCR | BWG | FI | FCR | BWG | FI | FCR | |
ACV | P | (g) | (g) | (g/g BWG) | (g) | (g) | (g/g BWG) | (g) | (g) | (g/g BWG) |
− | − | 636 | 1009 | 1.59 b | 1723 | 3423 | 1.99 | 2305 | 4482 | 1.95 |
+ | 664 | 1042 | 1.57 b | 1741 | 3453 | 1.98 | 2341 | 4565 | 1.95 | |
+ | − | 568 | 926 | 1.63 a | 1763 | 3518 | 1.99 | 2289 | 4489 | 1.96 |
+ | 625 | 987 | 1.58 b | 1752 | 3455 | 1.97 | 2324 | 4496 | 1.94 | |
SEM | 9.52 | 14.1 | 0.005 | 21.3 | 44.1 | 0.012 | 23.7 | 51.4 | 0.012 | |
Significance (p-value) | ||||||||||
Effects | ACV | 0.001 | 0.011 | 0.000 | 0.568 | 0.602 | 0.962 | 0.742 | 0.771 | 0.983 |
P | 0.009 | 0.073 | 0.000 | 0.934 | 0.862 | 0.591 | 0.481 | 0.678 | 0.686 | |
Interaction | ACV × P | 0.344 | 0.585 | 0.013 | 0.738 | 0.619 | 0.757 | 0.986 | 0.724 | 0.569 |
Factors | RBC | WBC | Ht | Hb | H | L | MONO | EOS | BASO | H/L | |
---|---|---|---|---|---|---|---|---|---|---|---|
VAC | P | (1012 L−1) | (109 L−1) | (%) | (g−1) | (%) | (%) | (%) | (%) | (%) | |
− | − | 1.56 b | 16.3 | 31.8 | 6.68 | 31.7 | 65.2 | 1.00 | 1.50 | 0.67 | 0.51 |
+ | 1.93 a | 18.6 | 29.4 | 5.82 | 23.5 | 70.7 | 1.00 | 3.50 | 1.33 | 0.34 | |
+ | − | 1.76 a | 15.8 | 29.1 | 6.37 | 26.8 | 65.3 | 2.33 | 3.67 | 1.83 | 0.43 |
+ | 1.83 a | 18.7 | 28.4 | 6.15 | 21.2 | 69.5 | 3.33 | 3.50 | 2.50 | 0.33 | |
SEM | 0.042 | 0.309 | 0.572 | 0.179 | 1.738 | 1.827 | 0.366 | 0.716 | 0.340 | 0.035 | |
Significance (p-value) | |||||||||||
Effects | VAC | 0.460 | 0.523 | 0.099 | 0.976 | 0.288 | 0.896 | 0.011 | 0.473 | 0.094 | 0.535 |
P | 0.004 | 0.000 | 0.170 | 0.147 | 0.048 | 0.214 | 0.451 | 0.543 | 0.328 | 0.059 | |
Interactions | VAC × P | 0.034 | 0.287 | 0.429 | 0.372 | 0.708 | 0.861 | 0.451 | 0.473 | 1.000 | 0.585 |
Factors | LYSOZYME | % PC | PI | NBT: Positive Heterophils | |
---|---|---|---|---|---|
VAC | P | (mg L−1) | (109 L−1) | (%) | |
− | − | 1.33 | 41.3 | 5.09 c | 24.9 |
+ | 1.31 | 43.8 | 5.75 b | 25.3 | |
+ | − | 1.34 | 46.2 | 6.32 a | 40.1 |
+ | 1.29 | 46.5 | 6.44 a | 37.2 | |
SEM | 0.037 | 0.512 | 0.123 | 1.93 | |
Significance (p-value) | |||||
Effects | VAC | 0.947 | 0.000 | 0.000 | 0.000 |
P | 0.649 | 0.023 | 0.001 | 0.653 | |
Interactions | VAC × P | 0.909 | 0.063 | 0.018 | 0.569 |
Factors | AST | ALT | LDH | ALP | TP | TG | TC | GLU | |
---|---|---|---|---|---|---|---|---|---|
VAC | P | (U/ L) | (U/ L) | (U/ L) | (U/ L) | (g/L) | (mmol/L) | (mmol/L) | (mmol/L) |
− | − | 232 b | 3.53 | 1330 | 6.03 | 29.5 b | 1.78 | 4.29 | 9.33 ab |
+ | 242 b | 2.57 | 1353 | 3.93 | 28.5 b | 1.68 | 3.50 | 8.78 b | |
+ | − | 280 a | 2.75 | 1610 | 3.55 | 38.2 a | 3.51 | 3.31 | 8.64 b |
+ | 243 b | 1.90 | 1761 | 3.42 | 27.6 b | 2.79 | 3.13 | 9.75 a | |
SEM | 5.66 | 0.233 | 61.7 | 0.399 | 1.032 | 0.322 | 0.120 | 0.156 | |
Significance (p-value) | |||||||||
Effects | VAC | 0.014 | 0.105 | 0.004 | 0.048 | 0.003 | 0.028 | 0.001 | 0.610 |
P | 0.143 | 0.046 | 0.420 | 0.133 | 0.000 | 0.506 | 0.008 | 0.310 | |
Interactions | VAC × P | 0.018 | 0.893 | 0.551 | 0.183 | 0.000 | 0.615 | 0.073 | 0.006 |
Factors | FRAP | SOD | CAT | LOOH | MDA | |
---|---|---|---|---|---|---|
VAC | P | (μmol/L) | (U/mL) | (U/mL) | (μmol/L) | (μmol/L) |
− | − | 100 | 28.4 | 3.21 | 2.71 | 0.454 a |
+ | 95.4 | 29.0 | 2.74 | 2.57 | 0.367 b | |
+ | − | 110 | 28.7 | 2.77 | 1.61 | 0.331 b |
+ | 122 | 28.3 | 2.37 | 1.62 | 0.487 a | |
SEM | 4.69 | 0.260 | 0.089 | 0.140 | 0.018 | |
Significance (p-value) | ||||||
Effects | VAC | 0.054 | 0.670 | 0.007 | 0.000 | 0.966 |
P | 0.670 | 0.898 | 0.004 | 0.716 | 0.197 | |
Interactions | VAC × P | 0.352 | 0.357 | 0.801 | 0.703 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arczewska-Włosek, A.; Świątkiewicz, S.; Ognik, K.; Józefiak, D. Effects of a Dietary Multi-Strain Probiotic and Vaccination with a Live Anticoccidial Vaccine on Growth Performance and Haematological, Biochemical and Redox Status Indicators of Broiler Chickens. Animals 2022, 12, 3489. https://doi.org/10.3390/ani12243489
Arczewska-Włosek A, Świątkiewicz S, Ognik K, Józefiak D. Effects of a Dietary Multi-Strain Probiotic and Vaccination with a Live Anticoccidial Vaccine on Growth Performance and Haematological, Biochemical and Redox Status Indicators of Broiler Chickens. Animals. 2022; 12(24):3489. https://doi.org/10.3390/ani12243489
Chicago/Turabian StyleArczewska-Włosek, Anna, Sylwester Świątkiewicz, Katarzyna Ognik, and Damian Józefiak. 2022. "Effects of a Dietary Multi-Strain Probiotic and Vaccination with a Live Anticoccidial Vaccine on Growth Performance and Haematological, Biochemical and Redox Status Indicators of Broiler Chickens" Animals 12, no. 24: 3489. https://doi.org/10.3390/ani12243489
APA StyleArczewska-Włosek, A., Świątkiewicz, S., Ognik, K., & Józefiak, D. (2022). Effects of a Dietary Multi-Strain Probiotic and Vaccination with a Live Anticoccidial Vaccine on Growth Performance and Haematological, Biochemical and Redox Status Indicators of Broiler Chickens. Animals, 12(24), 3489. https://doi.org/10.3390/ani12243489