Effects of Ovine Monocyte-Derived Macrophage Infection by Recently Isolated Toxoplasma gondii Strains Showing Different Phenotypic Traits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. In Vitro Generation of Ovine Monocyte-Derived Macrophages
2.3. Toxoplasma Gondii Cultures and OvMØs Infection
2.4. Cell Infection Rate and Multi-Infected Cell Rate
2.5. Immunofluorescence Staining and Image Analysis
2.6. Analysis of Cytokine and iNOS Expression
2.7. Statistical Analysis
- PRU II-A: type II PRU—abortion origin (TgShSp1 and TgShSp3).
- PRU II-C: type II PRU—myocardium of chronic-infection origin (TgShSp11 and TgShSp16).
- Clonal II-A: clonal type II—abortion origin (TgShSp2).
- Type III-C: type III—myocardium of chronic-infection origin (TgShSp24).
3. Results
3.1. Cell Infection Rate and Multi-Infected Cell Rate
3.2. Transcript Expression of Cytokines and iNOS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, J.P. Toxoplasmosis in sheep—The last 20 years. Vet. Parasitol. 2009, 163, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, S.; Basso, W.; Benavides Silván, J.; Ortega-Mora, L.M.; Maksimov, P.; Gethmann, J.; Conraths, F.J.; Schares, G. Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 2019, 15, e00037. [Google Scholar] [CrossRef] [PubMed]
- Gregg, B.; Taylor, B.C.; John, B.; Tait-Wojno, E.D.; Girgis, N.M.; Miller, N.; Wagage, S.; Roos, D.S.; Hunter, C.A. Replication and distribution of Toxoplasma gondii in the small intestine after oral infection with tissue cysts. Infect. Immun. 2013, 81, 1635–1643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, Z.S.; Borrelli, S.L.S.; Coyne, C.C.; Boyle, J.P. Cell type- and species-specific host responses to Toxoplasma gondii and its near relatives. Int. J. Parasitol. 2020, 50, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Innes, E.A.; Bartley, P.M.; Buxton, D.; Katzer, F. Ovine toxoplasmosis. Parasitology 2009, 136, 1887–1894. [Google Scholar] [CrossRef]
- Sturge, C.R.; Yarovinsky, F. Complex immune cell interplay in the gamma interferon response during Toxoplasma gondii infection. Infect. Immun. 2014, 82, 3090–3097. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Hunter, C.A. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol. 2020, 42, e12712. [Google Scholar] [CrossRef]
- Ahmed, N.; French, T.; Rausch, S.; Kühl, A.; Hemminger, K.; Dunay, I.R.; Steinfelder, S.; Hartmann, S. Toxoplasma co-infection prevents Th2 differentiation and leads to a helminth-specific Th1 response. Front. Cell. Infect. Microbiol. 2017, 7, 341. [Google Scholar] [CrossRef] [Green Version]
- Mcauley, J.B. Congenital toxoplasmosis. J. Pediatr. Infect. Dis. Soc. 2014, 3 (Suppl. 1), S30–S35. [Google Scholar] [CrossRef]
- Martinez, F.O.; Helming, L.; Gordon, S. Alternative activation of macrophages: An immunologic functional perspective. Annu. Rev. Immunol. 2009, 27, 451–483. [Google Scholar] [CrossRef]
- Price, J.V.; Vance, R.E. The macrophage paradox. Immunity 2014, 41, 685–693. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.D.C.; Wang, Y.; Wojno, E.D.T.; Shastri, A.J.; Hu, K.; Cornel, L.; Boedec, E.; Ong, Y.C.; Chien, Y.H.; Hunter, C.A.; et al. Toxoplasma polymorphic effectors determine macrophage polarization and intestinal inflammation. Cell Host Microbe 2011, 9, 472–483. [Google Scholar] [CrossRef] [Green Version]
- Behnke, M.S.; Dubey, J.P.; Sibley, L.D. Genetic mapping of pathogenesis determinants in Toxoplasma gondii. Annu. Rev. Microbiol. 2016, 70, 63–81. [Google Scholar] [CrossRef]
- Dumètre, A.; Ajzenberg, D.; Rozette, L.; Mercier, A.; Dardé, M.L. Toxoplasma gondii infection in sheep from Haute-Vienne, France: Seroprevalence and isolate genotyping by microsatellite analysis. Vet. Parasitol. 2006, 142, 376–379. [Google Scholar] [CrossRef]
- Su, C.; Howe, D.K.; Dubey, J.P.; Ajioka, J.W.; Sibley, L.D. Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii. Proc. Natl. Acad. Sci. USA 2002, 99, 10753–10758. [Google Scholar] [CrossRef] [Green Version]
- Calero-Bernal, R.; Fernández-Escobar, M.; Katzer, F.; Su, C.; Ortega-Mora, L.M. Unifying virulence evaluation in Toxoplasma gondii: A timely task. Front. Cell. Infect. Microbiol. 2022, 12, 471. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Arranz-Solís, D.; Saeij, J.P.J. Influence of the host and parasite strain on the immune response during Toxoplasma infection. Front. Cell. Infect. Microbiol. 2020, 10, 580425. [Google Scholar] [CrossRef]
- Fernández-Escobar, M.; Schares, G.; Maksimov, P.; Joeres, M.; Ortega-Mora, L.M.; Calero-Bernal, R. Toxoplasma gondii genotyping: A closer look into Europe. Front. Cell. Infect. Microbiol. 2022, 12, 305. [Google Scholar] [CrossRef]
- Stutz, A.; Kessler, H.; Kaschel, M.E.; Meissner, M.; Dalpke, A.H. Cell invasion and strain dependent induction of suppressor of cytokine signaling-1 by Toxoplasma gondii. Immunobiology 2012, 217, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Mammari, N.; Vignoles, P.; Halabi, M.A.; Darde, M.L.; Courtioux, B. In vitro infection of human nervous cells by two strains of Toxoplasma gondii: A kinetic analysis of immune mediators and parasite multiplication. PLoS ONE 2014, 9, e98491. [Google Scholar] [CrossRef]
- Butcher, B.A.; Denkers, E.Y. Mechanism of entry determines the ability of Toxoplasma gondii to inhibit macrophage proinflammatory cytokine production. Infect. Immun. 2002, 70, 5216–5224. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Escobar, M.; Calero-Bernal, R.; Regidor-Cerrillo, J.; Vallejo, R.; Benavides, J.; Collantes-Fernández, E.; Ortega-Mora, L.M. In vivo and in vitro models show unexpected degrees of virulence among Toxoplasma gondii type II and III isolates from sheep. Vet. Res. 2021, 52, 82. [Google Scholar] [CrossRef] [PubMed]
- Arteche-Villasol, N.; Benavides, J.; Espinosa, J.; Vallejo, R.; Royo, M.; Ferreras, M.C.; Pérez, V.; Gutiérrez-Expósito, D. Optimized in vitro isolation of different subpopulation of immune cells from peripheral blood and comparative techniques for generation of monocyte-derived macrophages in small ruminants. Vet. Immunol. Immunopathol. 2020, 230, 110131. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Escobar, M.; Calero-Bernal, R.; Benavides, J.; Regidor-Cerrillo, J.; Guerrero-Molina, C.; Gutiérrez-Expósito, D.; Collantes-Fernández, E.; Ortega-Mora, L.M. Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks. Parasit. Vectors 2020, 13, 396. [Google Scholar] [CrossRef]
- Nischik, N.; Schade, B.; Dytnerska, K.; Długońska, H.; Reichmann, G.; Fischer, H.G. Attenuation of mouse-virulent Toxoplasma gondii parasites is associated with a decrease in interleukin-12-inducing tachyzoite activity and reduced expression of actin, catalase and excretory proteins. Microbes Infect. 2001, 3, 689–699. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, R.; Ferre, I.; Regidor-Cerrillo, J.; Gutiérrez-Expósito, D.; Ferrer, L.M.; Arteche-Villasol, N.; Moreno-Gonzalo, J.; Müller, J.; Aguado-Martínez, A.; Pérez, V.; et al. Virulence in mice of a Toxoplasma gondii type II isolate does not correlate with the outcome of experimental infection in pregnant sheep. Front. Cell. Infect. Microbiol. 2019, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Regidor-Cerrillo, J.; Gómez-Bautista, M.; Pereira-Bueno, J.; Aduriz, G.; Navarro-Lozano, V.; Risco-Castillo, V.; Férnandez-García, A.; Pedraza-Díaz, S.; Ortega-Mora, L.M. Isolation and genetic characterization of Neospora caninum from asymptomatic calves in Spain. Parasitology 2008, 135, 1651–1659. [Google Scholar] [CrossRef]
- Regidor-Cerrillo, J.; Gómez-Bautista, M.; Sodupe, I.; Aduriz, G.; Álvarez-García, G.; Del Pozo, I.; Ortega-Mora, L. In vitro invasion efficiency and intracellular proliferation rate comprise virulence-related phenotypic traits of Neospora caninum. Vet. Res. 2011, 42, 41. [Google Scholar] [CrossRef] [Green Version]
- Chacón-Salinas, R.; Serafín-López, J.; Ramos-Payán, R.; Méndez-Aragón, P.; Hernández-Pando, R.; Van Soolingen, D.; Flores-Romo, L.; Estrada-Parra, S.; Estrada-García, I. Differential pattern of cytokine expression by macrophages infected in vitro with different mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 2005, 140, 443–449. [Google Scholar] [CrossRef]
- Zhang, R.; Thabet, A.; Hiob, L.; Zheng, W.; Daugschies, A.; Bangoura, B. Mutual interactions of the apicomplexan parasites Toxoplasma gondii and Eimeria tenella with cultured poultry macrophages. Parasit. Vectors 2018, 11, 453. [Google Scholar] [CrossRef]
- Loeuillet, C.; Mondon, A.; Kamche, S.; Curri, V.; Boutonnat, J.; Cavaillès, P.; Cesbron-Delauw, M.F. Toxoplasma hypervirulence in the rat model parallels human infection and is modulated by the Toxo1 locus. Front. Cell. Infect. Microbiol. 2019, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Murillo-León, M.; Müller, U.B.; Zimmermann, I.; Singh, S.; Widdershooven, P.; Campos, C.; Alvarez, C.; Könen-Waisman, S.; Lukes, N.; Ruzsics, Z.; et al. Molecular mechanism for the control of virulent Toxoplasma gondii infections in wild-derived mice. Nat. Commun. 2019, 10, 1233. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, M.; Jiménez-Pelayo, L.; Horcajo, P.; Regidor-Cerrillo, J.; Ólafsson, E.B.; Bhandage, A.K.; Barragan, A.; Werling, D.; Ortega-Mora, L.M.; Collantes-Fernández, E. Differential responses of bovine monocyte-derived macrophages to infection by Neospora caninum isolates of high and low virulence. Front. Immunol. 2019, 10, 915. [Google Scholar] [CrossRef]
- Dellarupe, A.; Regidor-Cerrillo, J.; Jiménez-Ruiz, E.; Schares, G.; Unzaga, J.M.; Venturini, M.C.; Ortega-Mora, L.M. Comparison of host cell invasion and proliferation among Neospora caninum isolates obtained from oocysts and from clinical cases of naturally infected dogs. Exp. Parasitol. 2014, 145, 22–28. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Arranz, D.; Directores, S.; Collantes Fernández, E.; Regidor, J.; Luis, C.; Mora, M.O. Nuevos Modelos Animales Para El Estudio de La Infección Por “Neospora caninum” Durante La Gestación; Universidad Complutense de Madrid, Facultad de Veterinaria, Departamento de Sanidad Animal: Madrid, Spain, 2016. [Google Scholar]
- Untergasser, A.; Nijveen, H.; Rao, X.; Bisseling, T.; Geurts, R.; Leunissen, J.A.M. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 2007, 35, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, A.; Duyvejonck, H.; van Belleghem, J.D.; Gryp, T.; van Simaey, L.; Vermeulen, S.; van Mechelen, E.; Vaneechoutte, M. Comparison of procedures for RNA-extraction from peripheral blood mononuclear cells. PLoS ONE 2020, 15, e0229423. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, M.; Jiménez-Pelayo, L.; Horcajo, P.; Collantes-Fernández, E.; Ortega-Mora, L.M.; Regidor-Cerrillo, J. Neospora caninum infection induces an isolate virulence-dependent pro-inflammatory gene expression profile in bovine monocyte-derived macrophages. Parasit. Vectors 2020, 13, 374. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Black, L.; Oliveira, S.; Burrells, A.; Bartley, P.M.; Melo, R.P.B.; Chianini, F.; Palarea-Albaladejo, J.; Innes, E.A.; Kelly, P.J.; et al. Comparative virulence of Caribbean, Brazilian and European isolates of Toxoplasma gondii. Parasit. Vectors 2019, 12, 104. [Google Scholar] [CrossRef]
- Ribeiro-Andrade, M.; de Crasto Souza Carvalho, J.; Amorim da Silva, R.; da Conceição Carvalho, M.; Nascimento Porto, W.J.; Mota, R.A. Inter- and intra-genotype differences in induced cystogenesis of recombinant strains of Toxoplasma gondii isolated from chicken and pigs. Exp. Parasitol. 2019, 207, 107775. [Google Scholar] [CrossRef] [PubMed]
- Saraf, P.; Shwab, E.K.; Dubey, J.P.; Su, C. On the determination of Toxoplasma gondii virulence in mice. Exp. Parasitol. 2017, 174, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Sasai, M.; Pradipta, A.; Yamamoto, M. Host immune responses to Toxoplasma gondii. Int. Immunol. 2018, 30, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.S.; Lodoen, M.B. Mechanisms of human innate immune evasion by Toxoplasma gondii. Front. Cell. Infect. Microbiol. 2019, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radke, J.R.; Striepen, B.; Guerini, M.N.; Jerome, M.E.; Roos, D.S.; White, M.W. Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Mol. Biochem. Parasitol. 2001, 115, 165–175. [Google Scholar] [CrossRef]
- Portes, J.; Barrias, E.; Travassos, R.; Attias, M.; de Souza, W. Toxoplasma gondii mechanisms of entry into host cells. Front. Cell. Infect. Microbiol. 2020, 10, 294. [Google Scholar] [CrossRef]
- Suzuki, Y.; Conley, F.K.; Remington, J.S. Importance of endogenous IFN-gamma for prevention of toxoplasmic encephalitis in mice. J. Immunol. 1989, 143, 2045–2050. [Google Scholar]
- Mukhopadhyay, D.; Saeij, J.P.J. Assays to Evaluate Toxoplasma-Macrophage Interactions. Methods. Mol. Biol. 2020, 2071, 347–370. [Google Scholar]
- Israelsson, P.; Dehlin, E.; Nagaev, I.; Lundin, E.; Ottander, U.; Mincheva-Nilsson, L. Cytokine mRNA and protein expression by cell cultures of epithelial ovarian cancer-Methodological considerations on the choice of analytical method for cytokine analyses. Am. J. Reprod. Immunol. 2020, 84, e13249. [Google Scholar] [CrossRef] [Green Version]
- Meneceur, P.; Bouldouyre, M.-A.; Aubert, D.; Villena, I.; Menotti, J.; Sauvage, V.; Garin, J.F.; Derouin, F. In vitro susceptibility of various genotypic strains of Toxoplasma gondii to pyrimethamine, sulfadiazine, and atovaquone. Antimicrob. Agents Chemother. 2008, 52, 1269–1277. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Marple, A.H.; Ferguson, D.J.P.; Bzik, D.J.; Yap, G.S. Avirulent strains of Toxoplasma gondii Infect macrophages by active invasion from the phagosome. Proc. Natl. Acad. Sci. USA 2014, 111, 6437–6442. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, M.; Pardini, L.; Campero, L.M.; Helman, E.; Unzaga, J.M.; Venturini, M.C.; Moré, G. Evaluation of biological behavior of Toxoplasma gondii atypical isolates # 14 and # 163. Exp. Parasitol. 2020, 211, 107860. [Google Scholar] [CrossRef]
- Zhao, Y.; Reyes, J.; Rovira-Diaz, E.; Fox, B.A.; Bzik, D.J.; Yap, G.S. Cutting edge: CD36 mediates phagocyte tropism and avirulence of Toxoplasma gondii. J. Immunol. 2021, 207, 1507–1512. [Google Scholar] [CrossRef]
- Tait, E.D.; Hunter, C.A. Advances in understanding immunity to Toxoplasma gondii. Mem. Inst. Oswaldo Cruz 2009, 104, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Flynn, R.J.; Marshall, E.S. Parasite limiting macrophages promote IL-17 secretion in naive bovine CD4+ T-cells during Neospora caninum infection. Vet. Immunol. Immunopathol. 2011, 144, 423–429. [Google Scholar] [CrossRef]
- Melo, M.B.; Nguyen, Q.P.; Cordeiro, C.; Hassan, M.A.; Yang, N.; McKell, R.; Rosowski, E.E.; Julien, L.; Butty, V.; Dardé, M.L.; et al. Transcriptional analysis of murine macrophages infected with different toxoplasma strains identifies novel regulation of host signaling pathways. PLoS Pathog. 2013, 9, e1003779. [Google Scholar] [CrossRef]
- Scharton-Kersten, T.; Denkers, E.Y.; Gazzinelli, R.; Sher, A. Role of IL 12 in induction of cell-mediated immunity to Toxoplasma gondii. Res. Immunol. 1995, 146, 539–545. [Google Scholar] [CrossRef]
- Suzuki, Y.; Orellana, M.A.; Schreiber, R.D.; Remington, J.S. Interferon-γ: The major mediator of resistance against Toxoplasma gondii. Science 1988, 240, 516–518. [Google Scholar] [CrossRef]
- Silver, J.S.; Stumhofer, J.S.; Passos, S.; Ernst, M.; Hunter, C.A. IL-6 mediates the susceptibility of glycoprotein 130 hypermorphs to Toxoplasma gondii. J. Immunol. 2011, 187, 350–360. [Google Scholar] [CrossRef] [Green Version]
- Lang, C.; Groß, U.; Lüder, C.G.K. Subversion of innate and adaptive immune responses by Toxoplasma gondii. Parasitol. Res. 2007, 100, 191–203. [Google Scholar] [CrossRef]
- Bessieres, M.H.; Swierczynski, B.; Cassaing, S.; Miedouge, M.; Olle, P.; Segulela, J.P.; Pipy, B. Role of IFN-γ, TNF-α, IL4 and IL 10 in the regulation of experimental Toxoplasma gondii infection. J. Eukaryot. Microbiol. 1997, 44, 87s. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J. The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc. Natl. Acad. Sci. USA 2005, 102, 8686–8691. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J. Macrophages as a battleground for toxoplasma pathogenesis. Cell Host Microbe 2011, 9, 445–447. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Wang, C.; Luo, Q.; Xing, T.; Shen, J.; Wang, W. Toxoplasma gondii ROP16I deletion: The exacerbated impact on adverse pregnant outcomes in mice. Front. Microbiol. 2020, 10, 3151. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Butcher, B.A.; Fox, B.A.; Rommereim, L.M.; Kim, S.G.; Maurer, K.J.; Yarovinsky, F.; Herbert, D.R.; Bzik, D.J.; Denkers, E.Y. Toxoplasma gondii rhoptry kinase Rop16 activates Stat3 and Stat6 resulting in cytokine inhibition and arginase-1-dependent growth control. PLoS Pathog. 2011, 7, e1002236. [Google Scholar] [CrossRef]
- Chen, L.; Christian, D.A.; Kochanowsky, J.A.; Phan, A.T.; Clark, J.T.; Wang, S.; Berry, C.; Oh, J.; Chen, X.; Roos, D.S.; et al. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J. Exp. Med. 2020, 217, e20181757. [Google Scholar] [CrossRef]
- Jensen, K.D.C.; Hu, K.; Whitmarsh, R.J.; Hassan, M.A.; Julien, L.; Lu, D.; Chen, L.; Hunter, C.A.; Saeij, J.P.J. Toxoplasma gondii Rhoptry 16 kinase promotes host resistance to oral infection and intestinal inflammation only in the context of the dense granule protein Gra15. Infect. Immun. 2013, 81, 2156–2167. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, S.G.; Besteiro, S. The pathogenicity and virulence of Toxoplasma gondii. Virulence 2021, 12, 3095–3114. [Google Scholar] [CrossRef]
- Rezende-Oliveira, K.; Silva, N.M.; Mineo, J.R.; Rodrigues Junior, V. Cytokines and chemokines production by mononuclear cells from parturient women after stimulation with live Toxoplasma gondii. Placenta 2012, 33, 682–687. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Akira, S.; David, L.; Paul, S.; Robben, M.; Mordue, D.G.; Truscott, S.M. Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. J. Immunol. 2004, 172, 3686–3694. [Google Scholar] [CrossRef] [Green Version]
- Tuladhar, S.; Kochanowsky, J.A.; Bhaskara, A.; Ghotmi, Y.; Chandrasekaran, S.; Koshy, A.A. The ROP16III-dependent early immune response determines the subacute CNS immune response and type III Toxoplasma gondii survival. PLoS Pathog. 2019, 15, e1007856. [Google Scholar] [CrossRef]
- Malkwitz, I.; Berndt, A.; Daugschies, A.; Bangoura, B. Characterisation of susceptibility of chicken macrophages to infection with Toxoplasma gondii of type II and III strains. Exp. Parasitol. 2018, 187, 22–29. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Q.; Sun, X.; Lu, M.; Ehsan, M.; Hasan, M.W.; Xu, L.; Yan, R.F.; Song, X.K.; Li, X.R. Effects of recombinant Toxoplasma gondii citrate synthase I on the cellular functions of murine macrophages in vitro. Front. Microbiol. 2017, 8, 1376. [Google Scholar] [CrossRef] [Green Version]
- Guiton, R.; Vasseur, V.; Charron, S.; Arias, M.T.; Van Langendonck, N.; Buzoni-Gatel, D.; Ryffel, B.; Dimier-Poisson, I. Interleukin 17 receptor signaling is deleterious during Toxoplasma gondii infection in susceptible BL6 mice. J. Infect. Dis. 2010, 202, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Moroda, M.; Takamoto, M.; Iwakura, Y.; Nakayama, J.; Aosai, F. Interleukin-17Adeficient mice are highly susceptible to Toxoplasma gondii infection due to excessively induced T. gondii HSP70 and interferon gamma production. Infect. Immun. 2017, 85, e00399-17. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Jordan, M.S. Diversity of IL-17-producing T lymphocytes. Cell. Mol. Life. Sci. 2013, 70, 2271–2290. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Expósito, D.; González-Warleta, M.; Espinosa, J.; Vallejo-García, R.; Castro-Hermida, J.A.; Calvo, C.; Ferreras, M.C.; Pérez, V.; Benavides, J.; Mezo, M. Maternal immune response in the placenta of sheep during recrudescence of natural congenital infection of Neospora caninum. Vet. Parasitol. 2020, 285, 109204. [Google Scholar] [CrossRef]
- Chang, H.R.; Grau, G.E.; Pechère, J.C. Role of TNF and IL-1 in infections with Toxoplasma gondii. Immunology 1990, 69, 33–37. [Google Scholar]
- Wang, S.; Song, X.; Zhang, K.; Deng, S.; Jiao, P.; Qi, M.; Lian, Z.; Yao, Y. Overexpression of toll-like receptor 4 affects autophagy, oxidative stress, and inflammatory responses in monocytes of transgenic sheep. Front. Cell Dev. Biol. 2020, 8, 248. [Google Scholar] [CrossRef]
- Melchor, S.J.; Saunders, C.M.; Sanders, I.; Hatter, J.A.; Byrnes, K.A.; Coutermarsh-Ott, S.; Ewald, S.E. IL-1R regulates disease tolerance and cachexia in Toxoplasma gondii infection. J. Immunol. 2020, 204, 3329–3338. [Google Scholar] [CrossRef] [PubMed]
Isolate | Type | Origin Clinical Sample | Genotype (ToxoDB) | Geographic Origin | In Vitro Model (AH1 Cell Line) | In Vivo Murine Model | |||
---|---|---|---|---|---|---|---|---|---|
Tachyzoite Yield 72 h (Zoites/ng of Total DNA) | Parasite Invasion Rate | Cumulative Mortality | Parasite Burden (30 dpi) | Clinical Sings | |||||
TgShSp1 | Type II PRU variant | Ovine fetal brain | #3 | Palencia, central Spain | 44.5 | Low | 0% | Medium | Mild clinical signs (ruffled coat and ascites) |
TgShSp2 | Clonal Type II | #1 | Navarra, northern Spain | 58.4 | Low | 0% | Medium | ||
TgShSp3 | Type II PRU variant | #3 | Palencia, central Spain | 112.5 | Medium | 0% | Low | ||
TgShSp11 | Type II PRU variant | Adult myocardium of chronic infected sheep | #3 | Cáceres, western Spain | 128.8 | Medium | 8% | Medium | Rounded back Loss of body condition |
TgShSp16 | Type II PRU variant | #3 | Badajoz, western Spain | 97.9 | Medium | 20.8% | High | ||
TgShSp24 | Type III | #2 | Ciudad Real, central Spain | 403.6 | High (Exponential growth and larger vacuoles) | 18.2% | High |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallejo, R.; Benavides, J.; Arteche-Villasol, N.; Fernández-Escobar, M.; Ferreras, M.D.C.; Pérez, V.; Gutiérrez-Expósito, D. Effects of Ovine Monocyte-Derived Macrophage Infection by Recently Isolated Toxoplasma gondii Strains Showing Different Phenotypic Traits. Animals 2022, 12, 3453. https://doi.org/10.3390/ani12243453
Vallejo R, Benavides J, Arteche-Villasol N, Fernández-Escobar M, Ferreras MDC, Pérez V, Gutiérrez-Expósito D. Effects of Ovine Monocyte-Derived Macrophage Infection by Recently Isolated Toxoplasma gondii Strains Showing Different Phenotypic Traits. Animals. 2022; 12(24):3453. https://doi.org/10.3390/ani12243453
Chicago/Turabian StyleVallejo, Raquel, Julio Benavides, Noive Arteche-Villasol, Mercedes Fernández-Escobar, María Del Carmen Ferreras, Valentín Pérez, and Daniel Gutiérrez-Expósito. 2022. "Effects of Ovine Monocyte-Derived Macrophage Infection by Recently Isolated Toxoplasma gondii Strains Showing Different Phenotypic Traits" Animals 12, no. 24: 3453. https://doi.org/10.3390/ani12243453
APA StyleVallejo, R., Benavides, J., Arteche-Villasol, N., Fernández-Escobar, M., Ferreras, M. D. C., Pérez, V., & Gutiérrez-Expósito, D. (2022). Effects of Ovine Monocyte-Derived Macrophage Infection by Recently Isolated Toxoplasma gondii Strains Showing Different Phenotypic Traits. Animals, 12(24), 3453. https://doi.org/10.3390/ani12243453