Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Diet, and Animal Housing
2.2. Sample Collection
2.3. Growth Performance Evaluation
2.4. Apparent Total Tract Nutrient Digestibility Analysis
2.5. Serum Parameter Analysis
2.6. Intestinal Morphological Analysis
2.7. Enzyme Activity
2.8. Colonic Microbiological Analysis
2.9. Metabolite Concentrations of Colonic Contents
2.10. RNA Isolation, Reverse Transcription and Real-Time Quantitative PCR
2.11. Statistical Analysis
3. Results
3.1. Influence of DF on Growth Performance and Nutrient Digestibility
3.2. Influence of DF on Serum Biochemical Parameters
3.3. Influence of DF on Intestinal Morphology and Mucosal Enzyme Activity
3.4. Influence of DF on Expression Levels of Genes Related to Intestinal Epithelial Functions
3.5. Influence of DF on Intestinal Microbiota and Microbial Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jarrett, S.; Ashworth, C.J. The role of dietary fibre in pig production, with a particular emphasis on reproduction. J. Anim. Sci. Biotechnol. 2018, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Capuano, E. The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr. 2017, 57, 3543–3564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.Y.F.; Smeele, R.J.M.; Harington, K.D. The effects of functional fiber on postprandial glycemia, energy intake, satiety, palatability and gastrointestinal wellbeing: A randomized crossover trial. Nutr. J. 2014, 13, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernardino, T.; Tatemoto, P.; de Moraes, J.E. High fiber diet reduces stereotypic behavior of gilts but does not affect offspring performance. Appl. Anim. Behav. Sci. 2021, 243, 105433. [Google Scholar] [CrossRef]
- Ratanpaul, V.; Zhang, D.; Williams, B.A. Interplay between grain digestion and fibre in relation to gastro-small-intestinal passage rate and feed intake in pigs. Eur. J. Nutr. 2021, 60, 4001–4017. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, D.; Yu, B. Effect of different dietary non-starch fiber fractions on growth performance, nutrient digestibility, and intestinal development in weaned pigs. Nutrition 2018, 51, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yin, J.; Tan, B.; Chen, J.; Zhang, H.; Li, Z.; Ma, X. Physiological function and application of dietary fiber in pig nutrition: A review. Anim. Nutr. 2021, 7, 259–267. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, S.; Yang, Q. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Arch. Anim. Nutr. 2016, 70, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Cuervo, A.; Salazar, N.; Ruas-Madiedo, P. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr. Res. 2013, 33, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Pu, G.; Hou, L.; Du, T. Effects of short-term feeding with high fiber diets on growth, utilization of dietary fiber, and microbiota in pigs. Front. Microbiol. 2022, 13, 963917. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.; Berrocoso, J.D. Review: Dietary fiber utilization and its effects on physiological functions and gut health of swine. Anim. Int. J. Anim. Biosci. 2015, 9, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Vuksan, V.; Sievenpiper, J.L.; Jovanovski, E. Effect of soluble-viscous dietary fibre on coronary heart disease risk score across 3 population health categories: Data from randomized, double-blind, placebo-controlled trials. Appl. Physiol. Nutr. Metab. Physiol. Appl. Nutr. Metab. 2020, 45, 801–804. [Google Scholar] [CrossRef] [PubMed]
- Budhwar, S.; Chakraborty, M.; Sethi, K. Antidiabetic properties of rice and wheat bran—A review. J. Food Biochem. 2020, 44, e13424. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.E.L. Dietary fibre and cardiovascular health: A review of current evidence and policy. Proc. Nutr. Soc. 2020, 79, 61–67. [Google Scholar] [CrossRef]
- Han, P.; Li, P.; Zhou, W. Effects of various levels of dietary fiber on carcass traits, meat quality and myosin heavy chain I, IIa, IIx and IIb expression in muscles in Erhualian and Large White pigs. Meat Sci. 2020, 169, 108160. [Google Scholar] [CrossRef]
- Yang, S.L.; Wang, Z.G.; Liu, B. Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genet. Sel. Evol. GSE 2003, 35, 657–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wei, Y.; Chen, J. Growth, carcass characteristics and meat quality of Chinese indigenous Yanan pig crossbred with Duroc and Berkshire genotypes. Anim. Prod. Sci. 2019, 59, 1147. [Google Scholar] [CrossRef]
- Zhang, X.D.; Zhang, S.J.; Ding, Y.Y. Association between ADSL, GARS-AIRS-GART, DGAT1, and DECR1 expression levels and pork meat quality traits. Genet. Mol. Res. GMR 2015, 14, 14823–14830. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, Q.; Xu, H. Comparison and relationship between meat colour and antioxidantcapacity of different pig breeds. Anim. Prod. Sci. 2018, 58, 2152. [Google Scholar] [CrossRef]
- Diao, S.; Xu, Z.; Ye, S. Exploring the genetic features and signatures of selection in South China indigenous pigs. J. Integr. Agric. 2021, 20, 1359–1371. [Google Scholar] [CrossRef]
- Tao, J.; Qin, Z.-Q.; Tao, Y. Genetic relationships among Chinese pigs and other pig populations from Hunan Province, China. Anim. Genet. 2007, 38, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Chai, Y.L.; Jiang, J. The complete mitochondrial genome of the Taoyuan Black pig. Mitochondrial DNA 2015, 26, 779–780. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Chu, H.P.; Jiang, Y.N. Empirical Selection of Informative Microsatellite Markers within Co-ancestry Pig Populations Is Required for Improving the Individual Assignment Efficiency. Asian-Australas. J. Anim. Sci. 2014, 27, 616–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Huang, M.; Zhuang, Z. Genomic Analyses Revealed the Genetic Difference and Potential Selection Genes of Growth Traits in Two Duroc Lines. Front. Vet. Sci. 2021, 8, 725367. [Google Scholar] [CrossRef] [PubMed]
- Giuffra, E.; Kijas, J.M.; Amarger, V. The origin of the domestic pig: Independent domestication and subsequent introgression. Genetics 2000, 154, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (U.S.). Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Latimer, G.W., Jr. Official Methods of Analysis of AOAC International, 20th ed.; AOAC International: Rockville, MD, USA, 2016. [Google Scholar]
- Wan, J.; Zhang, J.; Chen, D. Alginate oligosaccharide-induced intestinal morphology, barrier function and epithelium apoptosis modifications have beneficial effects on the growth performance of weaned pigs. J. Anim. Sci. Biotechnol. 2018, 9, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, J.M.; Fialho, R.; Albuquerque, A. Growth, blood, carcass and meat quality traits from local pig breeds and their crosses. Anim. Int. J. Anim. Biosci. 2020, 14, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Borin, K.; Lindberg, J.E.; Ogle, R.B. Effect of variety and preservation method of cassava leaves on diet digestibility by indigenous and improved pigs. Anim. Sci. 2005, 80, 319–324. [Google Scholar] [CrossRef]
- Yang, L.; Bian, G.; Su, Y. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian-Australas. J. Anim. Sci. 2014, 27, 898–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pu, G.; Li, P.; Du, T.; Niu, Q. Adding Appropriate Fiber in Diet Increases Diversity and Metabolic Capacity of Distal Gut Microbiota without Altering Fiber Digestibility and Growth Rate of Finishing Pig. Front. Microbiol. 2020, 11, 533. [Google Scholar] [CrossRef]
- Heyer, C.M.E.; Wang, L.F.; Beltranena, E. Nutrient digestibility of extruded canola meal in ileal-cannulated growing pigs and effects of its feeding on diet nutrient digestibility and growth performance in weaned pigs. J. Anim. Sci. 2021, 99, skab135. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, D.; Yu, B. Influences of Selenium-Enriched Yeast on Growth Performance, Immune Function, and Antioxidant Capacity in Weaned Pigs Exposure to Oxidative Stress. BioMed Res. Int. 2021, 2021, 5533210. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, D.; Wood, C.D.; Castro-Obregón, S. Reactive oxygen species: A radical role in development? Free. Radic. Biol. Med. 2010, 49, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Raha, S.; Robinson, B.H. Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 2000, 25, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal. 2012, 24, 981–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.D.; Smith, G.P. Analysis of lick rate measure the positive and negative feedback effects of carbohydrates on eating. Appetite 1988, 11, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Encinas, M.A.; Carvajal-Millan, E.; Rascon-Chu, A. Ferulated Arabinoxylans and Their Gels: Functional Properties and Potential Application as Antioxidant and Anticancer Agent. Oxidative Med. Cell. Longev. 2018, 2018, 2314759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Fígares, I.; Lachica, M.; Nieto, R. Serum profile of metabolites and hormones in obese (Iberian) and lean (Landrace) growing gilts fed balanced or lysine deficient diets. Livest. Sci. 2007, 110, 73–81. [Google Scholar] [CrossRef]
- Bressan, M.C.; Belo, A.T.; Amaral, A. The impact of genetic groups (Alentejano and F1 Landrace x Large White pigs) and body weight (90, 120 and 160 kg) on blood metabolites. Livest. Sci. 2022, 255, 104810. [Google Scholar] [CrossRef]
- Segar, M.W.; Patel, R.B.; Patel, K.V. Association of Visit-to-Visit Variability in Kidney Function and Serum Electrolyte Indexes With Risk of Adverse Clinical Outcomes Among Patients With Heart Failure With Preserved Ejection Fraction. JAMA Cardiol. 2021, 6, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Luise, D.; Cardenia, V.; Zappaterra, M.; Motta, V.; Bosi, P. Evaluation of Breed and Parity Order Effects on the Lipid Composition of Porcine Colostrum. J. Agric. Food. Chem. 2018, 66, 12911–12920. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Nong, Q.; Wang, J.; Chen, W. Breed difference and regulatory role of CRTC3 in porcine intramuscular adipocyte. Anim. Genet. 2020, 51, 521–530. [Google Scholar] [CrossRef]
- Ellis, P.R.; Roberts, F.G.; Low, A.G.; Morgan, L.M. The effect of high-molecular-weight guar gum on net apparent glucose absorption and net apparent insulin and gastric inhibitory polypeptide production in the growing pig: Relationship to rheological changes in jejunal digesta. Br. J. Nutr. 1995, 74, 539–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regmi, P.R.; van Kempen, T.A.; Matte, J.J.; Zijlstra, R.T. Starch with high amylose and low in vitro digestibility increases short-chain fatty acid absorption, reduces peak insulin secretion, and modulates incretin secretion in pigs. J. Nutr. 2011, 141, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Kiela, P.R.; Ghishan, F.K. Physiology of Intestinal Absorption and Secretion. Best practice & research. Clin. Gastroenterol. 2016, 30, 145–159. [Google Scholar]
- Bailey, M.A.; Holscher, H.D. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv. Nutr. 2018, 9, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Brien, D.P.; Nelson, L.A.; Huang, F.S. Intestinal adaptation: Structure, function, and regulation. Semin. Pediatr. Surg. 2001, 10, 56–64. [Google Scholar] [CrossRef]
- Pluske, J.R.; Thompson, M.J.; Atwood, C.S. Maintenance of villus height and crypt depth, and enhancement of disaccharide digestion and monosaccharide absorption, in piglets fed on cows’ whole milk after weaning. Br. J. Nutr. 1996, 76, 409–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Yu, B.; Chen, D. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. J. Nutr. Biochem. 2018, 59, 84–92. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Yu, B. Effects of dietary inulin supplementation on growth performance, intestinal barrier integrity and microbial populations in weaned pigs. Br. J. Nutr. 2020, 124, 296–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyner, A.; Nyambe-Silavwe, H.; Williamson, G. Inhibition of Human and Rat Sucrase and Maltase Activities To Assess Antiglycemic Potential: Optimization of the Assay Using Acarbose and Polyphenols. J. Agric. Food Chem. 2017, 65, 8643–8651. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Jiang, F.; Xu, Q. New insights into the role of chitosan oligosaccharide in enhancing growth performance, antioxidant capacity, immunity and intestinal development of weaned pigs. RSC Adv. 2017, 7, 9669–9679. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, D.; Michiels, J.; De Smet, S. Dietary fiber affects intestinal mucosal barrier function by regulating intestinal bacteria in weaning piglets. Commun. Agric. Appl. Biol. Sci. 2013, 78, 71–78. [Google Scholar] [PubMed]
- Okumura, R.; Takeda, K. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 2013, 70, 631–659. [Google Scholar] [CrossRef] [PubMed]
- Odenwald, M.A.; Choi, W.; Kuo, W.-T.; Singh, G.; Sailer, A.; Wang, Y.; Shen, L.; Fanning, A.S.; Turner, J.R. The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J. Biol. Chem. 2018, 293, 17317–17335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokumasu, R.; Yamaga, K.; Yamazaki, Y. Dose-Dependent Role of Claudin-1 In Vivo in Orchestrating Features of Atopic Dermatitis. Proc. Natl. Acad. Sci. USA 2016, 113, E4061–E4068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangild, P.T.; Tappenden, K.A.; Malo, C. Glucagon-like peptide 2 stimulates intestinal nutrient absorption in parenterally fed newborn pigs. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 160–167. [Google Scholar] [CrossRef]
- Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc. 2003, 62, 67–72. [Google Scholar] [CrossRef]
- He, J.; Xie, H.; Chen, D. Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs. Eur. J. Nutr. 2021, 60, 715–727. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, Y.; Yu, B. Effect of β-Glucan Supplementation on Growth Performance and Intestinal Epithelium Functions in Weaned Pigs Challenged by Enterotoxigenic Escherichia coli. Antibiotics 2022, 11, 519. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Grant, L.J.; Gidley, M.J. Gut Fermentation of Dietary Fibres: Physico-Chemistry of Plant Cell Walls and Implications for Health. Int. J. Mol. Sci. 2017, 18, 2203. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Chen, H.; Zhang, M.; Wu, T.; Liu, R. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food Funct. 2019, 10, 7174–7187. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 2013, 504, 451–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lackraj, T.; Kim, J.; Tran, S.-L. Differential modulation of flagella expression in enterohaemorrhagic Escherichia coli O157: H7 by intestinal short-chain fatty acid mixes. Microbiology 2016, 162, 1761–1772. [Google Scholar] [CrossRef]
- Yao, W.; Gong, Y.; Li, L. The effects of dietary fibers from rice bran and wheat bran on gut microbiota: An overview. Food Chem. X 2022, 13, 100252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, L.; Ma, S. High-Dietary Fiber Intake Alleviates Antenatal Obesity-Induced Postpartum Depression: Roles of Gut Microbiota and Microbial Metabolite Short-chain Fatty Acid Involved. J. Agric. Food Chem. 2020, 68, 13697–13710. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, C.; Li, F. Characteristics of faecal bacterial flora and volatile fatty acids in Min pig, Landrace pig, and Yorkshire pig. Electron. J. Biotechnol. 2021, 53, 33–43. [Google Scholar] [CrossRef]
Item | Diet | |
---|---|---|
Ingredients % | BD | HBD |
Corn | 35.70 | 35.53 |
Extruded corn | 27.41 | 27.41 |
Extruded full-fat soybean | 8.49 | 4.00 |
Soybean meal | 18.00 | 19.60 |
Fish meal | 4.50 | 5.90 |
Soybean oil | 1.68 | 5.20 |
WBF | 0.00 | 4.30 |
Sucrose | 2.00 | 0.00 |
Limestone | 0.50 | 0.30 |
Dicalcium phosphate | 0.58 | 0.50 |
NaCl | 0.20 | 0.20 |
L-Lysine HCl (78%) | 0.32 | 0.40 |
DL-Methionine | 0.09 | 0.10 |
L-Threonine (98.5%) | 0.02 | 0.05 |
L-Tryptophan (98%) | 0.01 | 0.01 |
Choline chloride | 0.15 | 0.15 |
Vitamin premix 1 | 0.05 | 0.05 |
Mineral premix 2 | 0.30 | 0.30 |
Total | 100.00 | 100.00 |
Nutrient level (contents) | ||
Digestible energy (calculated, MJ/kg) | 3.49 | 3.50 |
Crude protein | 19.15 | 19.16 |
Calcium | 0.73 | 0.71 |
Available phosphorus | 0.39 | 0.40 |
Lysine | 1.22 | 1.29 |
Methionine | 0.39 | 0.42 |
Methionine + cysteine | 0.66 | 0.67 |
Threonine | 0.70 | 0.72 |
Tryptophan | 0.21 | 0.33 |
Soluble dietary fiber | 0.68 | 1.43 |
Insoluble dietary fiber | 2.46 | 5.43 |
Total fiber | 3.14 | 6.86 |
Item | Duroc | Taoyuan | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
DB | DF | TB | TF | Breed | Diet | Interaction | ||
IBW | 18.51 | 18.49 | 13.88 | 13.87 | ||||
FBW | 27.88 | 26.85 | 24.29 | 24.50 | ||||
ADFI (g/d) | 761.92 b | 748.02 b | 906.49 a | 855.96 a | 26.20 | 0.02 | 0.52 | 0.72 |
ADG (g/d) | 374.89 ab | 334.22 b | 416.60 a | 425.40 a | 13.18 | 0.11 | 0.52 | 0.32 |
F:G | 2.11 | 2.06 | 2.19 | 2.02 | 0.04 | 0.62 | 0.10 | 0.59 |
DM% | 83.36 b | 80.11 d | 86.48 a | 81.34 c | 0.47 | 0.01 | 0.01 | 0.01 |
EE% | 61.22 b | 57.08 b | 71.60 a | 71.16 a | 0.01 | 0.01 | 0.18 | 0.26 |
GE% | 84.36 b | 81.20 d | 88.12 a | 82.78 c | 0.01 | 0.01 | 0.01 | 0.01 |
CP% | 77.87 b | 73.37 d | 83.39 a | 75.87 c | 0.01 | 0.01 | 0.01 | 0.01 |
Ash% | 41.74 | 42.91 | 43.91 | 42.85 | 0.01 | 0.22 | 0.95 | 0.21 |
CF% | 25.39 b | 46.10 a | 56.40 a | 52.60 a | 2.33 | 0.01 | 0.01 | 0.01 |
Item | Duroc | Taoyuan | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
DB | DF | TB | TF | Breed | Diet | Interaction | ||
BUN (mmol/mL) | 5.06 b | 6.04 a | 2.63 d | 4.32 c | 0.24 | 0.01 | 0.01 | 0.12 |
GLU (mmol/mL) | 5.07 a | 5.30 a | 4.92 a | 4.26 b | 0.11 | 0.01 | 0.28 | 0.03 |
TC (mmol/mL) | 2.02 | 2.29 | 2.30 | 2.34 | 0.06 | 0.14 | 0.15 | 0.31 |
TG (mmol/mL) | 0.61 a | 0.64 a | 0.48 b | 0.48 b | 0.02 | 0.01 | 0.76 | 0.70 |
DAO (pg/mL) | 66.70 | 73.01 | 66.00 | 70.94 | 1.30 | 0.59 | 0.03 | 0.79 |
D-lactate (μg/L) | 337.02 a | 311.93 b | 236.75 c | 251.79 c | 7.40 | 0.01 | 0.47 | 0.01 |
CAT (U/mL) | 33.90 a | 31.23 a | 25.99 b | 29.08 a | 1.36 | 0.07 | 0.94 | 0.30 |
GSH (U/mL) | 653.87 b | 740.46 bc | 779.81 ac | 830.89 a | 18.38 | 0.01 | 0.04 | 0.58 |
MDA (U/mL) | 2.01 a | 1.61 b | 2.17 a | 1.68 b | 0.07 | 0.03 | 0.01 | 0.72 |
T-AOC (U/mL) | 2.43 b | 2.45 b | 3.42 a | 3.40 a | 0.18 | 0.01 | 0.88 | 0.82 |
T-SOD (U/mL) | 139.19 a | 127.02 b | 129.54 b | 141.13 a | 2.05 | 0.55 | 0.94 | 0.01 |
Item | Duroc | Taoyuan | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
DB | DF | TB | TF | Breed | Diet | Interaction | ||
Duodenum | ||||||||
Villus height (μm) | 338.84 b | 430.96 a | 347.16 b | 441.75 a | 10.75 | 0.54 | 0.01 | 0.94 |
Crypt depth (μm) | 347.96 a | 325.17 ac | 327.19 ac | 289.68 bc | 8.50 | 0.09 | 0.07 | 0.65 |
V/C | 0.99 c | 1.34 b | 1.07 c | 1.55 a | 0.05 | 0.03 | 0.01 | 0.30 |
Jejunum | ||||||||
Villus height (μm) | 338.43 d | 396.13 b | 384.35 c | 445.85 a | 9.71 | 0.01 | 0.01 | 0.90 |
Crypt depth (μm) | 231.83 ab | 210.18 ab | 232.91 a | 208.00 b | 4.47 | 0.95 | 0.01 | 0.85 |
V/C | 1.48 d | 1.90 b | 1.65 c | 2.14 a | 0.05 | 0.01 | 0.01 | 0.55 |
Ileum | ||||||||
Villus height (μm) | 330.13 b | 361.78 ab | 368.55 a | 404.37 a | 9.30 | 0.01 | 0.03 | 0.86 |
Crypt depth (μm) | 214.90 | 209.04 | 211.31 | 202.57 | 5.86 | 0.68 | 0.55 | 0.91 |
V/C | 1.51 b | 1.79 ab | 1.79 ab | 2.01 a | 0.06 | 0.02 | 0.02 | 0.79 |
Item | Duroc | Taoyuan | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
DB | DF | TB | TF | Breed | Diet | Interaction | ||
Duodenum | ||||||||
Maltase (U/mgprot) | 99.18 | 98.96 | 115.76 | 119.79 | 5.53 | 0.11 | 0.87 | 0.85 |
Sucrase (U/mgprot) | 19.26 | 24.14 | 19.38 | 21.25 | 1.61 | 0.68 | 0.32 | 0.65 |
Lactase (U/mgprot) | 5.44 | 2.54 | 5.25 | 5.43 | 0.55 | 0.22 | 0.21 | 0.16 |
Jejunum | ||||||||
Maltase (U/mgprot) | 147.72 b | 211.42 a | 124.97 bc | 97.01 c | 10.11 | 0.01 | 0.22 | 0.01 |
Sucrase (U/mgprot) | 86.13 a | 73.80 ac | 61.02 c | 61.44 c | 3.85 | 0.15 | 0.42 | 0.39 |
Lactase (U/mgprot) | 13.67 | 16.61 | 16.23 | 11.65 | 0.99 | 0.54 | 0.68 | 0.06 |
Ileum | ||||||||
Maltase (U/mgprot) | 282.56 ac | 350.90 a | 179.81 b | 243.18 bc | 17.78 | 0.01 | 0.04 | 0.94 |
Sucrase (U/mgprot) | 57.13 a | 75.01 a | 22.41 b | 53.90 a | 5.28 | 0.01 | 0.01 | 0.45 |
Lactase (U/mgprot) | 2.30 | 2.66 | 2.16 | 2.66 | 0.17 | 0.84 | 0.22 | 0.85 |
Item | Duroc | Taoyuan | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
DB | DF | TB | TF | Breed | Diet | Interaction | ||
Microbial populations (lg(copies/g)) | ||||||||
Escherichia coli | 9.24 a | 8.05 b | 8.13 b | 8.11 b | 0.15 | 0.07 | <0.05 | 0.04 |
Lactobacillus | 7.68 b | 7.68 b | 7.71 b | 8.32 a | 0.10 | 0.10 | 0.12 | 0.12 |
Bifidobacterium | 6.37 b | 6.12 b | 6.80 a | 6.81 a | 0.08 | 0.01 | 0.39 | 0.31 |
Bacillus | 8.92 | 8.93 | 8.94 | 8.99 | 0.04 | 0.56 | 0.65 | 0.79 |
Total bacteria | 12.01 ab | 12.05 a | 11.89 b | 12.01 ab | 0.03 | 0.15 | 0.13 | 0.47 |
VFA (g/g) | ||||||||
Acetic acid | 2.90 b | 3.49 a | 2.78 b | 3.57 a | 0.11 | 0.92 | 0.01 | 0.60 |
Propionic acid | 1.26 b | 1.58 a | 1.17 b | 1.54 a | 0.05 | 0.45 | 0.01 | 0.82 |
Butyrate acid | 0.62 ab | 0.72 ab | 0.55 b | 0.83 a | 0.04 | 0.79 | 0.02 | 0.23 |
Total acid | 5.24 b | 6.16 ab | 5.07 b | 6.28 a | 0.18 | 0.94 | 0.01 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Luo, Y.; Kong, X.; Yu, B.; Zheng, P.; Huang, Z.; Mao, X.; Yu, J.; Luo, J.; Yan, H.; et al. Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals 2022, 12, 3298. https://doi.org/10.3390/ani12233298
Liu J, Luo Y, Kong X, Yu B, Zheng P, Huang Z, Mao X, Yu J, Luo J, Yan H, et al. Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals. 2022; 12(23):3298. https://doi.org/10.3390/ani12233298
Chicago/Turabian StyleLiu, Jiahao, Yuheng Luo, Xiangfeng Kong, Bing Yu, Ping Zheng, Zhiqing Huang, Xiangbing Mao, Jie Yu, Junqiu Luo, Hui Yan, and et al. 2022. "Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds" Animals 12, no. 23: 3298. https://doi.org/10.3390/ani12233298
APA StyleLiu, J., Luo, Y., Kong, X., Yu, B., Zheng, P., Huang, Z., Mao, X., Yu, J., Luo, J., Yan, H., & He, J. (2022). Effects of Dietary Fiber on Growth Performance, Nutrient Digestibility and Intestinal Health in Different Pig Breeds. Animals, 12(23), 3298. https://doi.org/10.3390/ani12233298