Improvements in Performance of Nursery Pigs Provided with Supplemental Oil Derived from Black Soldier Fly (Hermetia illucens) Larvae
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Experimental Diets and Manufacturing
2.3. Sampling and Measurements
2.4. Statistical Analyses
3. Results and Discussion
3.1. Ingredient and Feed Analyses
3.2. Growth Performance
3.3. Serological and Hematological Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Huis, A. Edible insects: Challenges and prospects. Entomol. Res. 2022, 52, 161–177. [Google Scholar] [CrossRef]
- Koutsos, L.; McComb, A.; Finke, M.; Stull, V. Insect Composition and Uses in Animal Feeding Applications: A Brief Review. Ann. Entomol. Soc. Am. 2019, 112, 544–551. [Google Scholar] [CrossRef]
- Oonincx, D.G.; van Broekhoven, S.; van Huis, A.; van Loon, J.J. Feed Conversion, Survival and Development, and Composition of Four Insect Species on Diets Composed of Food By-Products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Ankers, P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol. 2014, 197, 1–33. [Google Scholar] [CrossRef]
- Spranghers, T.; Ottoboni, M.; Klootwijk, C.; Ovyn, A.; Deboosere, S.; De Meulenaer, B.; Michiels, J.; Eeckhout, M.; De Clercq, P.; De Smet, S. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J. Sci. Food Agric. 2017, 97, 2594–2600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Shelomi, M. Review of Black Soldier Fly (Hermetia illucens) as Animal Feed and Human Food. Foods 2017, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- De Marco, M.; Martínez, S.; Hernandez, F.; Madrid, J.; Gai, F.; Rotolo, L.; Belforti, M.; Bergero, D.; Katz, H.; Dabbou, S.; et al. Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim. Feed Sci. Technol. 2015, 209, 211–218. [Google Scholar] [CrossRef]
- Do, S.; Koutsos, E.A.; Utterback, P.L.; Parsons, C.M.; de Godoy, M.R.C.; Swanson, K.S. Amino acid digestibility and digestible indispensable amino acid score-like values of black soldier fly larvae fed different forms and concentrations of calcium using the precision-fed cecectomized rooster assay. J. Anim. Sci. 2021, 99, skab124. [Google Scholar] [CrossRef]
- Do, S.; Koutsos, L.; Utterback, P.L.; Parsons, C.M.; de Godoy, M.R.C.; Swanson, K.S. Nutrient and AA digestibility of black soldier fly larvae differing in age using the precision-fed cecectomized rooster assay1. J. Anim. Sci. 2020, 98, skz363. [Google Scholar] [CrossRef]
- Kortelainen, T.; Siljander-Rasi, H.; Tuori, M.; Partanen, K. Ileal Digestibility of Amino Acids in Novel Organic Protein Feedstuffs: Black Soldier Fly Larvae Meal (Hermetia illucens); MTT Agrifood Research: Jokioinen, Finland, 2014. [Google Scholar]
- Crosbie, M.; Zhu, C.; Shoveller, A.K.; Huber, L.A. Standardized ileal digestible amino acids and net energy contents in full fat and defatted black soldier fly larvae meals (Hermetia illucens) fed to growing pigs. Transl. Anim. Sci. 2020, 4, txaa104. [Google Scholar] [CrossRef]
- Elahi, U.; Xu, C.C.; Wang, J.; Lin, J.; Wu, S.G.; Zhang, H.J.; Qi, G.H. Insect meal as a feed ingredient for poultry. Anim. Biosci. 2022, 35, 332–346. [Google Scholar] [CrossRef]
- Hong, J.; Kim, Y.Y. Insect as feed ingredients for pigs. Anim. Biosci. 2022, 35, 347–355. [Google Scholar] [CrossRef]
- Gougbedji, A.; Detilleux, J.; Laleye, P.A.; Francis, F.; Caparros Megido, R. Can Insect Meal Replace Fishmeal? A Meta-Analysis of the Effects of Black Soldier Fly on Fish Growth Performances and Nutritional Values. Animals 2022, 12, 1700. [Google Scholar] [CrossRef]
- Benzertiha, A.; Kierończyk, B.; Rawski, M.; Mikołajczak, Z.; Urbański, A.; Nogowski, L.; Józefiak, D. Insect Fat in Animal Nutrition—A Review. Ann. Anim. Sci. 2020, 20, 1217–1240. [Google Scholar] [CrossRef]
- Lu, S.; Taethaisong, N.; Meethip, W.; Surakhunthod, J.; Sinpru, B.; Sroichak, T.; Archa, P.; Thongpea, S.; Paengkoum, S.; Purba, R.A.P.; et al. Nutritional Composition of Black Soldier Fly Larvae (Hermetia illucens L.) and Its Potential Uses as Alternative Protein Sources in Animal Diets: A Review. Insects 2022, 13, 831. [Google Scholar] [CrossRef]
- Barragan-Fonseca, K.B.; Dicke, M.; van Loon, J.J.A. Nutritional value of the black soldier fly (Hermetia illucens L.) and its suitability as animal feed—A review. J. Insects Food Feed 2017, 3, 105–120. [Google Scholar] [CrossRef]
- Georgescu, B.; Boaru, A.M.; Muntean, L.; Sima, N.; Struti, D.I.; Papuc, T.A.; Georgescu, C. Modulating the Fatty Acid Profiles of Hermetia illucens Larvae Fats by Dietary Enrichment with Different Oilseeds: A Sustainable Way for Future Use in Feed and Food. Insects 2022, 13, 801. [Google Scholar] [CrossRef]
- Li, X.; Dong, Y.; Sun, Q.; Tan, X.; You, C.; Huang, Y.; Zhou, M. Growth and Fatty Acid Composition of Black Soldier Fly Hermetia illucens (Diptera: Stratiomyidae) Larvae Are Influenced by Dietary Fat Sources and Levels. Animals 2022, 12, 486. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Decuypere, J.A.; Dierick, N.A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: Concept, possibilities and limitations: An overview. Nutr. Res. Rev. 2003, 16, 193–210. [Google Scholar] [CrossRef]
- Jackman, J.A.; Boyd, R.D.; Elrod, C.C. Medium-chain fatty acids and monoglycerides as feed additives for pig production: Towards gut health improvement and feed pathogen mitigation. J. Anim. Sci. Biotechnol. 2020, 11, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zentek, J.; Buchheit-Renko, S.; Ferrara, F.; Vahjen, W.; Van Kessel, A.G.; Pieper, R. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim. Health Res. Rev. 2011, 12, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.G.; Lindemann, M.D. A spreadsheet method for experimental animal allotment. J. Anim. Sci. 2007, 85 (Suppl. 2), 112. [Google Scholar]
- Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th ed.; American Society of Animal Science: Champaign, IL, USA, 2020.
- National Swine Nutrition Guide. Diet Formulation and Evaluation Program; U.S. Pork Center of Excellence: Des Moines, IA, USA, 2010. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Stalder, K. Pork Industry Productivity Analysis; National Pork Board: Des Moines, IA, USA, 2017. [Google Scholar]
- Ipema, A.F.; Bokkers, E.A.M.; Gerrits, W.J.J.; Kemp, B.; Bolhuis, J.E. Providing live black soldier fly larvae (Hermetia illucens) improves welfare while maintaining performance of piglets post-weaning. Sci. Rep. 2021, 11, 7371. [Google Scholar] [CrossRef]
- Ipema, A.F.; Gerrits, W.J.J.; Bokkers, E.A.M.; Kemp, B.; Bolhuis, J.E. Live black soldier fly larvae (Hermetia illucens) provisioning is a promising environmental enrichment for pigs as indicated by feed- and enrichment-preference tests. Appl. Anim. Behav. Sci. 2021, 244, 105481. [Google Scholar] [CrossRef]
- Kim, B.; Kim, M.; Jeong, J.Y.; Kim, H.R.; Ji, S.Y.; Jung, H.; Park, S.H. Black soldier fly (Hermetia illucens) larvae oil as an alternative fat ingredient to soybean oil in laying hen diets. Anim. Biosci. 2022, 35, 1408–1417. [Google Scholar] [CrossRef]
- Kierończyk, B.; Sypniewski, J.; Mikołajczak, Z.; Rawski, M.; Pruszyńska-Oszmałek, E.; Sassek, M.; Kołodziejski, P.; Józefiak, D. Replacement of soybean oil with cold-extracted fat from Hermetia illucens in young turkey diets: Effects on performance, nutrient digestibility, selected organ measurements, meat and liver tissue traits, intestinal microbiota modulation, and physiological and immunological status. Anim. Feed Sci. Technol. 2022, 286, 115210. [Google Scholar] [CrossRef]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Wang, F.; Ma, X. Evaluation of full-fat Hermetia illucens larvae meal as a fishmeal replacement for weanling piglets: Effects on the growth performance, apparent nutrient digestibility, blood parameters and gut morphology. Anim. Feed Sci. Technol. 2020, 264, 114431. [Google Scholar] [CrossRef]
- Håkenåsen, I.M.; Grepperud, G.H.; Hansen, J.Ø.; Øverland, M.; Ånestad, R.M.; Mydland, L.T. Full-fat insect meal in pelleted diets for weaned piglets: Effects on growth performance, nutrient digestibility, gastrointestinal function, and microbiota. Anim. Feed. Sci. Technol. 2021, 281, 115086. [Google Scholar] [CrossRef]
- Pluske, J.R.; Williams, I.H.; Aherne, F.X. Nutrition of the Neonatal Pig In The Neonatal Pig: Development and Survival; Varley, M.A., Ed.; CAB International: London, UK, 1995; pp. 187–235. [Google Scholar]
- Williams, I.H. Growth of the weaned pig. In Weaning the Pig: Concepts and Consequences; Pluske, J.R., Le Dividich, J., Verstegen, M.W.A., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2003; pp. 17–35. [Google Scholar]
- Dierick, N.A.; Decuypere, J.A.; Molly, K.; Van Beek, E.; Vanderbeke, E. The combined use of triacylglycerols (TAGs) containing medium chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative to nutritional antibiotics in piglet nutrition: II. In vivo release of MCFAs in gastric cannulated and slaughtered piglets by endogenous and exogenous lipases; effects on the luminal gut flora and growth performance. Livest. Prod. Sci. 2002, 76, 1–16. [Google Scholar] [CrossRef]
- Dierick, N.A.; Decuypere, J.A.; Molly, K.; Van Beek, E.; Vanderbeke, E. The combined use of triacylglycerols containing medium-chain fatty acids (MCFAs) and exogenous lipolytic enzymes as an alternative for nutritional antibiotics in piglet nutrition: I. In vitro screening of the release of MCFAs from selected fat sources by selected exogenous lipolytic enzymes under simulated pig gastric conditions and their effects on the gut flora of piglets. Livest. Prod. Sci. 2002, 75, 129–142. [Google Scholar] [CrossRef]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Carr, J. Basic haematology and biochemistry. In Garth Pig Stockmanship Standards; Carr, J., Ed.; 5M Enterprises Ltd: Sheffield, UK, 1998. [Google Scholar]
- Mendoza, S.M.; Boyd, R.D.; Ferket, P.R.; van Heugten, E. Effects of dietary supplementation of the osmolyte betaine on growing pig performance and serological and hematological indices during thermoneutral and heat-stressed conditions. J. Anim. Sci. 2017, 95, 5040–5053. [Google Scholar] [CrossRef]
- Schiavone, A.; Cullere, M.; De Marco, M.; Meneguz, M.; Biasato, I.; Bergagna, S.; Dezzutto, D.; Gai, F.; Dabbou, S.; Gasco, L.; et al. Partial or total replacement of soybean oil by black soldier fly larvae (Hermetia illucens L.) fat in broiler diets: Effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital. J. Anim. Sci. 2016, 16, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Schiavone, A.; Dabbou, S.; De Marco, M.; Cullere, M.; Biasato, I.; Biasibetti, E.; Capucchio, M.T.; Bergagna, S.; Dezzutto, D.; Meneguz, M.; et al. Black soldier fly larva fat inclusion in finisher broiler chicken diet as an alternative fat source. Animal 2018, 12, 2032–2039. [Google Scholar] [CrossRef]
- Harris, K.B.; Pond, W.G.; Mersmann, H.J.; Smith, E.O.; Crossa, H.R.; Savella, J.W. Evaluation of fat sources on cholesterol and lipoproteins using pigs selected for high or low serum cholesterol. Meat Sci. 2003, 39, 55–61. [Google Scholar] [CrossRef]
- Sypniewski, J.; Kieronczyk, B.; Benzertiha, A.; Mikolajczak, Z.; Pruszynska-Oszmalek, E.; Kolodziejski, P.; Sassek, M.; Rawski, M.; Czekala, W.; Jozefiak, D. Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: Effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci. 2020, 61, 294–302. [Google Scholar] [CrossRef]
Ingredient | Diet Phase | ||
---|---|---|---|
1 | 2 | 3 | |
Corn, yellow dent | 31.38 | 48.35 | 55.36 |
Soybean meal, 47.5% CP | 24.50 | 29.80 | 34.66 |
Whey, permeate | 22.50 | 6.25 | - |
Poultry byproduct meal | 8.00 | 4.00 | - |
Plasma, spray-dried | 5.00 | 2.00 | - |
L-lysine·HCl (78.8% lysine) | 0.261 | 0.340 | 0.361 |
DL-methionine | 0.210 | 0.194 | 0.179 |
L-threonine | 0.115 | 0.137 | 0.140 |
L-tryptophan | - | 0.004 | - |
Monocalcium phosphate, 21% P | 0.660 | 1.264 | 1.534 |
Limestone | 0.629 | 0.863 | 1.156 |
Salt | 0.150 | 0.350 | 0.400 |
Copper sulfate, 25.2% Cu | 0.063 | 0.053 | - |
Zinc oxide, 72% Zn | 0.324 | 0.185 | - |
Vitamin premix 1 | 0.055 | 0.055 | 0.055 |
Mineral premix 2 | 0.150 | 0.150 | 0.150 |
Corn oil 3 | 6.00 | 6.00 | 6.00 |
Calculated Composition | |||
Metabolizable energy, Mcal/kg | 3.59 | 3.57 | 3.56 |
Net energy, Mcal/kg | 2.65 | 2.68 | 2.68 |
Lactose | 18.0 | 5.0 | 0 |
Crude protein, % | 24.61 | 23.11 | 21.66 |
Crude fat, % | 8.76 | 8.76 | 8.45 |
Ca, % | 0.85 | 0.80 | 0.80 |
Total P, % | 0.77 | 0.75 | 0.72 |
Available P, % | 0.50 | 0.45 | 0.40 |
Standardized ileal digestible amino acids, % | |||
Lys | 1.50 | 1.40 | 1.30 |
Thr | 0.93 | 0.87 | 0.81 |
Met | 0.51 | 0.49 | 0.47 |
Met+Cys | 0.87 | 0.81 | 0.75 |
Trp | 0.27 | 0.25 | 0.23 |
Val | 0.99 | 0.91 | 0.85 |
Nutrient | Lot Number 1 | |
---|---|---|
1 | 2 | |
Fat (acid hydrolysis), % | 99.1 | 99.2 |
Fatty acid concentration, g/100 g | ||
Lauric (C12:0) | 37.3 | 36.5 |
Myristic (C14:0) | 9.68 | 10.00 |
Palmitic (C16:0) | 14.8 | 14.4 |
Palmitoleic (C16:1) | 1.71 | 2.03 |
Stearic (C18:0) | 2.07 | 2.24 |
Oleic (C18:1) | 12.6 | 13.5 |
Linoleic (C18:2) | 17.4 | 17.1 |
α-Linolenic (C18:3) | 1.52 | 1.46 |
Others 2 | 2.02 | 1.94 |
Saturated fatty acids | 65.1 | 64.3 |
Polyunsaturated fatty acids | 19.0 | 18.6 |
Monounsaturated fatty acids | 14.6 | 15.8 |
Trans fatty acids | 0.40 | 0.47 |
Omega 3 fatty acids | 1.52 | 1.46 |
Omega 6 fatty acids | 17.4 | 17.1 |
Omega 9 fatty acids | 12.6 | 13.5 |
Fatty Acid | % Black Soldier Fly Larvae Oil Replacing Corn Oil | |||
---|---|---|---|---|
0 | 2 | 4 | 6 | |
Phase 2 diets | ||||
Lauric (C12:0) | n.d. 2 | 0.63 | 1.11 | 1.79 |
Myristic (C14:0) | n.d. | 0.18 | 0.30 | 0.50 |
Palmitic (C16:0) | 0.96 | 1.12 | 1.06 | 1.18 |
Palmitoleic (C16:1) | 0.04 | 0.08 | 0.10 | 0.14 |
Stearic (C18:0) | 0.18 | 0.21 | 0.20 | 0.22 |
Oleic (C18:1) | 2.16 | 2.11 | 1.64 | 1.50 |
Linoleic (C18:2) | 3.90 | 3.66 | 2.74 | 2.32 |
α-Linolenic (C18:3) | 0.12 | 0.13 | 0.14 | 0.15 |
Other 3 | 0.14 | 0.15 | 0.14 | 0.18 |
Phase 3 diets | ||||
Lauric (C12:0) | 0.01 | 0.66 | 1.22 | 1.95 |
Myristic (C14:0) | n.d. | 0.18 | 0.32 | 0.52 |
Palmitic (C16:0) | 0.91 | 0.99 | 0.95 | 1.10 |
Palmitoleic (C16:1) | 0.02 | 0.04 | 0.07 | 0.10 |
Stearic (C18:0) | 0.15 | 0.16 | 0.15 | 0.18 |
Oleic (C18:1) | 2.10 | 1.93 | 1.50 | 1.32 |
Linoleic (C18:2) | 3.87 | 3.49 | 2.58 | 2.20 |
α-Linolenic (C18:3) | 0.13 | 0.15 | 0.14 | 0.17 |
Other 3 | 0.12 | 0.15 | 0.14 | 0.15 |
Variable | BSFL Oil Inclusion, % | SEM | p Value 2 | ||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | Treatment | Linear | ||
Body weight, kg | |||||||
Initial | 6.91 | 6.90 | 6.90 | 6.91 | 0.009 | 0.834 | 0.561 |
Day 7 | 8.35 | 8.42 | 8.46 | 8.36 | 0.087 | 0.796 | 0.867 |
Day 14 | 9.92 | 10.07 | 10.44 | 10.46 | 0.179 | 0.099 | 0.018 |
Day 21 | 13.40 | 13.59 | 14.15 | 13.99 | 0.190 | 0.031 | 0.010 |
Day 25 | 16.22 | 16.40 | 16.90 | 16.91 | 0.223 | 0.075 | 0.014 |
Day 33 | 21.49 | 21.26 | 22.22 | 22.12 | 0.262 | 0.036 | 0.021 |
Day 40 | 27.83 | 27.62 | 28.84 | 28.44 | 0.340 | 0.060 | 0.052 |
Average daily gain, g/d | |||||||
Day 0 to 7 | 206 | 217 | 222 | 209 | 12.5 | 0.783 | 0.820 |
Day 7 to 14 | 224 | 236 | 282 | 300 | 18.5 | 0.018 | 0.002 |
Day 14 to 21 | 473 | 503 | 530 | 503 | 19.2 | 0.228 | 0.173 |
Day 21 to 25 | 677 | 703 | 688 | 732 | 23.4 | 0.393 | 0.163 |
Day 25 to 33 | 659 | 607 | 658 | 650 | 14.9 | 0.063 | 0.714 |
Day 33 to 40 | 907 | 908 | 942 | 904 | 22.4 | 0.589 | 0.792 |
Phase 1 (day 0 to 14) | 215 | 226 | 252 | 254 | 12.8 | 0.098 | 0.017 |
Phase 2 (day 14 to 25) | 555 | 576 | 588 | 586 | 12.0 | 0.207 | 0.055 |
Phase 3 (day 25 to 40) | 774 | 748 | 795 | 769 | 15.0 | 0.188 | 0.657 |
Overall (day 0 to 40) | 523 | 518 | 548 | 539 | 8.5 | 0.059 | 0.048 |
Average daily feed intake, g/d | |||||||
Day 0 to 7 | 215 | 219 | 226 | 211 | 8.6 | 0.664 | 0.956 |
Day 7 to 14 | 344 | 358 | 364 | 357 | 14.0 | 0.773 | 0.478 |
Day 14 to 21 | 598 | 571 | 599 | 573 | 15.6 | 0.434 | 0.501 |
Day 21 to 25 | 851 | 855 | 881 | 855 | 16.4 | 0.540 | 0.609 |
Day 25 to 33 | 970 | 933 | 995 | 960 | 16.8 | 0.093 | 0.687 |
Day 33 to 40 | 1264 | 1245 | 1313 | 1250 | 29.1 | 0.341 | 0.839 |
Phase 1 (day 0 to 14) | 279 | 288 | 295 | 284 | 10.1 | 0.736 | 0.644 |
Phase 2 (day 14 to 25) | 689 | 675 | 701 | 675 | 12.7 | 0.406 | 0.804 |
Phase 3 (day 25 to 40) | 1107 | 1079 | 1140 | 1095 | 20.4 | 0.197 | 0.780 |
Overall (day 0 to 40) | 690 | 691 | 719 | 696 | 11.4 | 0.253 | 0.365 |
Gain:feed ratio, g/kg | |||||||
Day 0 to 7 | 944 | 971 | 974 | 981 | 32.2 | 0.854 | 0.432 |
Day 7 to 14 | 640 | 655 | 762 | 847 | 38.7 | 0.002 | <0.001 |
Day 14 to 21 | 794 | 882 | 889 | 877 | 28.7 | 0.086 | 0.054 |
Day 21 to 25 | 792 | 820 | 780 | 854 | 24.7 | 0.171 | 0.195 |
Day 25 to 33 | 681 | 651 | 663 | 678 | 11.4 | 0.244 | 0.938 |
Day 33 to 40 | 719 | 729 | 715 | 723 | 13.6 | 0.908 | 0.992 |
Phase 1 (day 0 to 14) | 757 | 781 | 844 | 895 | 28.3 | 0.007 | <0.001 |
Phase 2 (day 14 to 25) | 808 | 854 | 838 | 866 | 17.4 | 0.120 | 0.049 |
Phase 3 (day 25 to 40) | 701 | 693 | 698 | 703 | 8.8 | 0.876 | 0.814 |
Overall (day 0 to 40) | 759 | 750 | 764 | 774 | 10.4 | 0.434 | 0.208 |
Variable 2 | BSFL Oil | SEM | p Value 3 | ||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | Treatment | Linear | ||
Total protein, g/dL | 5.21 | 5.37 | 5.38 | 5.48 | 0.112 | 0.412 | 0.111 |
Albumin, g/dL | 3.19 | 3.33 | 3.33 | 3.32 | 0.063 | 0.357 | 0.186 |
Globulin, g/dL | 2.02 | 2.04 | 2.05 | 2.16 | 0.104 | 0.782 | 0.361 |
Albumin:Globulin | 1.61 | 1.65 | 1.69 | 1.60 | 0.081 | 0.847 | 0.964 |
AST, IU/L | 30.4 | 29.9 | 26.0 | 27.1 | 2.63 | 0.577 | 0.245 |
ALT, IU/L | 24.7 | 23.6 | 22.8 | 24.0 | 1.38 | 0.800 | 0.650 |
Alk phosphatase, IU/L | 216 | 227 | 230 | 220 | 18.4 | 0.945 | 0.839 |
GGTP, IU/L | 21.5 | 21.8 | 23.2 | 26.2 | 1.74 | 0.226 | 0.055 |
Urea N, mg/dL | 10.8 | 8.8 | 10.4 | 9.3 | 0.96 | 0.421 | 0.467 |
Creatinine, mg/dL | 0.783 | 0.733 | 0.767 | 0.817 | 0.027 | 0.188 | 0.272 |
Urea N:creatinine | 14.1 | 11.9 | 13.5 | 11.6 | 1.15 | 0.363 | 0.260 |
Calcium, mg/dL | 0.71 | 10.95 | 10.90 | 10.88 | 0.135 | 0.613 | 0.436 |
Phosphorus, mg/dL | 10.32 | 11.00 | 10.46 | 10.79 | 0.238 | 0.184 | 0.412 |
Glucose, mg/dL | 117.1 | 127.0 | 116.8 | 124.2 | 4.42 | 0.275 | 0.582 |
Mg, mEq/L | 1.74 | 1.77 | 1.70 | 1.79 | 0.051 | 0.620 | 0.715 |
Na, mEq/L | 142.3 | 143.0 | 141.8 | 141.4 | 0.63 | 0.322 | 0.190 |
K, mEq/L | 6.32 | 6.59 | 5.93 | 6.18 | 0.279 | 0.408 | 0.388 |
Na:K | 23.03 | 22.26 | 24.28 | 23.43 | 0.919 | 0.485 | 0.443 |
Cl, mEq/L | 98.08 | 98.75 | 98.33 | 98.42 | 0.510 | 0.831 | 0.800 |
Cholesterol, mg/dL | 78.4 | 87.6 | 92.0 | 91.0 | 2.73 | 0.005 | 0.002 |
Triglycerides, mg/dL | 71.8 | 48.4 | 58.1 | 57.4 | 10.10 | 0.445 | 0.463 |
Amylase, IU/L | 1190 | 1287 | 1244 | 1294 | 64 | 0.641 | 0.350 |
CPK, IU/L | 3714 | 3246 | 3118 | 2565 | 950 | 0.863 | 0.406 |
Variable 2 | BSFL Oil | SEM | p Value 3 | ||||
---|---|---|---|---|---|---|---|
0 | 2 | 4 | 6 | Treatment | Linear | ||
WBC, count × 103/μL | 19.9 | 21.4 | 19.3 | 22.1 | 1.54 | 0.539 | 0.507 |
RBC, count × 106/μL | 6.77 | 6.77 | 6.58 | 6.98 | 0.21 | 0.643 | 0.646 |
Hemoglobin, g/dL | 12.00 | 12.38 | 12.08 | 12.74 | 0.39 | 0.541 | 0.281 |
Hematocrit, % | 42.1 | 42.8 | 41.6 | 44.5 | 1.47 | 0.531 | 0.362 |
MCV, fL | 62.6 | 63.3 | 62.9 | 63.6 | 0.63 | 0.711 | 0.353 |
MCH, pg | 17.84 | 18.30 | 18.34 | 18.23 | 0.18 | 0.200 | 0.416 |
MCHC, g/dL | 28.67 | 29.25 | 29.25 | 28.75 | 0.24 | 0.173 | 0.815 |
Platelets, count × 103/μL | 267 | 413 | 362 | 388 | 38.9 | 0.063 | 0.082 |
Neutrophils, count/μL | 8099 | 7965 | 7677 | 8796 | 959 | 0.864 | 0.677 |
Lymphocytes, count/μL | 10,125 | 11,802 | 9934 | 11,379 | 862 | 0.347 | 0.626 |
Monocytes, count/μL | 1187 | 1235 | 1132 | 1463 | 147 | 0.416 | 0.279 |
Eosinophils, count/μL | 373 | 365 | 475 | 462 | 124 | 0.885 | 0.503 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Heugten, E.; Martinez, G.; McComb, A.; Koutsos, L. Improvements in Performance of Nursery Pigs Provided with Supplemental Oil Derived from Black Soldier Fly (Hermetia illucens) Larvae. Animals 2022, 12, 3251. https://doi.org/10.3390/ani12233251
van Heugten E, Martinez G, McComb A, Koutsos L. Improvements in Performance of Nursery Pigs Provided with Supplemental Oil Derived from Black Soldier Fly (Hermetia illucens) Larvae. Animals. 2022; 12(23):3251. https://doi.org/10.3390/ani12233251
Chicago/Turabian Stylevan Heugten, Eric, Gabriela Martinez, Alejandra McComb, and Liz Koutsos. 2022. "Improvements in Performance of Nursery Pigs Provided with Supplemental Oil Derived from Black Soldier Fly (Hermetia illucens) Larvae" Animals 12, no. 23: 3251. https://doi.org/10.3390/ani12233251
APA Stylevan Heugten, E., Martinez, G., McComb, A., & Koutsos, L. (2022). Improvements in Performance of Nursery Pigs Provided with Supplemental Oil Derived from Black Soldier Fly (Hermetia illucens) Larvae. Animals, 12(23), 3251. https://doi.org/10.3390/ani12233251