Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Procedure
2.2. Dietary Treatments and Experimental Design
2.3. Sample Collection and Chemical Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Experimental Feeds
3.2. Dry Matter Intake and Nutrients Digestibility
3.3. Ruminal Parameters and Blood Metabolite
3.4. Microbial Population and Microbial Protein Synthesis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Napolitano, F.; Serrapica, F.; Braghieri, A.; Masucci, F.; Sabia, E.; De Rosa, G. Human-animal interactions in dairy buffalo farm. Animals 2019, 9, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angerer, V.; Sabia, E.; Konig von Borstel, U.; Gauly, M. Environmental and biodiversity effects of different beef production system. J. Environ. Manag. 2021, 289, 112523. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Hundal, J.S.; Patra, A.K.; Sethi, R.S.; Sharma, A. A Composite Polyphenol-Rich Extract Improved Growth Performance, Ruminal Fermentation and Immunity, While Decreasing Methanogenesis and Excretion of Nitrogen and Phosphorus in Growing Buffaloes. Environ. Sci. Pollut. Res. 2022, 29, 24757–24773. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wei, C.; Zhao, G.Y.; Xu, Z.W.; Lin, S.X. Effects of dietary supplementing tannic acid in the ration of beef cattle on rumen fermentation, methane emission, microbial flora and nutrient digestibility. J. Anim. Physiol. Anim. Nutr. 2017, 101, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.; Park, T.; Kim, M.; Yu, Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J. Anim. Sci. Biotechnol. 2017, 8, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuralkar, P.; Kuralkar, S.V. Role of herbal products in animal production—An updated review. J. Ethnopharmacol. 2021, 278, 114246. [Google Scholar] [CrossRef]
- Kholif, A.E.; Olafadehan, O.A. Essential oils and phytogenic feed additives in ruminant diet: Chemistry, ruminal microbiota and fermentation, feed utilization and productive performance. Phytochem. Rev. 2021, 20, 1087–1108. [Google Scholar] [CrossRef]
- Avila, A.S.; Zambom, M.A.; Faccenda, A.; Fischer, M.L.; Anschau, F.A.; Venturini, T.; Tinini, R.C.R.; Dessbesell, J.G.; Faciola, A.P. Effects of black wattle (Acacia Mearnsii) condensed tannins on intake, protozoa population, ruminal fermentation, and nutrient digestibility in Jersey steers. Animals 2020, 10, 1011. [Google Scholar] [CrossRef]
- Hassan, F.U.; Arshad, M.A.; Ebeid, H.M.; Rehman, M.S.U.; Khan, M.S.; Shahid, S.; Yang, C. Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction. Front. Vet. Sci. 2020, 7, 575801. [Google Scholar] [CrossRef]
- Matra, M.; Wanapat, M.; Cherdthong, A.; Foiklang, S.; Mapato, C. Dietary dragon fruit (Hylocereus Undatus) peel powder improved in vitro rumen fermentation and gas production kinetics. Trop. Anim. Health Prod. 2019, 51, 1531–1538. [Google Scholar] [CrossRef]
- Wanapat, M.; Viennasay, B.; Matra, M.; Totakul, P.; Phesatcha, B.; Ampapon, T.; Wanapat, S. Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis. J. Sci. Food Agric. 2021, 101, 4543. [Google Scholar] [CrossRef] [PubMed]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M. Mangosteen peel liquid-protected soybean meal can shift rumen microbiome and rumen fermentation end-products in lactating crossbred Holstein friesian cows. Front. Vet. Sci. 2022, 8, 772043. [Google Scholar] [CrossRef] [PubMed]
- Phesatcha, B.; Phesatcha, K.; Viennaxay, B.; Thao, N.T.; Wanapat, M. Feed intake and nutrient digestibility, rumen fermentation profiles, milk yield and compositions of lactating dairy cows supplemented by Flemingia macrophylla pellet. Trop. Anim. Sci. J. 2021, 44, 288–296. [Google Scholar] [CrossRef]
- Puchalska, J.; Szumacher-Strabel, M.; Patra, A.K.; Ślusarczyk, S.; Gao, M.; Petrič, D.; Nabzdyk, M.; Cieślak, A. The effect of different concentrations of total polyphenols from Paulownia hybrid leaves on ruminal fermentation, methane production and microorganisms. Animals 2021, 11, 2843. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.J.; McEwan, N.R.; McIntosh, F.M.; Teferedegne, B.; Newbold, C.J. Natural products as manipulators of rumen fermentation. Asian-Australas. J. Anim. Sci. 2002, 15, 1458–1468. [Google Scholar] [CrossRef]
- Goh, Y.S.; Karunakaran, T.; Murugaiyah, V.; Santhanam, R.; Abu Bakar, M.H.; Ramanathan, S. Accelerated solvent extractions (Ase) of Mitragyna Speciosa Korth. (Kratom) leaves: Evaluation of its cytotoxicity and antinociceptive activity. Molecules 2021, 26, 3704. [Google Scholar] [CrossRef]
- Leong Bin Abdullah, M.F.I.; Singh, D. The adverse cardiovascular effects and cardiotoxicity of Kratom (Mitragyna Speciosa Korth.): A comprehensive review. Front. Pharmacol. 2021, 12, 726003. [Google Scholar] [CrossRef]
- Chanjula, P.; Wungsintaweekul, J.; Chiarawipa, R.; Rugkong, A.; Khonkhaeng, B.; Suntara, C.; Cherdthong, A. Effect of feed supplement containing dried kratom leaves on apparent digestibility, rumen fermentation, serum antioxidants, hematology and nitrogen balance in goats. Fermentation 2022, 8, 131. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Mitragyna Speciosa Korth leaves supplementation on feed utilization, rumen fermentation efficiency, microbial population, and methane production in vitro. Fermentation 2022, 8, 8. [Google Scholar] [CrossRef]
- Phesatcha, K.; Phesatcha, B.; Wanapat, M.; Cherdthong, A. Roughage to concentrate ratio and Saccharomyces Cerevisiae inclusion could modulate feed digestion and in vitro ruminal fermentation. Vet. Sci. 2020, 7, 151. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists (AOAC). In Office Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Keulen, J.Y.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1997, 44, 282–287. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives. An Overview of the Technical Details; Occasional Publication: Seattle, WA, USA; International Feed Resources Unit: Aberdeen, UK; Rowett Research Institute Bucks Burn: Aberdeen, UK, 1992. [Google Scholar]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global Warming. Anim. Res. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Koike, S.; Kobayashi, Y. Develop and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobactor succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Ecol. 2001, 204, 361–366. [Google Scholar] [CrossRef]
- Edwards, J.E.; Huws, S.A.; Kim, E.J.; Kingston-Smith, A.H. Characterization of the dynamics of initial bacterial colonization of nonconserved forage in the bovine rumen. FEMS Microbiol. Ecol. 2007, 62, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Karnati, S.K.R.; Yu, Z.; Morrison, M.; Firkins, J.L. Development of an assay to quantify rumen ciliate protozoal biomass in cows using real-time PCR. J. Nutr. 2004, 134, 3378–3384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denman, S.E.; McSweeney, C.S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 2006, 58, 572–582. [Google Scholar] [CrossRef]
- Crocker, C.L. Rapid determination of urea nitrogen in serum or plasma without deproteinization. Am. J. Med. Technol. 1967, 33, 361–365. [Google Scholar]
- Galo, E.; Emanuele, S.M.; Sniffen, C.J.; White, J.H.; Knapp, J.R. Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. J. Dairy Sci. 2003, 86, 2154–2162. [Google Scholar] [CrossRef] [Green Version]
- SAS Statistical Analysis System. User’s Guide: Statistic, 9.3rd ed.; SAS Inst. Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Rira, M.; Morgavi, D.P.; Popova, M.; Maxin, G.; Doreau, M. Animal the international journal of animal biosciences microbial colonisation of tannin-rich tropical plants: Interplay between degradability, methane production and tannin disappearance in the rumen. Animals 2022, 16, 100589. [Google Scholar] [CrossRef]
- Zhang, F.; Li, B.; Ban, Z.; Liang, H.; Li, L.; Zhao, W.; Yan, X. Evaluation of origanum oil, hydrolysable tannins and tea saponin in mitigating ruminant methane: In vitro and in vivo methods. J. Anim. Physiol. Anim. Nutr. 2021, 105, 630–638. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, O.; Alves, S.P.; Costa, M.; Duarte, M.F.; Jerónimo, E.; Bessa, R.J.B. Effects of increasing doses of condensed tannins extract from Cistus Ladanifer L. on in vitro ruminal fermentation and biohydrogenation. Animals 2021, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Ku-Vera, J.C.; Jiménez-Ocampo, R.; Valencia-Salazar, S.S.; Montoya-Flores, M.D.; Molina-Botero, I.C.; Arango, J.; Gómez-Bravo, C.A.; Aguilar-Pérez, C.F.; Solorio-Sánchez, F.J. Role of secondary plant metabolites on enteric methane mitigation in ruminants. Front. Vet. Sci. 2020, 7, 584. [Google Scholar] [CrossRef]
- Matra, M.; Totakul, P.; Wanapat, M. Utilization of dragon fruit waste by-products and non-protein nitrogen source: Effects on in vitro rumen fermentation, nutrients degradability and methane production. Livest. Sci. 2021, 243, 104386. [Google Scholar] [CrossRef]
- Phesatcha, K.; Wanapat, M. Tropical legume supplementation influences microbial protein synthesis and rumen ecology. J. Anim. Physiol. Anim. Nutr. 2017, 101, 552–562. [Google Scholar] [CrossRef]
- Wanapat, M.; Pimpa, O. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in Swamp buffaloes. Asian-Australas. J. Anim. Sci. 1999, 12, 904–907. [Google Scholar] [CrossRef]
- Ampapon, T.; Phesatcha, K.; Wanapat, M. Effect of Phytonutrients on Ruminal Fermentation, digestibility, and microorganisms in swamp buffaloes. Animals 2019, 9, 671. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.J.; Beck, M.R.; Garrett, K.; Castillo, A.R.; Barrell, G.K.; Al-Marashdeh, O.; Gregorini, P. The effect of feeding a mix of condensed and hydrolyzable tannins to heifers on rumen fermentation patterns, blood urea nitrogen, and amino acid profile. Livest. Sci. 2022, 263, 105034. [Google Scholar] [CrossRef]
- Broderick, G.A.; Grabber, J.H.; Muck, R.E.; Hymes-Fecht, U.C. Replacing alfafa silage with tannin-containing birds foof trefoil silage in total mixed rations for lactating dairy cows. J. Dairy Sci. 2017, 100, 3548–3562. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Prachumchai, R.; Wanapat, M. In vitro evaluations of pellets containing Delonix Regia seed meal for ruminants. Trop. Anim. Health Prod. 2019, 51, 2003–2010. [Google Scholar] [CrossRef]
- Polyorach, S.; Wanapat, M.; Cherdthong, A.; Kang, S. Rumen microorganisms, methane production, and microbial protein synthesis affected by mangosteen peel powder supplement in lactating dairy cows. Trop. Anim. Health Prod. 2016, 48, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Wanapat, M.; Chanthakhoun, V.; Phesatcha, K.; Kang, S. Influence of mangosteen peel powder as a source of plant secondary compounds on rumen microorganisms, volatile fatty acids, methane and microbial protein synthesis in Swamp buffaloes. Livest. Sci. 2014, 162, 126–133. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Animals 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayanegara, A.; Yogianto, Y.; Wina, E.; Sudarman, A.; Kondo, M.; Obitsu, T.; Kreuzer, M. Combination effects of plant extracts rich in tannins and saponins as feed additives for mitigating in vitro ruminal methane and ammonia formation. Animals 2020, 10, 1531. [Google Scholar] [CrossRef]
- Buccioni, A.; Pauselli, M.; Viti, C.; Minieri, S.; Pallara, G.; Roscini, V.; Rapaccini, S.; Marinucci, M.T.; Lupi, P.; Conte, G.; et al. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or Quebracho tannins in dairy ewes. J. Dairy Sci. 2015, 98, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, P.S.; Mendes, L.W.; Lemos, L.N.; Crouzoulon, P.; Niderkorn, V.; Hoste, H.; Costa-Júnior, L.M.; Tsai, S.M.; Faciola, A.P.; Abdalla, A.L.; et al. Tannin supplementation modulates the composition and function of ruminal microbiome in lambs infected with gastrointestinal nematodes. FEMS Microbiol. Ecol. 2020, 96, fiaa024. [Google Scholar] [CrossRef]
Items | Concentrate | Urea- and Calcium Hydroxide-Treated Rice Straw | Mitragyna speciosa Korth Leaf Pellet |
---|---|---|---|
Concentrate ingredients, % as fresh basis | |||
Cassava chip | 66.0 | ||
Leucaena leaf meal | 18.0 | ||
Rice bran | 10.0 | ||
Urea | 2.5 | ||
Molasses | 2.0 | ||
Mineral mixture | 0.5 | ||
Salt | 0.5 | ||
Sulfur | 0.5 | ||
Mitragyna speciosa Korth leaf | - | 90.0 | |
Cassava chip starch | - | 10.0 | |
Total | 100.0 | ||
Chemical composition | |||
Dry matter, % | 92.7 | 55.1 | 89.4 |
--------------------% of dry matter-------------------- | |||
Organic matter | 91.3 | 88.7 | 85.4 |
Ash | 8.7 | 11.3 | 14.6 |
Crude protein | 14.3 | 5.6 | 19.8 |
Neutral detergent fiber | 29.1 | 72.8 | 50.1 |
Acid detergent fiber | 14.6 | 45.9 | 26.5 |
Mitragynine | - | - | 7.9 |
Condensed tannins | - | - | 13.4 |
Saponin | - | - | 11.2 |
Items | MSLP 1 (g/hd/d) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | ||
Dry matter intake | |||||||
kg/day | 2.6 a | 2.7 a | 3.2 b | 3.4 b | 0.18 | 0.039 | 0.041 |
g/kg BW0.75 | 85.4 | 86.8 | 88.3 | 89.1 | 1.21 | 0.069 | 0.571 |
Estimate energy intake | |||||||
ME (MJ/d) | 46.4 | 47.1 | 49.3 | 50.4 | 0.33 | 0.053 | 0.071 |
ME (MJ/kgDM) | 10.4 | 10.5 | 10.7 | 10.7 | 0.47 | 0.080 | 0.092 |
Nutrient digestibility, % | |||||||
Dry matter | 63.4 a | 64.6 a | 67.5 b | 69.1 b | 0.03 | 0.048 | 0.051 |
Organic matter | 63.1 a | 65.2 b | 66.8 b | 68.3 c | 0.07 | 0.043 | 0.062 |
Crude protein | 55.1 | 55.7 | 56.1 | 57.5 | 0.14 | 0.059 | 0.78 |
Neutral detergent fiber | 61.8 a | 62.7 ab | 63.9 b | 64.2 b | 0.11 | 0.041 | 0.044 |
Acid detergent fiber | 47.1 a | 50.2 ab | 52.1 b | 53.0 b | 0.08 | 0.042 | 0.045 |
Items | MSLP 1 (g/hd/d) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | ||
Ruminal pH | 6.6 | 6.8 | 6.7 | 6.7 | 0.26 | 0.068 | 0.093 |
Temperature, °C | 39.1 | 39.3 | 39.2 | 39.1 | 0.19 | 0.283 | 0.425 |
NH3-N, mg/dL | 15.6 b | 14.3 b | 12.1 a | 11.9 a | 0.31 | 0.041 | 0.045 |
PUN, mg/dL | 13.4 b | 12.7 b | 11.6 a | 11.8 a | 0.42 | 0.064 | 0.083 |
Total VFAs, mmol/L | 91.1 a | 95.3 b | 99.7 c | 102.5 c | 2.53 | 0.041 | 0.046 |
VFAs, mol/100 mol | |||||||
Acetic acid (C2) | 68.3 b | 67.5 b | 65.6 a | 64.8 a | 0.59 | 0.033 | 0.042 |
Propionic acid (C3) | 20.2 a | 22.8 b | 24.9 c | 26.7 d | 0.46 | 0.025 | 0.032 |
Butyric acid (C4) | 11.5 | 9.7 | 9.5 | 8.5 | 0.32 | 0.058 | 0.069 |
C2:C3 | 3.38 | 2.96 | 2.63 | 2.43 | 0.11 | 0.183 | 0.314 |
CH4 (mM) | 29.6 c | 27.8 b | 26.4 ab | 25.1 a | 0.73 | 0.022 | 0.035 |
Items | MSLP 1 (g/hd/d) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | ||
Copies/mL of rumen content, | |||||||
Total bacteria, ×1010 | 2.1 a | 3.9 b | 5.3 c | 6.1 c | 1.67 | 0.035 | 0.069 |
F. succinogenes, ×108 | 2.7 a | 3.1 a | 4.6 b | 5.8 c | 0.85 | 0.033 | 0.042 |
R. flavafaciens, ×108 | 1.9 a | 2.2 a | 3.8 b | 5.6 c | 1.63 | 0.040 | 0.055 |
R. albus, ×108 | 3.2 | 3.9 | 2.7 | 3.0 | 0.18 | 0.039 | 0.048 |
Methanogens, ×107 | 5.2 c | 4.0 b | 2.1 a | 1.5 a | 0.31 | 0.032 | 0.061 |
Protozoa, ×104 | 7.4 c | 6.1 b | 4.3 a | 3.9 a | 1.15 | 0.040 | 0.052 |
Items | MSLP 1 (g/hd/d) | SEM | Contrast | ||||
---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | Linear | Quadratic | ||
Urinary purine derivatives (mmol/d) | |||||||
Allantoin excretion | 19.1 a | 22.4 b | 25.6 c | 26.1 c | 5.51 | 0.035 | 0.044 |
Allantoin absorption | 52.9 a | 55.6 b | 59.4 c | 60.1 c | 4.22 | 0.046 | 0.637 |
MNS (gN/d) | 33.1 a | 35.8 b | 37.9 c | 39.2 c | 3.96 | 0.031 | 0.045 |
EMNS (g/kg OMDR) | 14.5 a | 16.2 b | 18.3 c | 19.1 c | 2.47 | 0.038 | 0.056 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phesatcha, B.; Phesatcha, K.; Wanapat, M. Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle. Animals 2022, 12, 3238. https://doi.org/10.3390/ani12233238
Phesatcha B, Phesatcha K, Wanapat M. Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle. Animals. 2022; 12(23):3238. https://doi.org/10.3390/ani12233238
Chicago/Turabian StylePhesatcha, Burarat, Kampanat Phesatcha, and Metha Wanapat. 2022. "Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle" Animals 12, no. 23: 3238. https://doi.org/10.3390/ani12233238
APA StylePhesatcha, B., Phesatcha, K., & Wanapat, M. (2022). Mitragyna speciosa Korth Leaf Pellet Supplementation on Feed Intake, Nutrient Digestibility, Rumen Fermentation, Microbial Protein Synthesis and Protozoal Population in Thai Native Beef Cattle. Animals, 12(23), 3238. https://doi.org/10.3390/ani12233238