Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Sample Preparation and Experiments
2.3. Nutrient Compositions
2.4. Statistical Analysis
3. Result and Discussion
3.1. Nutrient Composition of Citric Acid By-Product before Ensiling
3.2. Nutrient Composition of Citric Acid By-Product after Ensiling with Lactic Acid Bacteria and an Enzyme
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, Y.; Zheng, X.; Wang, Y.; Zhang, L.; Wang, L.; Lei, Y.; Zhang, T.; Zheng, P.; Sun, J. Evaluation of Aspergillus niger six constitutive strong promoters by fluorescent-auxotrophic selection coupled with flow cytometry: A case for citric acid production. J. Fungi 2022, 8, 568. [Google Scholar] [CrossRef] [PubMed]
- Reena, R.; Sindhu, R.; Balakumaran, P.A.; Pandey, A.; Awasthi, M.K.; Binod, P. Insight into citric acid: A versatile organic acid. Fuel 2022, 327, 125181. [Google Scholar] [CrossRef]
- Kozicka, M.; Jones, S.K.; Gotor, E.; Enahoro, D. Cross-scale trade-off analysis for sustainable development: Linking future demand for animal source foods and ecosystem services provision to the SDGs. Sustain. Sci. 2022, 17, 209–220. [Google Scholar] [CrossRef]
- Suriyapha, C.; Supapong, C.; So, S.; Wanapat, M.; Cherdthong, A. Bioconversion of agro-industrial residues as a protein source supplementation for multiparous Holstein Thai crossbreed cows. PLoS ONE 2022, 17, e0273916. [Google Scholar] [CrossRef]
- Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of yeast waste fermented citric waste as a protein source to replace soybean meal and various roughage to concentrate ratios on in vitro rumen fermentation, gas kinetic, and feed digestion. Fermentation 2021, 7, 120. [Google Scholar] [CrossRef]
- Tanpong, S.; Cherdthong, A.; Tengjaroenkul, B.; Tengjaroenkul, U.; Wongtangtintharn, S. Evaluation of physical and chemical properties of citric acid industrial waste. Trop. Anim. Health Prod. 2019, 51, 2167–2174. [Google Scholar] [CrossRef] [PubMed]
- Suntara, C.; Uriyapongson, S. Use of exogenous fibrolytic enzyme to increase the utilization of citric waste in culled beef cattle. Khon Kaen. Agric. J. 2012, 2, 170–173. [Google Scholar]
- Chanvech, S.; Wachirapakorn, C. Effect of citric acid waste treated with fibrolytic enzyme on intake, digestibility and rumen fermentation in beef cattle. Agric. Sci. J. 2013, 44, 39–42. [Google Scholar]
- Zhang, A.R.; Wei, M.; Yan, L.; Zhou, G.L.; Li, Y.; Wang, H.M.; Yang, Y.Y.; Yin, W.; Guo, J.Q.; Cai, X.H.; et al. Effects of feeding solid-state fermented wheat bran on growth performance and nutrient digestibility in broiler chickens. Poult. Sci. 2022, 101, 101402. [Google Scholar] [CrossRef]
- Dahiya, D.; Nigam, P.S. Clinical potential of microbial strains, used in fermentation for probiotic food, beverages and in synbiotic supplements, as psychobiotics for cognitive treatment through gut–brain signaling. Microorganisms 2022, 10, 1687. [Google Scholar] [CrossRef]
- Cai, Y. Identification and characterization of enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 1999, 82, 2466–2471. [Google Scholar] [CrossRef]
- Gaio, D.; DeMaere, M.Z.; Anantanawat, K.; Eamens, G.J.; Falcone, L.; Chapman, T.A.; Djordjevic, S.; Darling, A.E. Phylogenetic diversity analysis of shotgun metagenomic reads describes gut microbiome development and treatment effects in the post-weaned pig. PLoS ONE 2022, 17, e0270372. [Google Scholar] [CrossRef]
- Hu, Z.; Niu, H.; Tong, Q.; Chang, J.; Yu, J.; Li, S.; Zhang, S.; Ma, D. The microbiota dynamics of alfalfa silage during ensiling and after air exposure, and the metabolomics after air exposure are affected by Lactobacillus casei and cellulase addition. Front. Microbiol. 2020, 11, 519121. [Google Scholar] [CrossRef] [PubMed]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Faichney, G.J.; White, G. Methods for the Analysis of Feeds Eaten by Ruminants; Commonwealth Scientific and Industrial Research Organization: Melbourne, Australia, 1983. [Google Scholar]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thip-uten, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef]
- Yang, S.Y.; Ji, K.S.; Baik, Y.H.; Kwak, W.S.; McCaskey, T.A. Lactic acid fermentation of food waste for swine feed. Bioresour. Technol. 2006, 97, 1858–1864. [Google Scholar] [CrossRef]
- Ni, K.; Wang, Y.; Cai, Y.; Pang, H. Natural lactic acid bacteria population and silage fermentation of whole-crop wheat. Asian-Australas. J. Anim. Sci. 2015, 28, 1123–1132. [Google Scholar] [CrossRef]
- Ando, S.; Ishida, M.; Oshio, S.; Tanaka, O. Effects of isolated and commercial lactic acid bacteria on the silage quality, digestibility, voluntary intake and ruminal fluid characteristics. Asian-Australas. J. Anim. Sci. 2006, 3, 386–389. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, G.; Wang, L.; Zhang, B.; Chen, J.; Liu, Y.; Pang, H.; Tan, Z. Characteristics of Lactobacillus plantarum QZW5 and its effects on wheat silage under multigelation. Chem. Biol. Technol. Agric. 2021, 8, 52. [Google Scholar] [CrossRef]
- Kaewpila, C.; Thip-uten, S.; Cherdthong, A.; Khota, W. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage. Agriculture 2021, 11, 66. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, F.; Wang, Y.; Fan, X.; Feng, C.; Wang, Y. Dynamics of fermentation parameters and bacterial community in high-moisture alfalfa silage with or without lactic acid bacteria. Microorganisms 2021, 9, 1225. [Google Scholar] [CrossRef] [PubMed]
- Basharov, A.; Andriyanova, E.; Andreeva, A.; Khabirov, A.; Yumaguzin, I. Comparative assessment of forage legume and grass-legume mixture quality ensiled with biological and chemical preservatives. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 839–845. [Google Scholar] [CrossRef]
- Mamuad, L.L.; Kim, S.H.; Choi, Y.J.; Soriano, A.P.; Cho, K.K.; Lee, K.; Bae, G.S.; Lee, S.S. Increased propionate concentration in Lactobacillus mucosae-fermented wet brewers grains and during in vitro rumen fermentation. J. Appl. Microbiol. 2017, 123, 29–40. [Google Scholar] [CrossRef]
- Sheperd, A.C.; Kung, L., Jr. An enzyme additive for corn silage: Effects on silage composition and animal performance. J. Dairy Sci. 1996, 79, 1760–1766. [Google Scholar] [CrossRef]
- So, S.; Cherdthong, A.; Wanapat, M. Growth performances, nutrient digestibility, ruminal fermentation and energy partition of Thai native steers fed exclusive rice straw and fermented sugarcane bagasse with Lactobacillus, cellulase and molasses. J. Anim. Physiol. Anim. Nutr. 2022, 106, 45–54. [Google Scholar] [CrossRef]
- Dehghani, M.R.; Weisbjerg, M.R.; Hvelplund, T.; Kristensen, N.B. Effect of enzyme addition to forage at ensiling on silage chemical composition and NDF degradation characteristics. Livest. Sci. 2012, 150, 51–58. [Google Scholar] [CrossRef]
- Cherdthong, A.; Suntara, C.; Khota, W.; Wanapat, M. Feed utilization and rumen fermentation characteristics of Thai-indigenous beef cattle fed ensiled rice straw with Lactobacillus casei TH14, molasses, and cellulase enzymes. Livest. Sci. 2021, 245, 104405. [Google Scholar] [CrossRef]
- Higginbotham, G.E.; Muelier, S.C.; Collar, C.A.; Schultz, T.A. 1994. Effects of an enzyme addition on corn silage fermentation. Prof. Anim. Sci. 1994, 10, 163–168. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef] [Green Version]
- Konca, Y.; Beyzi, S.B.; Kaliber, M.; Ülger, I. Chemical and nutritional changes in sunflower silage associated with molasses, lactic acid bacteria and enzyme supplementation. Harran. Tarım. Ve. Gıda. Bilimleri. Dergisi. 2015, 19, 223–231. [Google Scholar]
- Hou, M.; Gentu, G.; Liu, T.; Jia, Y.; Cai, Y. Silage preparation and fermentation quality of natural grasses treated with lactic acid bacteria and cellulase in meadow steppe and typical steppe. Asian-Australas. J. Anim. Sci. 2017, 30, 788–796. [Google Scholar] [CrossRef] [PubMed]
Chemical Compositions | Citric Acid By-Product |
---|---|
Dry matter, % | 92.70 |
Moisture, % DM | 7.30 |
Ash, % DM | 13.21 |
Soluble ash, % DM | 2.89 |
Insoluble ash, % DM | 10.32 |
Crude protein, % DM | 6.11 |
Ether extract, % DM | 2.39 |
Crude fiber, % DM | 18.26 |
Nitrogen-free extract, % DM | 52.73 |
Calcium, % DM | 0.90 |
Phosphorus, % DM | 0.08 |
Gross energy, Megajoule/kg DM | 15.01 |
pH | 4.68 |
Day | Trt 1 | CP, % | Ash, % | EE, % | CF, % | NFE, % | Ca, % | P, % | GE, MJ/kg | NDF, % | ADF, % | ADL, % | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 d | Con | 6.27 | 13.37 | 2.33 | 18.21 | 52.53 | 0.82 | 0.08 | 14.95 | 39.94 | 20.32 | 7.81 | 4.59 |
LAB1 | 6.22 | 13.18 | 2.33 | 18.24 | 52.69 | 0.83 | 0.08 | 15.03 | 39.31 | 20.03 | 7.79 | 4.60 | |
LAB5 | 6.24 | 13.20 | 2.39 | 18.01 | 52.92 | 0.81 | 0.08 | 14.90 | 39.94 | 20.12 | 7.95 | 4.61 | |
E1 | 6.32 | 13.32 | 2.35 | 18.22 | 52.49 | 0.80 | 0.07 | 15.07 | 39.31 | 19.63 | 8.46 | 4.60 | |
E5 | 6.29 | 13.43 | 2.40 | 18.23 | 51.94 | 0.79 | 0.07 | 14.91 | 39.94 | 20.19 | 8.04 | 4.56 | |
LAB1 + E1 | 6.22 | 13.33 | 2.34 | 18.18 | 52.46 | 0.85 | 0.08 | 15.07 | 39.31 | 19.69 | 8.62 | 4.61 | |
LAB5 + E5 | 6.22 | 13.45 | 2.36 | 18.09 | 52.56 | 0.83 | 0.08 | 15.08 | 39.31 | 20.09 | 8.40 | 4.64 | |
p-value | 0.93 | 0.93 | 0.99 | 0.79 | 0.49 | 0.79 | 0.79 | 0.86 | 0.73 | 0.41 | 0.75 | 0.87 | |
SEM | 0.08 | 0.19 | 0.08 | 0.12 | 0.30 | 0.03 | 0.01 | 3.01 | 0.44 | 0.24 | 0.45 | 6.64 | |
7 d | Con | 6.21 | 13.30 | 2.41 | 18.33 | 52.43 | 0.82 | 0.08 | 15.01 | 39.63 | 20.51 | 8.25 | 4.31 a |
LAB1 | 6.20 | 13.25 | 2.61 | 17.79 | 52.81 | 0.88 | 0.09 | 15.05 | 39.65 | 20.00 | 7.87 | 4.16 b | |
LAB5 | 6.13 | 13.72 | 2.41 | 17.89 | 52.80 | 0.86 | 0.08 | 14.96 | 40.12 | 19.63 | 7.90 | 4.07 bc | |
E1 | 6.30 | 13.24 | 2.49 | 17.83 | 52.80 | 0.88 | 0.09 | 15.05 | 39.53 | 20.03 | 8.45 | 4.06 bc | |
E5 | 6.19 | 13.44 | 2.46 | 17.69 | 52.89 | 0.83 | 0.08 | 14.97 | 39.99 | 19.48 | 8.48 | 4.11 b | |
LAB1 + E1 | 6.23 | 13.81 | 2.42 | 17.81 | 52.74 | 0.84 | 0.07 | 14.92 | 39.31 | 19.69 | 7.99 | 4.06 bc | |
LAB5 + E5 | 6.29 | 13.34 | 2.36 | 17.49 | 53.74 | 0.89 | 0.09 | 14.94 | 39.41 | 19.83 | 8.11 | 3.97 c | |
p-value | 0.92 | 0.47 | 0.84 | 0.27 | 0.90 | 0.34 | 0.11 | 0.84 | 0.53 | 0.22 | 0.38 | <0.001 | |
SEM | 0.10 | 0.23 | 0.12 | 0.21 | 0.69 | 0.02 | 0.10 | 1.84 | 0.32 | 0.27 | 0.23 | 0.04 |
Day | Trt 1 | CP, % | Ash, % | EE, % | CF, % | NFE, % | Ca, % | P, % | GE, MJ/kg | NDF, % | ADF, % | ADL, % | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14 d | Con | 6.28 | 13.21 | 2.33 | 18.32 a | 52.11 bc | 0.81 | 0.08 | 15.03 | 39.74 a | 20.44 a | 8.57 | 4.22 a |
LAB1 | 6.29 | 13.97 | 2.74 | 17.79 a | 51.86 c | 0.94 | 0.09 | 14.97 | 39.67 a | 19.98 a | 7.64 | 3.99 b | |
LAB5 | 6.27 | 13.80 | 2.55 | 17.89 a | 52.15 bc | 0.88 | 0.08 | 15.24 | 39.92 a | 19.80 ab | 7.77 | 3.85 c | |
E1 | 6.25 | 13.32 | 2.41 | 16.97 b | 53.64 ab | 0.84 | 0.08 | 14.97 | 38.53 b | 18.86 bc | 8.45 | 3.94 bc | |
E5 | 6.31 | 13.32 | 2.39 | 16.82 b | 54.30 a | 0.85 | 0.08 | 14.92 | 37.66 b | 18.64 c | 8.66 | 3.93 bc | |
LAB1 + E1 | 6.42 | 13.78 | 2.47 | 16.04 c | 54.44 a | 0.90 | 0.08 | 14.86 | 38.03 b | 18.79 c | 8.05 | 3.95 bc | |
LAB5 + E5 | 6.40 | 12.85 | 2.50 | 15.82 c | 55.10 a | 0.94 | 0.08 | 14.95 | 37.85 b | 18.76 c | 8.11 | 3.81 c | |
p-value | 0.72 | 0.19 | 0.20 | <0.001 | 0.001 | 0.55 | 0.81 | 0.28 | <0.001 | 0.001 | 0.06 | <0.001 | |
SEM | 0.09 | 0.30 | 0.10 | 0.22 | 0.50 | 0.06 | 0.07 | 2.44 | 0.31 | 0.31 | 0.24 | 0.04 | |
21 d | Con | 6.21 | 13.38 | 2.30 | 18.31 a | 52.09 b | 0.80 | 0.08 | 14.99 | 39.80 a | 20.44 a | 8.67 | 4.26 a |
LAB1 | 6.19 | 13.37 | 2.40 | 18.32 a | 50.01 c | 0.87 | 0.08 | 14.70 | 39.97 a | 19.98 a | 7.97 | 3.89 b | |
LAB5 | 6.16 | 13.40 | 2.38 | 18.15 a | 51.80 bc | 0.88 | 0.08 | 14.77 | 39.63 a | 19.80 a | 7.90 | 3.87 b | |
E1 | 6.35 | 13.50 | 2.44 | 16.22 b | 53.76 ab | 0.84 | 0.08 | 14.92 | 36.83 b | 17.86 b | 8.21 | 3.89 b | |
E5 | 6.50 | 13.11 | 2.45 | 15.64 bc | 53.63 ab | 0.87 | 0.07 | 14.83 | 34.39 c | 16.89 c | 8.89 | 3.83 bc | |
LAB1 + E1 | 6.50 | 13.15 | 2.34 | 15.68 bc | 54.21 a | 0.89 | 0.08 | 14.97 | 36.04 b | 17.16 bc | 7.96 | 3.78 bc | |
LAB5 + E5 | 6.44 | 13.43 | 2.51 | 15.03 c | 55.37 a | 0.87 | 0.09 | 14.91 | 33.99 c | 16.86 c | 8.00 | 3.71 c | |
p-value | 0.33 | 0.38 | 0.96 | <0.001 | <0.001 | 0.69 | 0.27 | 0.22 | <0.001 | <0.001 | 0.11 | <0.001 | |
SEM | 0.13 | 0.15 | 0.15 | 0.34 | 0.64 | 0.04 | 0.01 | 2.05 | 0.43 | 0.29 | 0.27 | 0.05 |
Day | Trt 1 | CP, % | Ash, % | EE, % | CF, % | NFE, % | Ca, % | P, % | GE, MJ/kg | NDF, % | ADF, % | ADL, % | pH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
28 d | Con | 6.33 | 13.81 | 2.37 | 18.38 a | 51.89 b | 0.82 | 0.08 | 14.97 | 39.85 a | 20.08 a | 8.18 | 4.15 a |
LAB1 | 6.20 | 13.93 | 2.44 | 18.03 a | 52.58 b | 0.92 | 0.08 | 14.80 | 40.03 a | 20.22 a | 8.74 | 3.92 b | |
LAB5 | 6.24 | 14.04 | 2.52 | 18.11 a | 51.63 b | 0.87 | 0.09 | 14.76 | 39.47 a | 19.76 a | 8.91 | 3.85 bc | |
E1 | 6.45 | 13.82 | 2.44 | 14.34 b | 55.88 a | 0.80 | 0.07 | 14.98 | 34.75 b | 17.66 a | 9.67 | 3.68 d | |
E5 | 6.45 | 13.72 | 2.46 | 14.21 b | 55.79 a | 0.81 | 0.07 | 14.93 | 33.96 bc | 17.24 b | 9.06 | 3.87 bc | |
LAB1 + E1 | 6.54 | 14.07 | 2.74 | 14.03 b | 54.76 a | 0.90 | 0.08 | 14.83 | 33.47 c | 17.32 b | 8.55 | 3.77 cd | |
LAB5 + E5 | 6.51 | 13.73 | 2.41 | 14.21 b | 56.49 a | 0.94 | 0.08 | 14.96 | 32.86 c | 16.83 b | 9.27 | 3.70 d | |
p-value | 0.35 | 0.32 | 0.14 | <0.001 | <0.001 | 0.09 | 0.31 | 0.61 | <0.001 | <0.001 | 0.15 | <0.001 | |
SEM | 0.12 | 0.29 | 0.09 | 0.22 | 0.54 | 0.03 | 0.01 | 2.48 | 0.35 | 0.29 | 0.35 | 0.05 |
Trt 1 | CP, % | Ash, % | EE, % | CF, % | NFE, % | Ca, % | P, % | GE, MJ/kg | NDF, % | ADF, % | ADL, % | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trt mean | |||||||||||||
Con | 6.26 ab | 13.41 | 2.35 | 18.31 a | 52.21 c | 0.85 | 0.08 | 14.99 | 39.79 a | 20.36 a | 8.29 | 4.31 a | |
LAB1 | 6.22 b | 13.54 | 2.50 | 18.03 a | 51.99 c | 0.89 | 0.08 | 14.97 | 39.73 a | 20.04 ab | 8.18 | 4.11 b | |
LAB5 | 6.21 b | 13.70 | 2.45 | 18.01 a | 52.26 c | 0.86 | 0.08 | 14.99 | 39.82 a | 19.82 b | 8.05 | 4.05 bc | |
E1 | 6.33 ab | 13.39 | 2.43 | 16.71 b | 53.72 b | 0.85 | 0.08 | 15.00 | 37.79 b | 18.81 c | 8.12 | 4.03 c | |
E5 | 6.35 ab | 13.47 | 2.43 | 16.52 bc | 53.71 b | 0.86 | 0.08 | 14.94 | 37.19 c | 18.49 c | 8.32 | 4.06 bc | |
LAB1 + E1 | 6.38 a | 13.46 | 2.46 | 16.35 cd | 53.72 b | 0.88 | 0.08 | 14.96 | 37.23 c | 18.53 c | 8.15 | 4.03 c | |
LAB5 + E5 | 6.37 a | 13.36 | 2.43 | 16.13 d | 54.65 a | 0.89 | 0.08 | 14.99 | 36.68 d | 18.47 c | 8.11 | 3.97 d | |
Day mean | |||||||||||||
1 d | 6.25 b | 13.32 | 2.36 | 18.17 a | 52.51 c | 0.84 | 0.08 | 15.00 | 39.58 a | 20.01 a | 8.01 | 4.60 a | |
7 d | 6.22 b | 13.39 | 2.45 | 17.83 b | 52.89 bc | 0.86 | 0.08 | 14.99 | 39.66 a | 19.88 a | 8.11 | 4.11 b | |
14 d | 6.32 ab | 13.37 | 2.49 | 17.09 c | 53.37 b | 0.89 | 0.08 | 14.99 | 38.77 b | 19.32 b | 8.14 | 3.96 c | |
21 d | 6.33 ab | 13.42 | 2.40 | 16.77 d | 52.98 bc | 0.88 | 0.08 | 14.95 | 37.24 c | 18.43 c | 8.21 | 3.89 d | |
28 d | 6.39 a | 13.47 | 2.49 | 15.90 e | 54.15 a | 0.88 | 0.08 | 14.96 | 36.34 d | 18.44 c | 8.40 | 3.85 d | |
Significance of main effect and interaction | |||||||||||||
Trt (A) | 0.04 | 0.17 | 0.49 | <0.001 | <0.001 | 0.29 | 0.58 | 0.93 | <0.001 | <0.001 | 0.62 | <0.001 | |
Day (B) | 0.04 | 0.15 | 0.15 | <0.001 | <0.001 | 0.07 | 0.36 | 0.77 | <0.001 | <0.001 | 0.08 | <0.001 | |
A × B | 0.97 | 0.66 | 0.83 | <0.001 | <0.001 | 0.97 | 0.86 | 0.69 | <0.001 | <0.001 | 0.77 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanpong, S.; Wongtangtintharn, S.; Cherdthong, A.; Prachumchai, R.; Tengjaroenkul, B.; Chanjula, P.; Suntara, C.; Wachirapakorn, C. Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes. Animals 2022, 12, 3049. https://doi.org/10.3390/ani12213049
Tanpong S, Wongtangtintharn S, Cherdthong A, Prachumchai R, Tengjaroenkul B, Chanjula P, Suntara C, Wachirapakorn C. Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes. Animals. 2022; 12(21):3049. https://doi.org/10.3390/ani12213049
Chicago/Turabian StyleTanpong, Sirisak, Sawitree Wongtangtintharn, Anusorn Cherdthong, Rittikeard Prachumchai, Bundit Tengjaroenkul, Pin Chanjula, Chanon Suntara, and Chalong Wachirapakorn. 2022. "Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes" Animals 12, no. 21: 3049. https://doi.org/10.3390/ani12213049
APA StyleTanpong, S., Wongtangtintharn, S., Cherdthong, A., Prachumchai, R., Tengjaroenkul, B., Chanjula, P., Suntara, C., & Wachirapakorn, C. (2022). Recycling of Citric Acid Waste for Potential Use as Animal Feed through Fermentation with Lactic Acid Bacteria and a Mixture of Fibrolytic Enzymes. Animals, 12(21), 3049. https://doi.org/10.3390/ani12213049