Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Experiment 1—Performance Study
2.3. Experiment 1—Intestinal Morphology and Volatile Fatty Acid and Ammonia Concentrations
2.4. Experiment 2—Nutrient Digestibility
2.5. Statistical Analysis
3. Results
3.1. Growth Performance and Diarrhoea Incidence
3.2. Nutrient Digestibility and Nitrogen Balance
3.3. Intestinal Morphology
3.4. Faecal Volatile Fatty Acids and Ammonia Concentrations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsai, T.; Dove, C.R.; Cline, P.M.; Owusu-Asiedu, A.; Walsh, M.C.; Azain, M. The effect of adding xylanase or β-glucanase to diets with corn distillers dried grains with solubles (CDDGS) on growth performance and nutrient digestibility in nursery pigs. Livest. Sci. 2017, 197, 46–52. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, S.; Yang, Q.; Peng, Q.; Zhu, J.; Zeng, X.; Qiao, S. Effect of high fibre diets formulated with different fibrous ingredients on performance, nutrient digestibility and faecal microbiota of weaned piglets. Archives of animal nutrition. Arch. Anim. Nutr. 2016, 70, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Berrocoso, J.D.; Menoyo, D.; Guzmán, P.; Saldaña, B.; Cámara, L.; Mateos, G.G. Effects of fiber inclusion on growth performance and nutrient digestibility of piglets reared under optimal or poor hygienic conditions. J. Anim. Sci. 2015, 93, 3919–3931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoue, R.; Tsukahara, T.; Nakatani, M.; Okutani, M.; Nishibayashi, R.; Ogawa, S.; Harayama, T.; Nagino, T.; Hatanaka, H.; Fukuta, K.; et al. Weaning markedly affects transcriptome profiles and peyer’s patch development in piglet ileum. Front. Immunol. 2015, 6, 630. [Google Scholar] [CrossRef] [Green Version]
- Lindemann, M.D.; Cornelius, S.G.; El Kandelgy, S.M.; Moser, R.L.; Pettigrew, J.E. Effect of age, weaning and diet on digestive enzyme levels in the piglet. J. Anim. Sci. 1986, 62, 1298–1307. [Google Scholar] [CrossRef] [Green Version]
- Agyekum, A.K.; Sands, J.S.; Regassa, A.; Kiarie, E.; Weihrauch, D.; Kim, W.K.; Nyachoti, C.M. Effect of supplementing a fibrous diet with xylanase and β-glucanase blend on growth performance, intestinal glucose uptake and transport-associated gene expression in growing pigs. J. Anim. Sci. 2015, 93, 3483–3493. [Google Scholar] [CrossRef] [Green Version]
- Agyekum, A.K.; Nyachoti, C.M. Nutritional and metabolic consequences of feeding high-fiber diets to swine: A review. Engineering 2017, 3, 716–725. [Google Scholar] [CrossRef]
- Wang, Z.; Bai, Y.; Pi, Y.; Gerrits, W.J.; de Vries, S.; Shang, L.; Tao, S.; Zhang, S.; Han, D.; Zhu, Z.; et al. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. Microbiome 2021, 9, 1–14. [Google Scholar] [CrossRef]
- O’Neill, H.M.; Smith, J.A.; Bedford, M.R. Multicarbohydrase enzymes for non-ruminants. Asian-Australas. J. Anim. Sci. 2014, 27, 290–301. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Yu, B.; He, J.; Huang, Z.; Mao, X.; Zheng, P.; Luo, Y.; Luo, J.; Wang, Q.; Wang, H.; et al. Effects of xylanase on growth performance, nutrients digestibility and intestinal health in weaned piglets. Livest. Sci. 2020, 233, 103940. [Google Scholar] [CrossRef]
- Passos, A.A.; Park, I.; Ferket, P.; Von Heimendahl, E.; Kim, S.W. Effect of dietary supplementation of xylanase on apparent ileal digestibility of nutrients, viscosity of digesta, and intestinal morphology of growing pigs fed corn and soybean meal based diet. Anim. Nutr. 2015, 1, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Mejicanos, G.A.; González-Ortiz, G.; Nyachoti, C.M. Effect of dietary supplementation of xylanase in a wheat-based diet containing canola meal on growth performance, nutrient digestibility, organ weight, and short-chain fatty acid concentration in digesta when fed to weaned pigs. J. Anim. Sci. 2020, 98, skaa064. [Google Scholar] [CrossRef] [PubMed]
- Torres-Pitarch, A.; Manzanilla, E.G.; Gardiner, G.E.; O’Doherty, J.V.; Lawlor, P.G. Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Anim. Feed Sci. Technol. 2019, 251, 153–165. [Google Scholar] [CrossRef]
- Torres-Pitarch, A.; Hermans, D.; Manzanilla, E.G.; Bindelle, J.; Everaert, N.; Beckers, Y.; Torrallardona, D.; Bruggeman, G.; Gardiner, G.E.; Lawlor, P.G. Effect of feed enzymes on digestibility and growth in weaned pigs: A systematic review and meta-analysis. Anim. Feed Sci. Technol. 2017, 233, 145–159. [Google Scholar] [CrossRef]
- Zhang, S.; Song, J.; Deng, Z.; Cheng, L.; Tian, M.; Guan, W. Effects of combined α-galactosidase and xylanase supplementation on nutrient digestibility and growth performance in growing pigs. Arch. Anim. Nutr. 2017, 71, 441–454. [Google Scholar] [CrossRef]
- Nørgaard, J.V.; Malla, N.; Dionisio, G.; Madsen, C.K.; Pettersson, D.; Lærke, H.N.; Hjortshøj, R.L.; Brinch-Pedersen, H. Exogenous xylanase or protease for pigs fed barley cultivars with high or low enzyme inhibitors. Anim. Feed Sci. Technol. 2019, 248, 59–66. [Google Scholar] [CrossRef]
- Lærke, H.N.; Arent, S.; Dalsgaard, S.; Bach Knudsen, K.E. Effect of xylanases on ileal viscosity, intestinal fiber modification, and apparent ileal fiber and nutrient digestibility of rye and wheat in growing pigs. J. Anim. Sci. 2015, 93, 4323–4335. [Google Scholar] [CrossRef] [Green Version]
- Van Hoeck, V.; Wu, D.; Somers, I.; Wealleans, A.L.; Vasanthakumari, B.L.; Gonzalez Sanchez, A.L.; Morisset, D. Xylanase impact beyond performance: A prebiotic approach in broiler chickens. J. Appl. Poultr. Res. 2021, 30, 100193. [Google Scholar] [CrossRef]
- Van Hoeck, V.; Somers, I.; Wealleans, A.L.; van de Craen, S.; Morisset, D. Xylanase impact beyond performance: A prebiotic approach in laying hens. PLoS ONE 2021, 16, e0257681. [Google Scholar] [CrossRef]
- González-Ortiz, G.; Callegari, M.A.; Wilcock, P.; Melo-Duran, D.; Bedford, M.R.; Oliveira, H.R.; da Silva, M.A.; Pierozan, C.R.; da Silva, C.A. Dietary xylanase and live yeast supplementation influence intestinal bacterial populations and growth performance of piglets fed a sorghum-based diet. Anim. Nutr. 2020, 6, 457–466. [Google Scholar] [CrossRef]
- Luise, D.; Motta, V.; Boudry, C.; Salvarani, C.; Correa, F.; Mazzoni, M.; Bosi, P.; Trevisi, P. The supplementation of a corn/barley-based diet with bacterial xylanase did not prevent diarrhoea of ETEC susceptible piglets, but favoured the persistence of Lactobacillus reuteri in the gut. Livest. Sci. 2020, 240, 104161. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, P.; Wu, Y.; Guo, P.; Liu, L.; Ma, N.; Levesque, C.; Chen, Y.; Zhao, J.; Zhang, J.; et al. Dietary fiber increases butyrate-producing bacteria and improves the growth performance of weaned piglets. J. Agric. Food Chem. 2018, 66, 7995–8004. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 2015, 17, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.E.; Zhou, F.X.; Dutra Jr, W.M.; Kim, S.W. Dietary supplementation of xylanase and protease on growth performance, digesta viscosity, nutrient digestibility, immune and oxidative stress status, and gut health of newly weaned pigs. Anim. Nutr. 2019, 5, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Kpogo, A.L.; Jose, J.; Panisson, J.C.; Agyekum, A.K.; Predicala, B.Z.; Alvarado, A.C.; Agnew, J.M.; Sprenger, C.J.; Beaulieu, A.D. Greenhouse gases and performance of growing pigs fed wheat-based diets containing wheat millrun and a multi-carbohydrase enzyme. J Anim. Sci. 2021, 99, skab213. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, D.; Zhang, L.; Zhong, R.; Liu, Z.; Liu, L.; Chen, L.; Zhang, H. Supplementation of non-starch polysaccharide enzymes cocktail in a corn-miscellaneous meal diet improves nutrient digestibility and reduces carbon dioxide emissions in finishing pigs. Animals 2020, 10, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council (NRC). Nutrient Requirements of Swine, 10th ed.; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists (AOAC): Gaithersburg, MD, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Daily Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists (AOAC): Gaithersburg, MD, USA, 2007. [Google Scholar]
- Dong, B.; Liu, S.; Wang, C.; Cao, Y. Effects of xylanase supplementation to wheat-based diets on growth performance, nutrient digestibility and gut microbes in weanling pigs. Asian-Australas. J. Anim. Sci. 2018, 31, 1491–1499. [Google Scholar] [CrossRef]
- Jang, Y.D.; Wilcock, P.; Boyd, R.D.; Lindemann, M.D. Effect of combined xylanase and phytase on growth performance, apparent total tract digestibility, and carcass characteristics in growing pigs fed corn-based diets containing high-fiber coproducts. J. Anim. Sci. 2017, 95, 4005–4017. [Google Scholar] [CrossRef]
- Wealleans, A.L.; Barnard, L.P.; Romero, L.F.; Kwakernaak, C. A value based approach to determine optimal phytase dose: A case study in turkey poults. Anim. Feed Sci. Technol. 2016, 216, 288–295. [Google Scholar] [CrossRef]
- Kiarie, E.; Owusu-Asiedu, A.; Peron, A.; Simmins, P.H.; Nyachoti, C.M. Efficacy of xylanase and β-glucanase blend in mixed grains and grain co-products-based diets for fattening pigs. Livest. Sci. 2012, 148, 129–133. [Google Scholar] [CrossRef]
- Kiarie, E.; Petracek, R. Growth performance of nursery pigs fed pelleted wheat-based diets containing graded levels of supplemental xylanase. Anim. Prod. Sci. 2015, 55, 1548. [Google Scholar] [CrossRef]
- Abelilla, J.J.; Stein, H.H. Degradation of dietary fiber in the stomach, small intestine, and large intestine of growing pigs fed corn-or wheat-based diets without or with microbial xylanase. J. Anim. Sci. 2019, 97, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, N.W.; Lærke, H.N.; Bach Knudsen, K.E.; Stein, H.H. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains. J. Anim. Sci. 2015, 93, 1103–1113. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef]
- Ndou, S.P.; Kiarie, E.; Agyekum, A.K.; Heo, J.M.; Romero, L.F.; Arent, S.; Lorentsen, R.; Nyachoti, C.M. Comparative efficacy of xylanases on growth performance and digestibility in growing pigs fed wheat and wheat bran-or corn and corn DDGS-based diets supplemented with phytase. Anim. Feed Sci. Technol. 2015, 209, 230–239. [Google Scholar] [CrossRef]
- O’Shea, C.J.; Mc Alpine, P.O.; Solan, P.; Curran, T.; Varley, P.F.; Walsh, A.M.; Doherty, J.V.O. The effect of protease and xylanase enzymes on growth performance, nutrient digestibility, and manure odour in grower–finisher pigs. Anim. Feed Sci. Tech. 2014, 189, 88–97. [Google Scholar] [CrossRef]
- Taylor, A.E.; Bedford, M.R.; Miller, H.M. The effects of xylanase on grower pig performance, concentrations of volatile fatty acids and peptide YY in portal and peripheral blood. Animal 2018, 12, 2499–2504. [Google Scholar] [CrossRef]
- O’Connell, J.M.; Sweeney, T.; Callan, J.J.; O’Doherty, J.V. The effect of cereal type and exogenous enzyme supplementation in pig diets on nutrient digestibility, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions from finisher pigs. Anim. Sci. 2005, 81, 357–364. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Wolin, M.J.; Miller, T.L. Carbohydrate fermentation. In Human Intestinal Microflora in Health and Disease; Hentges, D., Ed.; Academic Press: New York, NY, USA, 1993; pp. 147–165. [Google Scholar]
- Zhang, Z.; Tun, H.M.; Li, R.; Gonzalez, B.J.; Keenes, H.C.; Nyachoti, C.M.; Kiarie, E.; Khafipour, E. Impact of xylanases on gut microbiota of growing pigs fed corn-or wheat-based diets. Anim. Nutr. 2018, 4, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Sutton, T.A.; O’Neill, H.M.; Bedford, M.R.; McDermott, K.; Miller, H.M. Effect of xylanase and xylo-oligosaccharide supplementation on growth performance and faecal bacterial community composition in growing pigs. Anim. Feed Sci. Technol. 2021, 274, 114822. [Google Scholar] [CrossRef]
- Singh, A.K.; Mandal, R.K.; Bedford, M.R.; Jha, R. Xylanase improves growth performance, enhances cecal short-chain fatty acids production, and increases the relative abundance of fiber fermenting cecal microbiota in broilers. Anim. Feed Sci. Technol. 2021, 277, 114956. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Ma, J.; Piao, X. Changes in growth performance and ileal microbiota composition by xylanase supplementation in broilers fed wheat-based diets. Front. Microbiol. 2021, 12, 706396. [Google Scholar] [CrossRef] [PubMed]
- Petry, A.L.; Patience, J.F. Xylanase supplementation in corn-based swine diets: A review with emphasis on potential mechanisms of action. J. Anim. Sci. 2020, 98, 1–12. [Google Scholar] [CrossRef]
- McAlpine, P.O.; O’shea, C.J.; Varley, P.F.; Solan, P.; Curran, T.; O’Doherty, J.V. The effect of protease and nonstarch polysaccharide enzymes on manure odor and ammonia emissions from finisher pigs. J. Anim. Sci. 2012, 90, 369–371. [Google Scholar] [CrossRef]
Raw Materials, % | Pre-Starter | Starter |
---|---|---|
Corn, 8% CP | 34.45 | 34.29 |
Wheat | 20.00 | 30.00 |
Broken rice | 10.00 | 5.50 |
Full-fat soybean meal | 8.00 | 3.50 |
Sweet whey | 8.00 | 2.70 |
Soybean meal, 48% CP | 5.00 | 13.10 |
Soy protein concentrate | 5.00 | 1.00 |
Wheat bran | 5.00 | 5.00 |
Rice bran oil | 1.00 | 1.50 |
Limestone | 0.61 | 0.92 |
Acid Lac 1 | 0.50 | – |
Monocalcium phosphate | 0.30 | 0.45 |
Sodium chloride | 0.40 | 0.35 |
L-lysine HCl | 0.50 | 0.52 |
DL-methionine | 0.24 | 0.21 |
L-threonine | 0.20 | 0.20 |
L-valine | 0.15 | 0.12 |
L-tryptophan | 0.08 | 0.08 |
L-isoleucine | 0.06 | 0.05 |
Phytase 2 | 0.01 | 0.01 |
Vitamin-mineral premix 3 | 0.50 | 0.50 |
Total | 100.00 | 100.00 |
Nutrient composition, % | ||
Metabolisable energy, kcal/kg | 3296.21 | 3244.49 |
Digestible energy, kcal/kg | 3446.08 | 3467.15 |
Net energy, kcal/kg | 2496.60 | 2482.61 |
Crude protein | 17.35 | 17.03 |
Ca | 0.61 | 0.71 |
Available P | 0.40 | 0.39 |
Digestible Lys | 1.11 | 1.09 |
Digestible Met + Cys | 0.67 | 0.64 |
Digestible Thr | 0.66 | 0.64 |
Digestible Ile | 0.61 | 0.58 |
Ash | 4.75 | 4.77 |
Crude fibre | 2.59 | 2.67 |
Pre Starter, U/kg | Starter, U/kg | |||
---|---|---|---|---|
Expected U/kg | Cold Mash | Pellet | Cold Mash | Pellet |
0 | n.d.1 | n.d. | n.d. | n.d. |
45,000 | 36,376 | 26,369 | 41,343 | 67,068 |
90,000 | 88,844 | 63,204 | 86,437 | 100,459 |
135,000 | 136,607 | 104,139 | 173,287 | 189,339 |
Parameter | Xylanase, U/kg | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 45,000 | 90,000 | 135,000 | Treatment | Linear * | Quadratic ** | |||
d0-14 | BW d0, kg | 7.46 | 7.48 | 7.49 | 7.46 | 0.237 | 0.9997 | 0.9890 | 0.9227 |
BW d14, kg | 10.68 | 10.92 | 11.27 | 11.46 | 0.314 | 0.3114 | 0.0601 | 0.9389 | |
ADG, g | 229.52 | 245.69 | 269.52 | 285.69 | 10.979 | 0.0051 | 0.0004 | 1.000 | |
ADFI, g | 369.22 | 384.1 | 366.22 | 353.11 | 5.525 | 0.0044 | 0.0129 | 0.0182 | |
G:F | 0.624 | 0.640 | 0.738 | 0.810 | 0.032 | 0.0007 | <0.0001 | 0.3833 | |
d15-35 | BW d35, kg | 19.14 | 20.03 | 20.26 | 21.67 | 0.381 | 0.0006 | <0.0001 | 0.5053 |
ADG, g | 402.98 | 428.43 | 433.82 | 486.02 | 10.908 | <0.0001 | <0.0001 | 0.2498 | |
ADFI, g | 756.78 | 762.67 | 746.56 | 743.00 | 3.357 | 0.0007 | 0.0010 | 0.1949 | |
G:F | 0.532 | 0.568 | 0.572 | 0.653 | 0.014 | <0.0001 | <0.0001 | 0.1300 | |
d0-35 | ADG, g | 333.60 | 358.57 | 364.86 | 405.89 | 7.525 | <0.0001 | <0.0001 | 0.3047 |
ADFI, g | 601.67 | 611.22 | 594.44 | 587.00 | 3.079 | <0.0001 | 0.0003 | 0.0156 | |
G:F | 0.557 | 0.588 | 0.612 | 0.692 | 0.013 | <0.0001 | <0.0001 | 0.0679 | |
Diarrhoea rate (%) | 15.22 a | 9.78 | 7.89 | 5.89 | 1.628 | 0.0021 | -- | -- |
Parameters | Xylanase, U/kg | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
0 | 45,000 | 90,000 | 135,000 | Treatment | Linear * | Quadratic | |||
Nutrient Digestibility, % | Dry matter | 91.49 | 93.61 | 93.37 | 95.19 | 0.240 | <0.0001 | 0.0002 | 0.7098 |
Crude protein | 87.29 | 90.61 | 90.68 | 93.33 | 0.505 | 0.0002 | 0.0002 | 0.6291 | |
Ether extract | 82.60 | 88.90 | 87.24 | 89.45 | 1.034 | 0.0060 | 0.0106 | 0.1534 | |
Crude fibre | 67.11 | 70.94 | 72.22 | 74.26 | 1.625 | 0.0721 | 0.0095 | 0.5781 | |
NDF | 66.15 | 66.85 | 67.21 | 67.49 | 0.220 | 0.0128 | 0.0011 | 0.3436 | |
ADF | 65.90 | 67.49 | 70.36 | 70.81 | 0.672 | 0.0024 | 0.0003 | 0.4306 | |
Gross energy | 54.96 | 68.40 | 74.11 | 78.76 | 2.869 | 0.0020 | 0.0001 | 0.1448 | |
Starch | 51.34 | 62.51 | 64.82 | 70.74 | 2.301 | 0.0022 | 0.0003 | 0.2952 | |
N Balance | Crude protein intake | 75.97 | 76.57 | 75.57 | 74.50 | 8.6 ×10−9 | <0.0001 | 0.1256 | 0.6005 |
N intake | 12.15 | 12.25 | 12.09 | 11.92 | -- | -- | -- | -- | |
N-faeces | 1.54 | 1.14 | 1.12 | 0.81 | 0.061 | 0.0002 | 0.0001 | 0.5668 | |
N-urine | 5.63 | 5.33 | 5.57 | 4.63 | 0.346 | 0.2329 | 0.1107 | 0.3851 | |
N-retention | 4.98 | 5.78 | 5.23 | 6.66 | 0.363 | 0.0470 | 0.0314 | 0.4786 | |
N-digestibility 2, % | 40.96 | 47.15 | 43.90 | 55.04 | 3.007 | 0.0497 | 0.0224 | 0.4784 |
Parameters | Xylanase, U/kg | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 45,000 | 90,000 | 135,000 | Treatment | Linear * | Quadratic | ||
Duodenum | ||||||||
Villus height, µm | 386.36 | 422.44 | 430.42 | 452.39 | 23.201 | 0.2669 | 0.0480 | 0.7598 |
Crypt depth, µm | 313.23 | 322.93 | 327.90 | 327.48 | 18.849 | 0.9408 | 0.5685 | 0.7864 |
VH:CD | 1.24 | 1.32 | 1.36 | 1.43 | 0.113 | 0.6878 | 0.2268 | 0.9745 |
Jejunum | ||||||||
Villus height, µm | 372.87 | 432.53 | 465.80 | 491.28 | 15.547 | 0.0001 | <0.0001 | 0.0828 |
Crypt depth, µm | 297.79 | 332.46 | 334.63 | 332.40 | 15.921 | 0.3177 | 0.0870 | 0.2496 |
VH:CD | 1.26 | 1.34 | 1.42 | 1.49 | 0.090 | 0.3224 | 0.0618 | 0.9745 |
Parameters | Xylanase, U/kg | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0 | 45,000 | 90,000 | 135,000 | Treatment | Linear * | Quadratic ** | ||
Volatile Fatty Acids, mmol/L | ||||||||
Acetate | 17.79 | 16.89 | 19.55 | 18.56 | 2.629 | 0.9055 | 0.6715 | 0.9855 |
Propionate | 8.55 | 9.16 | 14.40 | 10.59 | 0.933 | 0.0011 | 0.0364 | 0.0284 |
Butyrate | 3.98 | 5.49 | 5.29 | 6.14 | 0.583 | 0.0971 | 0.0161 | 0.5785 |
Isobutyrate | 1.79 | 2.29 | 1.00 | 2.13 | 0.328 | 0.0511 | 0.8753 | 0.4118 |
Isovalerate | 2.64 | 2.03 | 2.01 | 1.97 | 0.456 | 0.6919 | 0.3167 | 0.5316 |
Total VFA | 34.75 | 35.86 | 42.25 | 39.39 | 2.664 | 0.2102 | 0.1187 | 0.4689 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boontiam, W.; Phaenghairee, P.; Van Hoeck, V.; Vasanthakumari, B.L.; Somers, I.; Wealleans, A. Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients. Animals 2022, 12, 3043. https://doi.org/10.3390/ani12213043
Boontiam W, Phaenghairee P, Van Hoeck V, Vasanthakumari BL, Somers I, Wealleans A. Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients. Animals. 2022; 12(21):3043. https://doi.org/10.3390/ani12213043
Chicago/Turabian StyleBoontiam, Waewaree, Pheeraphong Phaenghairee, Veerle Van Hoeck, Bindhu Lakshmibai Vasanthakumari, Ingrid Somers, and Alexandra Wealleans. 2022. "Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients" Animals 12, no. 21: 3043. https://doi.org/10.3390/ani12213043
APA StyleBoontiam, W., Phaenghairee, P., Van Hoeck, V., Vasanthakumari, B. L., Somers, I., & Wealleans, A. (2022). Xylanase Impact beyond Performance: Effects on Gut Structure, Faecal Volatile Fatty Acid Content and Ammonia Emissions in Weaned Piglets Fed Diets Containing Fibrous Ingredients. Animals, 12(21), 3043. https://doi.org/10.3390/ani12213043