Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Diets, Birds, and Housing
2.3. Determination of Metabolizable Energy
2.4. Chemical Analysis
2.5. Calculations
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hill, F.; Anderson, D. Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr. 1958, 64, 587–603. [Google Scholar] [CrossRef]
- Mateos, G.G.; Cámara, L.; Fondevila, G.; Lázaro, R.P. Critical review of the procedures used for estimation of the energy content of diets and ingredients in poultry. J. Appl. Poult. Res. 2019, 28, 506–525. [Google Scholar] [CrossRef]
- Wu, S.B.; Choct, M.; Pesti, G. Historical flaws in bioassays used to generate metabolizable energy values for poultry feed formulation: A critical review. Poult. Sci. 2020, 99, 385–406. [Google Scholar] [CrossRef]
- Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Apparent metabolizable energy of cereal grains for broiler chickens is influenced by age. Poult. Sci. 2021, 100, 101288. [Google Scholar] [CrossRef]
- Fraps, G.S.; Carlyle, E.C.; Fudge, J.F. Metabolizable energy of some chicken feeds. Tex. Agric. Exp. Stat. Bull. 1940, 589, 23. [Google Scholar]
- Sibbald, I.R. A bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 1976, 55, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Sibbald, I.; Summers, J.; Slinger, S. Factors affecting the metabolizable energy content of poultry feeds. Poult. Sci. 1960, 39, 544–556. [Google Scholar] [CrossRef]
- Farrell, D. Rapid determination of metabolisable energy of foods using cockerels. Br. Poult. Sci. 1978, 19, 303–308. [Google Scholar] [CrossRef]
- Olukosi, O.A. Investigation of the effects of substitution levels, assay methods and length of adaptation to experimental diets on determined metabolisable energy value of maize, barley and soya bean meal. Br. Poult. Sci. 2021, 62, 278–284. [Google Scholar] [CrossRef]
- Kong, C.; Adeola, O. Determination of ileal digestible and apparent metabolisable energy contents of expeller-extracted and solvent-extracted canola meals for broiler chickens by the regression method. SpringerPlus. 2016, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noblet, J.; Wu, S.B.; Choct, M. Methodologies for energy evaluation of pig and poultry feeds: A review. Anim. Nutr. 2021, 8, 185–203. [Google Scholar] [CrossRef]
- Lockhart, W.C.; Bryant, R.L.; Bolin, D.W. A comparison of several methods in determining the metabolizable energy content of durum wheat and wheat cereal by chicks. Poult. Sci. 1967, 46, 805–810. [Google Scholar] [CrossRef]
- Veluri, S.; Olukosi, O.A. Metabolizable energy of soybean meal and canola meal as influenced by the reference diet used and assay method. Animals. 2020, 10, 2132. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 20th ed.; Association of Analytical Chemists: Washington, DC, USA, 2016. [Google Scholar]
- McCleary, B.V.; Gibson, T.S.; Mugford, D.C. Measurement of Total Starch in Cereals Products by Amyloglucosidase vs. Amylase Method: Collaborative Study. AOAC 1997, 80, 571–579. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis, 18th ed.; Association of Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Titus, H.W.; Mehring, A.L., Jr.; Johnson, D., Jr.; Nesbitt, L.L.; Tomas, T. An evaluation of M.C.F. (Micro-Cel-Fat), a new type of fat product. Poult. Sci. 1959, 38, 1114–1119. [Google Scholar] [CrossRef]
- SAS Institute. SAS® Qualification Tools User’s Guide; Version 9.4; SAS Institute Inc.: Cary, NC, USA, 2015. [Google Scholar]
- Lopez, G.; Leeson, S. Relevance of nitrogen correction for assessment of metabolizable energy with broilers to forty-nine days of age. Poult. Sci. 2007, 86, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, A.; Cowieson, A.J.; Sorbara, J.O.; Adeola, O. Growth phase and dietary α-amylase supplementation effects on nutrient digestibility and feedback enzyme secretion in broiler chickens. Poult. Sci. 2020, 99, 6867–6876. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Pirgozliev, V.R.; Rose, S.P.; Woods, S.; Yang, H.M.; Wang, Z.Y.; Bedford, M.R. Effect of age on the relationship between metabolizable energy and digestible energy for broiler chickens. Poult. Sci. 2020, 99, 320–330. [Google Scholar] [CrossRef]
- Bartov, I. Differential effect of age on metabolisable energy content of high protein-low energy and low protein-high energy diets in young broiler chicks1. Br. Poult. Sci. 1995, 36, 631–643. [Google Scholar] [CrossRef]
- Zelenka, J. Influence of the age of chicken on the metabolisable energy values of poultry diets. Br. Poult. Sci. 1968, 9, 135–142. [Google Scholar] [CrossRef]
- Batal, A.B.; Parsons, C.M. Effect of age on nutrient digestibility in chicks fed different diets. Poult. Sci. 2002, 81, 400–407. [Google Scholar] [CrossRef]
- Batal, A.B.; Parsons, C.M. Utilization of various carbohydrate sources as affected by age in the chick. Poult. Sci. 2004, 83, 1140–1147. [Google Scholar] [CrossRef]
- Thomas, D.V.; Ravindran, V.; Ravindran, G. Nutrient digestibility and energy utilisation of diets based on wheat, sorghum or maize by the newly hatched broiler chick. Br. Poult. Sci. 2008, 49, 429–435. [Google Scholar] [CrossRef]
- Tancharoenrat, P.; Ravindran, V.; Zaefarian, F.; Ravindran, G. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Technol. 2013, 186, 186–192. [Google Scholar] [CrossRef]
- Lessire, M.; Leclercq, B.; Conan, L. Metabolisable energy value of fats in chicks and adult cockerels. Anim. Feed Sci. Technol. 1982, 7, 365–374. [Google Scholar] [CrossRef]
- Scheele, C.W.; Kwakernaak, C.; van der Klis, J.D.; Bakker, G.C.M. Effects of different factors including enzymes on the nutritional value of fats for poultry. In Garnsworthy; Wiseman, J., Garnsworthy, P.C., Eds.; Recent Advances in Animal Nutrition; Nottingham University Press: Nottingham, UK, 1997; pp. 59–75. [Google Scholar]
- Svihus, B. Limitations to wheat starch digestion in growing broiler chickens: A brief review. Anim. Prod. Sci. 2011, 51, 583–589. [Google Scholar] [CrossRef]
- Mahagna, M.; Nir, I. Comparative development of digestive organs, intestinal dissacharidases and some blood metabolites in broilers and layer-type chicks after hatching. Br. Poult. Sci. 1996, 37, 359–371. [Google Scholar] [CrossRef]
- Sklan, D.; Noy, Y. Hydrolysis and absorption in the small intestine of posthatch chicks. Poult. Sci. 2000, 79, 1306–1310. [Google Scholar] [CrossRef]
- Akiba, Y.; Murakami, H. Partitioning of energy and protein during early growth of broiler chicks and contribution of vitelline residue. In Proceedings of the 10th European Symposium on Poultry Nutrition; World’s Poultry Science Association: Antalya, Turkey, 1995; pp. 44–52. [Google Scholar]
- Noy, Y.; Sklan, D. Digestion and absorption in the young chick. Poult. Sci. 1995, 74, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Uni, Z.; Noy, Y.; Sklan, D. Posthatch changes in morphology and function of the small intestines in heavy- and light-strain chicks. Poult. Sci. 1995, 74, 1622–1629. [Google Scholar] [CrossRef]
- Zelenka, J.; Ceresnakova, Z. Effect of age on digestibility of starch in chickens with different growth rate. Czech J. Anim. Sci. 2005, 50, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kong, C. Comparison of energy values estimated by direct and indirect methods for broiler chickens. Int. J. Poult. Sci. 2019, 18, 244–248. [Google Scholar] [CrossRef]
- Zelenka, J. Effects of sex, age and food intake upon metabolisable energy values in broiler chickens. Br. Poult. Sci. 1997, 38, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.A. Variation in feed intake of broiler chickens. Recent Adv. Anim. Nutr. Aus. 2005, 15, 237–244. [Google Scholar]
- Pettersson, D.; Aman, P. Enzyme supplementation of a poultry diet containing rye and wheat. Br. J. Nutr. 1989, 62, 139–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annison, G. Relationship between the levels of soluble non starch polysaccharides and the apparent metabolizable energy of wheats assayed in broiler chickens. J. Agric. Food Chem. 1991, 39, 1252–1256. [Google Scholar] [CrossRef]
Parameter | Wheat | Sorghum | Barley | Corn |
---|---|---|---|---|
DM a | 899 | 909 | 925 | 909 |
Ash | 18.4 | 15.5 | 16.1 | 20.5 |
Nitrogen | 19.7 | 17.0 | 20.0 | 12.9 |
Protein | 123.1 | 106.3 | 125.0 | 80.6 |
Fat | 18.5 | 32.6 | 22.0 | 32.4 |
Starch | 532 | 606 | 499 | 590 |
NDF a | 103 | 62.2 | 90.1 | 83.1 |
Ca a | 0.21 | 0.10 | 0.19 | 0.17 |
P a | 3.51 | 2.89 | 2.65 | 2.47 |
GE a (MJ/kg) | 16.18 | 16.68 | 16.69 | 16.25 |
Ingredient | Basal Diet | Starter Diet | Finisher Diet |
---|---|---|---|
Corn | 604.4 | 574.2 | 660.0 |
Soybean meal, 460 g/kg | 338.1 | 381.4 | 295.7 |
Soybean oil | 14.2 | 8.8 | 13.6 |
Dicalcium phosphate | 15.8 | 10.7 | 8.2 |
Limestone | 10.4 | 11.3 | 9.9 |
L lysine HCl | 3.7 | 2.0 | 1.9 |
DL methionine | 3.1 | 3.3 | 3.0 |
L threonine | 2.0 | 1.0 | 0.7 |
L valine | 0.7 | - | - |
Sodium chloride | 1.0 | 2.5 | 2.5 |
Sodium bicarbonate | 3.9 | 2.7 | 2.5 |
Trace mineral premix | 1.0 | 1.0 | 1.0 |
Vitamin premix 1 | 1.0 | 1.0 | 1.0 |
Choline chloride 60% | 0.7 | - | - |
Ronozyme HiPhos (Phytase) | - | 0.1 | 0.1 |
Age (Week) | DM Retention | N Retention | AME | AMEn |
---|---|---|---|---|
1 | 77.6 | 76.2 | 13.30 | 12.53 |
2 | 81.6 | 76.4 | 15.28 | 14.55 |
3 | 73.6 | 64.5 | 13.35 | 12.75 |
4 | 75.3 | 65.7 | 13.84 | 13.31 |
5 | 75.4 | 65.7 | 14.03 | 13.48 |
6 | 74.3 | 59.6 | 13.76 | 13.20 |
SEM 2 | 0.66 | 1.23 | 0.273 | 0.240 |
Orthogonal polynomial contrast, P≤ | ||||
Linear | 0.001 | 0.001 | 0.667 | 0.731 |
Quadratic | 0.271 | 0.157 | 0.274 | 0.111 |
Age (Week) | DM Retention | N Retention | AME | AMEn |
---|---|---|---|---|
1 | 77.8 | 70.9 | 13.32 | 12.84 |
2 | 78.0 | 68.2 | 14.38 | 13.95 |
3 | 75.9 | 65.7 | 14.39 | 13.90 |
4 | 77.2 | 65.2 | 14.86 | 14.45 |
5 | 75.6 | 63.6 | 14.29 | 13.87 |
6 | 74.7 | 58.1 | 14.48 | 14.13 |
SEM 2 | 0.61 | 1.25 | 0.344 | 0.321 |
Orthogonal polynomial contrast, P≤ | ||||
Linear | 0.001 | 0.001 | 0.047 | 0.017 |
Quadratic | 0.468 | 0.376 | 0.043 | 0.039 |
Age (Week) | DM Retention | N Retention | AME | AMEn |
---|---|---|---|---|
1 | 75.8 | 74.2 | 11.98 | 11.26 |
2 | 75.6 | 72.2 | 12.46 | 11.78 |
3 | 72.8 | 65.7 | 12.09 | 11.46 |
4 | 72.9 | 64.3 | 12.06 | 11.56 |
5 | 72.5 | 65.3 | 12.15 | 11.59 |
6 | 71.3 | 59.3 | 12.24 | 11.67 |
SEM 2 | 0.63 | 1.03 | 0.360 | 0.325 |
Orthogonal polynomial contrast, P≤ | ||||
Linear | 0.001 | 0.001 | 0.906 | 0.561 |
Quadratic | 0.429 | 0.278 | 0.972 | 0.796 |
Age (Week) | DM Retention | N Retention | AME | AMEn |
---|---|---|---|---|
1 | 80.3 | 76.8 | 14.68 | 14.12 |
2 | 79.8 | 73.1 | 15.09 | 14.62 |
3 | 77.2 | 69.6 | 14.79 | 14.28 |
4 | 78.4 | 69.8 | 15.33 | 14.85 |
5 | 77.8 | 68.3 | 15.24 | 14.80 |
6 | 76.9 | 63.1 | 15.38 | 14.92 |
SEM 2 | 0.53 | 1.12 | 0.366 | 0.359 |
Orthogonal polynomial contrast, P≤ | ||||
Linear | 0.001 | 0.001 | 0.152 | 0.099 |
Quadratic | 0.233 | 0.930 | 0.879 | 0.814 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.M.; Abdollahi, M.R.; Zaefarian, F.; Chrystal, P.V.; Ravindran, V. Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method. Animals 2022, 12, 183. https://doi.org/10.3390/ani12020183
Khalil MM, Abdollahi MR, Zaefarian F, Chrystal PV, Ravindran V. Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method. Animals. 2022; 12(2):183. https://doi.org/10.3390/ani12020183
Chicago/Turabian StyleKhalil, Mahmoud M., Mohammad Reza Abdollahi, Faegheh Zaefarian, Peter V. Chrystal, and Velmurugu Ravindran. 2022. "Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method" Animals 12, no. 2: 183. https://doi.org/10.3390/ani12020183
APA StyleKhalil, M. M., Abdollahi, M. R., Zaefarian, F., Chrystal, P. V., & Ravindran, V. (2022). Influence of Broiler Age on the Apparent Metabolizable Energy of Cereal Grains Determined Using the Substitution Method. Animals, 12(2), 183. https://doi.org/10.3390/ani12020183