Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Serological Testing for MV Status
2.3. DNA Extraction and TMEM154 Genotyping
2.4. Statistical Analysis
3. Results
3.1. Serological MV Status of Sampled Breeds and Flocks
3.2. TMEM154 Genotyping and Association Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalogianni, A.I.; Bossis, I.; Ekateriniadou, L.V.; Gelasakis, A.I. Etiology, Epizootiology and Control of Maedi-Visna in Dairy Sheep: A Review. Animals 2020, 10, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroux, C.; Cruz, J.C.M.; Mornex, J.-F. SRLVs: A genetic continuum of lentiviral species in sheep and goats with cumulative evidence of cross species transmission. Curr. HIV Res. 2010, 8, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; Böni, J.; Huder, J.B.; Vogt, H.-R.; Mühlherr, J.; Zanoni, R.; Miserez, R.; Lutz, H.; Schüpbach, J. Phylogenetic analysis and reclassification of caprine and ovine lentiviruses based on 104 new isolates: Evidence for regular sheep-to-goat transmission and worldwide propagation through livestock trade. Virology 2004, 319, 12–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reina, R.; Mora, M.; Glaria, I.; García, I.; Solano, C.; Luján, L.; Badiola, J.; Contreras, A.; Berriatua, E.; Juste, R.; et al. Molecular characterization and phylogenetic study of Maedi Visna and Caprine Arthritis Encephalitis viral sequences in sheep and goats from Spain. Virus Res. 2006, 121, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.S.; Pinheiro, R.R.; Costa, J.N.; Lima, C.C.; Andrioli, A.; Azevedo, D.A.; Santos, V.W.; Araujo, J.F.; Sousa, A.L.; Pinheiro, D.N.; et al. Interspecific transmission of small ruminant lentiviruses from goats to sheep. Braz. J. Microbiol. 2015, 46, 867–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minguijón, E.; Reina, R.; Pérez, M.; Polledo, L.; Villoria, M.; Ramírez, H.; Leginagoikoa, I.; Badiola, J.; García-Marín, J.; de Andrés, D.; et al. Small ruminant lentivirus infections and diseases. Vet. Microbiol. 2015, 181, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lucia, E.; Sanjosé, L.; Crespo, O.; Reina, R.; Glaria, I.; Ballesteros, N.; Amorena, B.; Doménech, A. Modulation of the long terminal repeat promoter activity of small ruminant lentiviruses by steroids. Vet. J. 2014, 202, 323–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gayo, E.; Polledo, L.; Balseiro, A.; Martínez, C.; Iglesias, M.G.; Preziuso, S.; Rossi, G.; Marín, J.G. Inflammatory Lesion Patterns in Target Organs of Visna/Maedi in Sheep and their Significance in the Pathogenesis and Diagnosis of the Infection. J. Comp. Pathol. 2018, 159, 49–56. [Google Scholar] [CrossRef]
- Straub, O.C. Maedi-Visna virus infection in sheep. History and present knowledge. Comp. Immunol. Microbiol. Infect. Dis. 2004, 27, 1–5. [Google Scholar] [CrossRef]
- OIE. Caprine arthritis/encephalitis and Maedi-visna. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Terrestrial Manual); World Organization for Animal Health: Paris, France, 2018; pp. 1420–1429. [Google Scholar]
- Peterson, K.; Brinkhof, J.; Houwers, D.; Colenbrander, B.; Gadella, B. Presence of pro-lentiviral DNA in male sexual organs and ejaculates of small ruminants. Theriogenology 2008, 69, 433–442. [Google Scholar] [CrossRef]
- Molaee, V.; Bazzucchi, M.; De Mia, G.M.; Otarod, V.; Abdollahi, D.; Rosati, S.; Lühken, G. Phylogenetic analysis of small ruminant lentiviruses in Germany and Iran suggests their expansion with domestic sheep. Sci. Rep. 2020, 10, 2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazzucchi, M.; Pierini, I.; Gobbi, P.; Pirani, S.; Torresi, C.; Iscaro, C.; Feliziani, F.; Giammarioli, M. Genomic Epidemiology and Heterogeneity of SRLV in Italy from 1998 to 2019. Viruses 2021, 13, 2338. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, C.; Torricelli, M.; Sebastiani, C.; Lucarelli, D.; Ciullo, M.; Passamonti, F.; Giammarioli, M.; Biagetti, M. Genetic Characterization of Small Ruminant Lentiviruses (SRLVs) Circulating in Naturally Infected Sheep in Central Italy. Viruses 2022, 14, 686. [Google Scholar] [CrossRef] [PubMed]
- White, S.N.; Mousel, M.R.; Reynolds, J.O.; Lewis, G.S.; Herrmann-Hoesing, L.M. Common promoter deletion is associated with 3.9-fold differential transcription of ovine CCR5 and reduced proviral level of ovine progressive pneumonia virus. Anim. Genet. 2009, 40, 583–589. [Google Scholar] [CrossRef]
- White, S.N.; Knowles, D.P. Expanding Possibilities for Intervention against Small Ruminant Lentiviruses through Genetic Marker-Assisted Selective Breeding. Viruses 2013, 5, 1466–1499. [Google Scholar] [CrossRef]
- Yaman, Y.; Bay, V.; Aymaz, R.; Keleş, M.; Öner, Y.; Teferedegn, E.Y.; Ün, C. A novel 2 bp deletion variant in Ovine-DRB1 gene is associated with increased Visna/maedi susceptibility in Turkish sheep. Sci. Rep. 2021, 11, 11435. [Google Scholar] [CrossRef]
- Sarafidou, T.; Stamatis, C.; Kalozoumi, G.; Spyrou, V.; Fthenakis, G.C.; Billinis, C.; Mamuris, Z. Toll Like Receptor 9 (TLR9) Polymorphism G520R in Sheep Is Associated with Seropositivity for Small Ruminant Lentivirus. PLoS ONE 2013, 8, e63901. [Google Scholar] [CrossRef]
- Heaton, M.P.; Clawson, M.; Chitko-Mckown, C.G.; Leymaster, K.A.; Smith, T.P.L.; Harhay, G.; White, S.N.; Herrmann-Hoesing, L.M.; Mousel, M.R.; Lewis, G.S.; et al. Reduced Lentivirus Susceptibility in Sheep with TMEM154 Mutations. PLoS Genet. 2012, 8, e1002467. [Google Scholar] [CrossRef] [Green Version]
- Heaton, M.P.; Kalbfleisch, T.S.; Petrik, D.T.; Simpson, B.; Kijas, J.W.; Clawson, M.L.; Chitko-McKown, C.G.; Harhay, G.; Leymaster, K.A.; The International Sheep Genomics Consortium. Genetic Testing for TMEM154 Mutations Associated with Lentivirus Susceptibility in Sheep. PLoS ONE 2013, 8, e55490. [Google Scholar] [CrossRef] [Green Version]
- Leymaster, K.A.; Chitko-McKown, C.G.; Clawson, M.; Harhay, G.; Heaton, M.P. Effects of TMEM154 haplotypes 1 and 3 on susceptibility to ovine progressive pneumonia virus following natural exposure in sheep. J. Anim. Sci. 2013, 91, 5114–5121. [Google Scholar] [CrossRef]
- Molaee, V.; Otarod, V.; Abdollahi, D.; Lühken, G. Lentivirus Susceptibility in Iranian and German Sheep Assessed by Determination of TMEM154 E35K. Animals 2019, 9, 685. [Google Scholar] [CrossRef] [Green Version]
- Molaee, V.; Eltanany, M.; Lühken, G. First survey on association of TMEM154 and CCR5 variants with serological maedi-visna status of sheep in German flocks. Vet. Res. 2018, 49, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaman, Y.; Keleş, M.; Aymaz, R.; Sevim, S.; Sezenler, T.; Önaldı, A.T.; Kaptan, C.; Başkurt, A.; Koncagül, S.; Öner, Y.; et al. Association of TMEM154 variants with visna/maedi virus infection in Turkish sheep. Small Rumin. Res. 2019, 177, 61–67. [Google Scholar] [CrossRef]
- Arcangeli, C.; Lucarelli, D.; Torricelli, M.; Sebastiani, C.; Ciullo, M.; Pellegrini, C.; Felici, A.; Costarelli, S.; Giammarioli, M.; Feliziani, F.; et al. First Survey of SNPs in TMEM154, TLR9, MYD88 and CCR5 Genes in Sheep Reared in Italy and Their Association with Resistance to SRLVs Infection. Viruses 2021, 13, 1290. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, H.; Echeverría, I.; Benito, A.A.; Glaria, I.; Benavides, J.; Pérez, V.; de Andrés, D.; Reina, R. Accurate Diagnosis of Small Ruminant Lentivirus Infection Is Needed for Selection of Resistant Sheep through TMEM154 E35K Genotyping. Pathogens 2021, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Murphy, T.W.; Chitko-McKown, C.G.; Heaton, M.P.; Freking, B.A. Effect of TMEM154 E35K variant (haplotypes 1 and 3) on the incidence of ovine lentivirus infection and ewe productivity during lifetime exposure. J. Anim. Sci. 2021, 99, skab304. [Google Scholar] [CrossRef]
- Portolano, N. La pecora della Valle Del Belìce. In Pecore e Capre Italiane; Edagricole: Bologna, Italy, 1987. [Google Scholar]
- Bigi, D.; Zanon, A. Atlante Delle Razze Autoctone. Bovini, Equini, Ovicaprini, Suini Allevati in Italia; Edagricole-New Business Media: Milan, Italy, 2020. [Google Scholar]
- ASSONAPA. Le Razze Ovine e Caprine Iscritte ai Libri Genealogici Nazionali ed ai Registri Anagrafici; Associazione Nazionale della Pastorizia: Rome, Italy, 2002. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall/CRC: London, UK, 1990; ISBN 9780412276309. [Google Scholar]
- de Miguel, R.; Arrieta, M.; Rodríguez-Largo, A.; Echeverría, I.; Resendiz, R.; Pérez, E.; Ruiz, H.; Pérez, M.; de Andrés, D.; Reina, R.; et al. Worldwide Prevalence of Small Ruminant Lentiviruses in Sheep: A Systematic Review and Meta-Analysis. Animals 2021, 11, 784. [Google Scholar] [CrossRef]
- Bishop, S.C. Genetic resistance to infections in sheep. Vet. Microbiol. 2015, 181, 2–7. [Google Scholar] [CrossRef]
- Hunter, N.; Goldmann, W.; Foster, J.D.; Cairns, D.; Smith, G. Natural scrapie and PrP genotype: Case-control studies in British sheep. Vet. Rec. 1997, 141, 137–140. [Google Scholar] [CrossRef]
- Leymaster, K.A.; Chitko-McKown, C.G.; Heaton, M.P. Incidence of infection in 39-month-old ewes with TMEM154 diplotypes “1 1,” “1 3,” and “3 3” after natural exposure to ovine progressive pneumonia virus. J. Anim. Sci. 2015, 93, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrangelo, S.; International Sheep Genomics Consortium; Di Gerlando, R.; Tolone, M.; Tortorici, L.; Sardina, M.T.; Portolano, B. Genome wide linkage disequilibrium and genetic structure in Sicilian dairy sheep breeds. BMC Genet. 2014, 15, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshanbari, F.A.; Mousel, M.R.; Reynolds, J.O.; Herrmann-Hoesing, L.M.; Highland, M.A.; Lewis, G.S.; White, S.N. Mutations in Ovis aries TMEM154 are associated with lower small ruminant lentivirus proviral concentration in one sheep flock. Anim. Genet. 2014, 45, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Gerstner, S.; Adamovicz, J.J.; Duncan, J.V.; Laegreid, W.W.; Marshall, K.L.; Logan, J.R.; Schumaker, B.A. Prevalence of and risk factors associated with ovine progressive pneumonia in Wyoming sheep flocks. J. Am. Vet. Med Assoc. 2015, 247, 932–937. [Google Scholar] [CrossRef]
- Sider, L.H.; Heaton, M.P.; Chitko-McKown, C.G.; Harhay, G.P.; Smith, T.P.; Leymaster, K.A.; Laegreid, W.W.; Clawson, M.L. Small ruminant lentivirus genetic subgroups associate with sheep TMEM154 genotypes. Vet. Res. 2013, 44, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, M.; Migliore, S.; La Giglia, M.; Alberti, P.; Di Marco Lo Presti, V.; Langeveld, J.P.M. Scrapie incidence and PRNP polymorphisms: Rare small ruminant breeds of Sicily with TSE protecting genetic reservoirs. BMC Vet. Res. 2016, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- FAO. Secondary Guidelines for Development of National Farm Genetic Resource Management Plans: Management of Small Populations at Risk; FAO: Rome, Italy, 1998.
- European Union Commission. EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives; European Union Commission: Brussels, Belgium, 2020.
Flock | Province * | Breed ** | Sampled Animal (n) | Serological MV Positive Animals (%) | TMEM154 Allele Frequencies | |
---|---|---|---|---|---|---|
E | K | |||||
1 | AG | VDB | 61 | 12 (20%) | 0.81 | 0.19 |
2 | AG | VDB | 39 | 17 (44%) | 0.82 | 0.18 |
3 | TP | VDB | 62 | 0 | 0.86 | 0.14 |
4 | PA | VDB | 93 | 45 (48%) | 0.97 | 0.03 |
5 | PA | COM | 63 | 41 (65%) | 0.58 | 0.42 |
6 | EN | COM | 13 | 0 | 0.77 | 0.23 |
7 | AG | COM | 4 | 0 | 0.63 | 0.38 |
8 | EN | COM | 12 | 0 | 0.54 | 0.46 |
9 | AG | BAR | 6 | 0 | 0.33 | 0.67 |
10 | AG | BAR | 4 | 0 | 0.50 | 0.50 |
11 | CL | BAR | 16 | 1 (6%) | 0.56 | 0.44 |
12 | ME | PIN | 19 | 1 (5%) | 0.50 | 0.50 |
13 | ME | PIN | 20 | 0 | 0.63 | 0.38 |
14 | ME | PIN | 14 | 0 | 0.71 | 0.29 |
15 | ME | PIN | 16 | 0 | 0.53 | 0.47 |
Primers–Probes Sequence (5′-3′) | Amplified Region | Amplicon Size (bp) | Purpose |
---|---|---|---|
GTCTCCATGACAAGTCTCAATTTTGT (forward) GCTTAGGGCCTCTGACTCTTCA (reverse) Probe allele K 6FAM-AGGACACAAAACTGT- BHQ1 Probe allele E HEX-AGGACACAGAACTGT- BHQ1 | Exon 2 | 117 | Detection of nucleotide substitution rs408593969, g.5776842 G > A leading the amino acid substitution E35K using the TaqMan allelic discrimination method [26] |
GCTCCATTTATGTTCAATCA (forward) GAGATGGAAGCTGTGTGTTTC (reverse) | Exon 2–3 | 771 | Amplification and sequencing for verification of genotyping results [19] |
Breed | n | TMEM154 Genotype Frequencies | TMEM154 Allele Frequencies | HWE p-Value | |||
---|---|---|---|---|---|---|---|
EE | EK | KK | E | K | |||
VDB | 255 | 200 (0.78) | 51 (0.20) | 4 (0.02) | 0.88 | 0.12 | 0.719 |
COM | 92 | 34 (0.37) | 43 (0.47) | 15 (0.16) | 0.60 | 0.40 | 0.821 |
BAR | 26 | 6 (0.23) | 14 (0.54) | 6 (0.23) | 0.50 | 0.50 | 0.695 |
PIN | 69 | 27 (0.39) | 27 (0.39) | 15 (0.22) | 0.59 | 0.41 | 0.109 |
Total | 442 | 267 (0.60) | 135 (0.31) | 40 (0.09) | 0.76 | 0.24 | 0.000 |
Sheep Subset (n Sheep) | MV Status (n Sheep) | TMEM154 Allele Frequencies | TMEM154 Genotype Frequencies | Chi-Square p-Value | RR | 95% CI | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|
E | K | EE | EK | KK | ||||||
Total (442) | Positive (117) | 0.83 (195) | 0.17 (39) | 0.70 (81) | 0.28 (33) | 0.02 (3) | 0.008 | 3.8 | 1.3–11.4 | 0.018 |
Negative (325) | 0.73 (474) | 0.27 (176) | 0.60 (186) | 0.30 (102) | 0.10 (37) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tumino, S.; Tolone, M.; Galluzzo, P.; Migliore, S.; Sechi, T.; Bordonaro, S.; Puleio, R.; Carta, A.; Loria, G.R. Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility. Animals 2022, 12, 1630. https://doi.org/10.3390/ani12131630
Tumino S, Tolone M, Galluzzo P, Migliore S, Sechi T, Bordonaro S, Puleio R, Carta A, Loria GR. Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility. Animals. 2022; 12(13):1630. https://doi.org/10.3390/ani12131630
Chicago/Turabian StyleTumino, Serena, Marco Tolone, Paola Galluzzo, Sergio Migliore, Tiziana Sechi, Salvatore Bordonaro, Roberto Puleio, Antonello Carta, and Guido Ruggero Loria. 2022. "Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility" Animals 12, no. 13: 1630. https://doi.org/10.3390/ani12131630
APA StyleTumino, S., Tolone, M., Galluzzo, P., Migliore, S., Sechi, T., Bordonaro, S., Puleio, R., Carta, A., & Loria, G. R. (2022). Alternative Molecular Tools for the Fight against Infectious Diseases of Small Ruminants: Native Sicilian Sheep Breeds and Maedi-Visna Genetic Susceptibility. Animals, 12(13), 1630. https://doi.org/10.3390/ani12131630