Combining Abilities, Heterosis, Growth Performance, and Carcass Characteristics in a Diallel Cross from Black-Bone Chickens and Thai Native Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Animal Management
2.3. Characteristics of Carcass and Meat
2.4. Statistical Analysis
2.5. Combining Ability and Heterosis Analysis
3. Results
3.1. Body Weight and Growth Performance
3.2. Combining Abilities and Heterosis Percentage
3.3. Carcass and Meat Characteristics
3.4. Meat Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Djekic, I.V. Meat supply chain in the perspective of UN SDGs. Theory Pract. Meat Processing 2021, 6, 242–247. [Google Scholar] [CrossRef]
- Weindl, I.; Ost, M.; Wiedmer, P.; Schreiner, M.; Neugart, S.; Klopsch, R.; Kühnhold, H.; Kloas, W.; Henkel, I.M.; Schlüter, O.; et al. Sustainable food protein supply reconciling human and ecosystem health: A Leibniz Position. Glob. Food Sec. 2020, 25, 100367. [Google Scholar] [CrossRef]
- Devi, S.M.; Balachandar, V.; Lee, S.I.; Kim, I.H. An outline of meat consumption in the Indian population-A pilot review. Korean J. Food Sci. Anim. Resour. 2014, 34, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO Agricultural Outlook 2021–2030. OECD Agriculture Statistics (Database). Edition 2021. Available online: https://doi.org/10.1787/4bde2d83-en (accessed on 7 March 2022).
- Mottet, A.; Tempio, G. Global poultry production: Current state and future outlook and challenges. Worlds Poult. Sci. J. 2017, 73, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Idowu, P.A.; Zishiri, O.; Nephawe, K.A.; Mtileni, B. Current status and intervention of South Africa chicken production—A review. Worlds Poult. Sci. J. 2021, 77, 115–133. [Google Scholar] [CrossRef]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [Green Version]
- Grashorn, M.A. Functionality of poultry meat. J. Appl. Poult. Res. 2007, 16, 99–106. [Google Scholar] [CrossRef]
- McCarthy, M.; O’Reilly, S.; Cotter, L.; de Boer, M. Factors influencing consumption of pork and poultry in the Irish market. Appetite 2004, 43, 19–28. [Google Scholar] [CrossRef]
- Kleyn, F.J.; Ciacciariello, M. Future demands of the poultry industry: Will we meet our commitments sustainably in developed and developing economies? Worlds Poult. Sci. J. 2021, 77, 267–278. [Google Scholar] [CrossRef]
- Rahut, D.B.; Aryal, J.P.; Manchanda, N.; Sonobe, T. Chapter 6—Expectations for household food security in the coming decades: A global scenario. In Future Foods; Elsevier: Osaka, Japan, 2022; pp. 107–131. ISBN 978-0-323-91001-9. [Google Scholar]
- Pica-Ciamarra, U.; Otte, J. Poultry, food security and poverty in India: Looking beyond the farm-gate. Worlds Poult. Sci. J. 2010, 66, 309–320. [Google Scholar] [CrossRef]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic evaluation of body weights and egg production traits using a multi-trait animal model and selection index in Thai native synthetic chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef] [PubMed]
- González Ariza, A.; Arando Arbulu, A.; Navas González, F.J.; Nogales Baena, S.; Delgado Bermejo, J.V.; Camacho Vallejo, M.E. The Study of Growth and Performance in Local Chicken Breeds and Varieties: A Review of Methods and Scientific Transference. Animals 2021, 11, 2492. [Google Scholar] [CrossRef] [PubMed]
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2016, 2604685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehrawat, R.; Sharma, R.; Ahlawat, S.; Sharma, V.; Thakur, M.S.; Kaur, M.; Tantia, M.S. First report on better functional property of black chicken meat from India. Indian J. Anim. Res. 2021, 55, 727–733. [Google Scholar] [CrossRef]
- Charoensin, S.; Laopaiboon, B.; Boonkum, W.; Phetcharaburanin, J.; Villareal, M.O.; Isoda, H.; Duangjinda, M. Thai native chicken as a potential functional meat source rich in anserine, anserine/carnosine, and antioxidant substances. Animals 2021, 11, 902. [Google Scholar] [CrossRef]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to Northern Thailand (black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- Khumpeerawat, P.; Duangjinda, M.; Phasuk, Y. Carnosine content and its association with carnosine-related gene expression in breast meat of Thai native and black-bone chicken. Animals 2021, 11, 1987. [Google Scholar] [CrossRef]
- Tian, Y.; Xie, M.; Wang, W.; Wu, H.; Fu, Z.; Lin, L. Determination of carnosine in Black-Bone Silky Fowl (Gallus gallus domesticus Brisson) and common chicken by HPLC. Eur. Food Res. Technol. 2007, 226, 311–314. [Google Scholar] [CrossRef]
- Nganvongpanit, K.; Kaewkumpai, P.; Kochagul, V.; Pringproa, K.; Punyapornwithaya, V.; Mekchay, S. Distribution of melanin pigmentation in 33 organs of Thai black-bone chickens (Gallus gallus domesticus). Animals 2020, 10, 777. [Google Scholar] [CrossRef]
- Buranawit, K.; Chailungka, C.; Wongsunsri, C.; Laenoi, W. Phenotypic characterization of Thai native black-bone chickens indigenous to northern Thailand. Thai J. Vet. Med. 2016, 46, 547–554. [Google Scholar]
- Wattanachant, S. Factors affecting the quality characteristics of Thai indigenous chicken meat. Suranaree J. Sci. Technol. 2008, 15, 1–16. [Google Scholar]
- Jaturasitha, S.; Chaiwang, N.; Kreuzer, M. Thai native chicken meat: An option to meet the demands for specific meat quality by certain groups of consumers; a review. Anim. Prod. Sci. 2016, 57, 1582–1587. [Google Scholar] [CrossRef]
- Kheawkanha, T.; Boonkum, W.; Vongpralub, T.; Chankitisakul, V. Characterization of oviduct lining, with emphasis on the sperm storage tubule region (uterovaginal junction), correlated with fertility in mature and old Thai native hens. Animals 2021, 11, 3446. [Google Scholar] [CrossRef]
- Mussa, N.J.; Ratchamak, R.; Ratsiri, T.; Vongpralub, T.; Boonkum, W.; Semaming, Y.; Chankitisakul, V. Lipid profile of sperm cells in Thai native and commercial roosters and its impact on cryopreserved semen quality. Trop. Anim. Health Prod. 2021, 53, 321. [Google Scholar] [CrossRef] [PubMed]
- Mookprom, S.; Duangjinda, M.; Puangdee, S.; Kenchaiwong, W.; Boonkum, W. Estimation of additive genetic, dominance, and mate sire variances for fertility traits in Thai native (Pradu Hang Dam) chickens. Trop. Anim. Health Prod. 2021, 53, 81. [Google Scholar] [CrossRef]
- Tenzin, J.; Chankitisakul, V.; Boonkum, W. Association of polymorphisms of physiological candidate genes with phenotype and estimated breeding values of reproductive and growth traits in Thai indigenous chickens. Genet. Mol. Res. 2020, 19, gmr18504. [Google Scholar] [CrossRef]
- Mookprom, S.; Boonkum, W.; Kunhareang, S.; Siripanya, S.; Duangjinda, M. Genetic evaluation of egg production curve in Thai native chickens by random regression and spline models. Poult. Sci. 2017, 96, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Saadey, S.M.; Galal, A.; Zaky, H.I.; El-Dein, A.Z. Diallel crossing analysis for body weight and egg production traits of two native Egyptian and two exotic chicken breeds. Int. J. Poult. Sci. 2008, 7, 64–71. [Google Scholar]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 3rd ed.; Wiley: New York, NY, USA, 1989; p. 438. [Google Scholar]
- Griffing, B. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Ingle, K.P.; Gahukar, S.J.; Khelurkar, V.C.; Ghorade, R.B.; Kalpande, V.V.; Jadhav, P.V.; Moharil, M.P. Heterosis and combining ability for grain yield trait in rabi sorghum [Sorghum bicolor (L.) Moench] using line x tester mating design. Int. J. Curr. Microbiol. Appl. Sci. 2018, 6, 1925–1934. [Google Scholar]
- Jaturasitha, S. Meat Management; Mingmuang Press: Chiang Mai, Thailand, 2004; p. 170. [Google Scholar]
- Hahn, G.; Spindler, M. Method of dissection of turkey carcasses. Worlds Poult. Sci. J. 2002, 58, 179–197. [Google Scholar] [CrossRef]
- Nozaki, A.; Makita, T. The surface color measurement of major tissue of Silky flows and White Leghorns. J. Vet. Med. Sci. 1998, 60, 489–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairfull, R.W. Heterosis. In Poultry Breeding and Genetics; Crawford, R.D., Ed.; Department of Animal and Poultry Science University of Saskatcheewan: Saskatoon, SK, Canada, 1990; pp. 913–933. [Google Scholar]
- Plaengkaew, S.; Khumpeerawat, P.; Stalder, K.J. Using non-linear models to describe growth curves for Thai black-bone chickens. Agric. Nat. Resour. 2021, 55, 1049–1056. [Google Scholar]
- Phuong, P.T.M. Study on the productivity and meat quality of AC chicken (black-bone chicken) in Vietnam. In Proceedings of the Southeast Asia Germany Alumni Network (SEAG) International Symposium-cum-Workshop, Hanoi, Vietnam, 14–18 October 2002; Rukkaba Press: Jakarta, Indonesia, 2002; pp. 235–244. [Google Scholar]
- Promwatee, N.; Loapaiboon, B.; Vongpralub, T.; Boonkum, W.; Duangjinda, M. Insulin-like growth factor I gene polymorphism associated with growth and carcass traits in Thai synthetic chickens. Genet. Mol. Res. 2013, 12, 4332–4341. [Google Scholar] [CrossRef] [PubMed]
- Tongsiri, S.; Jeyaruban, G.; Hermesch, S.; van der Werf, J.; Li, L.; Chormai, T. Genetic parameters and inbreeding effects for production traits of Thai native chickens. Asian-Australas. J. Anim. Sci. 2019, 32, 930–938. [Google Scholar] [CrossRef]
- Promket, D.; Ruangwittayanusorn, K. The comparatives of growth and carcass performance of the Thai native chicken between economic selection (Chee KKU12) and natural selection (Chee N). Vet. Integr. Sci. 2021, 19, 247–257. [Google Scholar] [CrossRef]
- Molee, A.; Kuadsantia, P.; Kaewnakian, P. Gene effects on body weight, carcass yield, and meat quality of Thai indigenous chicken. J. Poult. Sci. 2018, 55, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Siwendu, N.A.; Norris, D.; Ngambi, J.W.; Shimelis, H.A.; Benyi, K. Heterosis and combining ability for body weight in a diallel cross of three chicken genotypes. Trop. Anim. Health Prod. 2013, 45, 965–970. [Google Scholar] [CrossRef]
- Crow, J.F. Dominance and overdominance of the chapter 5. In Genetics and Exploitation of Heterosis in Crops; Coors, J.G., Pandey, S., Eds.; The American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA, 1999; pp. 49–58. ISBN 9780891185499. [Google Scholar]
- Shull, G.H. The composition of a field of maize. J. Hered. 1908, 4, 296–301. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Cao, J.; Liu, X. Skin transcriptome profiles associated with skin color in chickens. PLoS ONE 2015, 10, e0127301. [Google Scholar] [CrossRef]
- Borges, C.R.; Roberts, J.C.; Wilkins, D.G.; Rollins, D.E. Relationship of melanin degradation products to actual melanin content: Application to human hair. Anal. Biochem. 2001, 290, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Różanowska, M.; Sarna, T.; Land, E.G.; Truscott, T.G. Free radical scavenging properties of melanin: Interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic. Biol. Med. 1999, 26, 518–525. [Google Scholar] [CrossRef]
Chicken Breed/Sex | Female | ||
---|---|---|---|
Male | HB | CB | TN |
HB | GCAHB×HB (n = 55) | SCAHB×CB (n = 86) | SCAHB×TN (n = 79) |
CB | RCACB×HB (n = 63) | GCACB×CB (n = 72) | SCACB×TN (n = 79) |
TN | RCATN×HB (n = 54) | RCATN×CB (n = 103) | GCATN×TN (n = 108) |
Items/ Specification | BW0 | BW4 | BW8 | BW12 | BW14 | ADG 0–4 | ADG 0–8 | ADG 0–12 | ADG 0–14 |
---|---|---|---|---|---|---|---|---|---|
(g) | (g) | (g) | (g) | (g) | (g/day) | (g/day) | (g/day) | (g/day) | |
GCA | |||||||||
HB × HB | −0.82 de | −30.37 d | −70.95 f | −131.89 e | −158.58 f | −1.25 e | −1.25 e | −1.56 e | −1.61 g |
TN × TN | 0.89 ab | 9.65 b | 9.78 c | 50.34 b | 70.75 a | 0.02 c | 0.16 b | 0.59 b | 0.71 b |
CB × CB | −0.07 c | 40.01 a | 61.17 a | 81.55 a | 87.83 a | 1.23 a | 1.09 a | 0.97 a | 0.90 a |
SCA | |||||||||
HB × TN | 0.69 b | 0.45 c | 17.49 b | 20.45 c | 12.26 c | 0.19 b | 0.30 b | 0.23 c | 0.12 d |
CB × HB | −0.03 c | 3.74 bc | −7.07 d | −19.75 d | −12.15 d | −0.14 cd | −0.12 c | −0.23 d | −0.12 e |
CB × TN | 0.66 b | 5.33 bc | 14.09 b | 40.49 b | 33.15 b | 0.41 ab | 0.26 b | 0.49 b | 0.35 c |
RCA | |||||||||
TN × HB | −1.06 d | −2.14 c | −21.25 e | −41.94 e | −25.81 de | −0.04 c | −0.40 d | −0.51 d | −0.27 e |
HB × CB | −0.64 d | −61.35 e | −49.27 ef | −27.84 d | −45.59 e | −0.38 d | −0.87 de | −0.32 d | −0.46 ef |
TN × CB | 1.34 a | 11.44 b | 15.56 b | 45.05 b | 51.09 ab | 0.36 b | 0.25 b | 0.53 b | 0.52 b |
Items/ Specification | Body Weight (kg) | Carcass Weight (kg) | Breast (kg) | Thigh (kg) | Drumstick (kg) | Wing (kg) | % Carcass | % Breast | % Thigh | % Drumstick | % Wing |
---|---|---|---|---|---|---|---|---|---|---|---|
GCA | |||||||||||
CB × CB | 1.42 bc | 1.24 c | 0.28 b | 0.16 cd | 0.17 abc | 0.14 bc | 87.00 a | 19.32 ab | 11.33 ab | 12.12 a | 9.73 b |
HB × HB | 1.08 e | 0.89 e | 0.18 f | 0.12 f | 0.12 e | 0.11 d | 82.91 ab | 16.51 d | 10.68 b | 11.19 a | 10.31 ab |
TN × TN | 1.53 ab | 1.30 ab | 0.28 ab | 0.17 ab | 0.18 ab | 0.16 a | 85.05 ab | 18.37 ab | 11.33 ab | 11.65 a | 10.28 ab |
SCA | |||||||||||
CB × HB | 1.20 d | 1.01 d | 0.23 de | 0.15 e | 0.14 de | 0.12 c | 84.24 ab | 19.00 ab | 12.13 a | 11.44 a | 10.20 ab |
CB × TN | 1.56 a | 1.38 a | 0.30 a | 0.19 a | 0.19 a | 0.16 a | 88.55 a | 19.07 ab | 12.24 a | 12.17 a | 10.05 ab |
HB × TN | 1.30 d | 1.03 d | 0.24 cd | 0.15 d | 0.15 bcd | 0.14 bc | 83.28 ab | 18.86 ab | 11.93 ab | 12.02 a | 10.42 ab |
RCA | |||||||||||
HB × CB | 1.29 d | 1.07 d | 0.22 e | 0.16 d | 0.15 cd | 0.13 bc | 83.28 ab | 17.23 cd | 12.07 b | 11.55 a | 10.42 ab |
TN × CB | 1.48 abc | 1.32 ab | 0.29 b | 0.18 bc | 0.18 bc | 0.15 bc | 89.65 a | 19.32 ab | 12.33 a | 12.21 a | 10.07 b |
TN × HB | 1.41 c | 1.01 d | 0.24 c | 0.17 c | 0.13 de | 0.14 ab | 71.94 c | 17.07 cd | 11.92 b | 9.41 b | 9.95 b |
Items/ Specification | Meat Color | Skin Color | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |||||||
Breast | Thigh | Breast | Thigh | Breast | Thigh | Breast | Thigh | Breast | Thigh | Breast | Thigh | |
GCA | ||||||||||||
CB × CB | 43.74 c | 29.58 c | −2.36 bc | −2.21 b | 9.09 d | 3.96 bcd | 40.36 c | 37.35 c | −1.81 cde | −2.53 b | 5.60 e | 3.21 d |
HB × HB | 45.53 bc | 29.85 c | −1.64 bc | −2.23 b | 10.77 cd | 2.63 d | 39.12 c | 34.56 cd | −2.17 de | −2.26 b | 5.95 e | 4.21 d |
TN × TN | 51.80 a | 54.44 a | 0.79 a | 2.19 a | 15.59 a | 12.69 a | 55.91 a | 60.76 a | 0.22 a | 2.51 a | 18.42 a | 18.28 a |
SCA | ||||||||||||
CB × HB | 49.88 ab | 33.18 b | −1.34 bc | −1.18 b | 12.52 bc | 5.53 b | 45.71 b | 40.51 b | −1.63 cd | −2.30 b | 8.79 d | 4.96 cd |
CB × TN | 53.32 a | 36.15 b | −3.23 c | −1.29 b | 13.00 b | 4.78 bc | 45.04 b | 41.38 b | −0.77 b | −2.20 b | 11.06 c | 6.27 c |
HB × TN | 52.24 a | 36.42 b | −2.25 bc | −2.00 b | 12.67 bc | 4.37 bc | 44.39 b | 40.48 b | −1.45 bcd | −2.58 b | 8.43 d | 4.49 d |
RCA | ||||||||||||
HB × CB | 38.23 d | 27.91 c | −2.67 bc | −2.07 b | 5.98 e | 3.45 cd | 35.46 d | 33.97 d | −1.67 cd | −2.62 b | 5.77 e | 3.98 d |
TN × CB | 50.49 a | 36.74 b | −1.18 b | −1.67 b | 13.08 b | 4.77 bc | 47.25 b | 41.08 b | −1.14 bc | −1.37 b | 12.34 c | 8.88 b |
TN × HB | 53.14 a | 34.95 b | −2.72 bc | −1.97 b | 13.68 ab | 5.05 bc | 46.33 b | 41.90 b | −2.43 e | −2.86 b | 14.88 b | 4.41 d |
SEX | ||||||||||||
Male | 50.22 a | 36.35 a | −1.54 a | −1.48 a | 12.20 a | 4.69 b | 45.45 a | 42.96 a | −1.56 a | −1.90 a | 9.96 a | 6.29 a |
Female | 46.89 b | 34.59 b | −2.14 a | −1.27 a | 11.43 b | 5.81 a | 43.35 b | 39.71 b | −1.29 a | −1.70 a | 10.31 a | 6.76 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sungkhapreecha, P.; Chankitisakul, V.; Duangjinda, M.; Boonkum, W. Combining Abilities, Heterosis, Growth Performance, and Carcass Characteristics in a Diallel Cross from Black-Bone Chickens and Thai Native Chickens. Animals 2022, 12, 1602. https://doi.org/10.3390/ani12131602
Sungkhapreecha P, Chankitisakul V, Duangjinda M, Boonkum W. Combining Abilities, Heterosis, Growth Performance, and Carcass Characteristics in a Diallel Cross from Black-Bone Chickens and Thai Native Chickens. Animals. 2022; 12(13):1602. https://doi.org/10.3390/ani12131602
Chicago/Turabian StyleSungkhapreecha, Piriyaporn, Vibuntita Chankitisakul, Monchai Duangjinda, and Wuttigrai Boonkum. 2022. "Combining Abilities, Heterosis, Growth Performance, and Carcass Characteristics in a Diallel Cross from Black-Bone Chickens and Thai Native Chickens" Animals 12, no. 13: 1602. https://doi.org/10.3390/ani12131602
APA StyleSungkhapreecha, P., Chankitisakul, V., Duangjinda, M., & Boonkum, W. (2022). Combining Abilities, Heterosis, Growth Performance, and Carcass Characteristics in a Diallel Cross from Black-Bone Chickens and Thai Native Chickens. Animals, 12(13), 1602. https://doi.org/10.3390/ani12131602