Relationship between Plasma Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Level and Proteome Profile of Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sampling
2.2. Determination of Plasma PACAP Concentration
2.3. Extraction of Proteins
2.4. Two-Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE)
2.5. Image and Data Analysis
2.6. Protein Identification
2.7. Network Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miyata, A.; Arimura, A.; Dahl, R.R.; Minamino, N.; Uehara, A.; Jiang, L.; Culler, M.D.; Coy, D.H. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 1989, 164, 567–574. [Google Scholar] [CrossRef]
- Somogyvari-Vigh, A.; Reglodi, D. Pituitary adenylate cyclase activating polypeptide: A potential neuroprotective peptide. Curr. Pharm. Des. 2004, 10, 2861–2889. [Google Scholar] [CrossRef] [PubMed]
- Vaudry, D.; Gonzalez, B.J.; Basille, M.; Yon, L.; Fournier, A.; Vaudry, H. Pituitary adenylate cyclase-activating polypeptide and its receptors: From structure to functions. Pharmacol. Rev. 2000, 52, 269–324. [Google Scholar] [CrossRef] [PubMed]
- Yasuhara, T.; Mizuno, K.; Somogyvari–Vigh, A.; Komaki, G.; Arimura, A. Isolation and primary structure of chicken PACAP. Reg. Pep. 1992, 3, 326. [Google Scholar] [CrossRef]
- Laburthe, M.; Couvineau, A.; Marie, J.C. VPAC Receptors for VIP and PACAP. Recept. Channels 2002, 8, 137–153. [Google Scholar] [CrossRef]
- Shioda, S.; Ohtaki, H.; Nakamachi, T.; Dohi, K.; Watanabe, J.; Nakajo, S.; Arata, S.; Kitamura, S.; Okuda, H.; Takenoya, F. Pleiotropic functions of PACAP in the CNS. Ann. N. Y. Acad. Sci. 2006, 1070, 550–560. [Google Scholar] [CrossRef]
- Tornoe, K.; Hannibal, J.; Georg, B.; Schmidt, P.T.; Hilsted, L.; Fahrenkrug, J.; Holst, J.J. PACAP 1-38 as neurotransmitter in the porcine antrum. Regul. Pept. 2001, 101, 109–121. [Google Scholar] [CrossRef]
- Jozsa, R.; Somogyvari-Vigh, A.; Reglodi, D.; Hollosy, T.; Arimura, A. Distribution and daily variations of PACAP in the chicken brain. Peptides 2001, 22, 1371–1377. [Google Scholar] [CrossRef]
- Squillacioti, C.; Mirabella, N.; De Luca, A.; Paino, G. Expression of pituitary adenylate cyclase-activating polypeptide in the primary lymphoid organs of the duck Anas platyrhynchos. J. Anat. 2006, 209, 51–58. [Google Scholar] [CrossRef]
- Czegledi, L.; Tamas, A.; Borzsei, R.; Bagoly, T.; Kiss, P.; Horvath, G.; Brubel, R.; Nemeth, J.; Szalontai, B.; Szabadfi, K.; et al. Presence of pituitary adenylate cyclase-activating polypeptide (PACAP) in the plasma and milk of ruminant animals. Gen. Comp. Endocrinol. 2011, 172, 115–119. [Google Scholar] [CrossRef]
- Pohoczky, K.; Tamas, A.; Reglodi, D.; Kemeny, A.; Helyes, Z.; Czegledi, L. Pituitary adenylate cyclase activating polypeptide concentrations in the sheep mammary gland, milk, and in the lamb blood plasma after suckling. Physiol. Int. 2020, 107, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Koves, K.; Szabo, E.; Kantor, O.; Heinzlmann, A.; Szabo, F.; Csaki, A. Current state of understanding of the role of PACAP in the hypothalamo-hypophyseal gonadotropin functions of mammals. Front. Endocrinol. 2020, 11, 1–21. [Google Scholar] [CrossRef]
- Steenstrup, B.R.; Jørgensen, J.C.; Alm, P.; Hanibal, J.; Junge, J.; Fahrenkrug, J. Pituitary adenylate cyclase activating polypeptide (PACAP): Occurrence and vasodilatory effect in the human uteroplacental unit. Regul. Pept. 1996, 61, 197–204. [Google Scholar] [CrossRef]
- Helyes, Z.; Pozsgai, G.; Borzsei, R.; Nemeth, J.; Bagoly, T.; Mark, L. Inhibitory effect of PACAP-38 on acute neurogenic and non-neurogenic inflammatory processes in the rat. Peptides 2007, 28, 1847–1855. [Google Scholar] [CrossRef]
- Skakkebaek, M.; Hannibal, J.; Fahrenkrug, J. Pituitary adenylate cyclase activating polypeptide (PACAP) in the rat mammary gland. Cell. Tissue Res. 1999, 298, 153–159. [Google Scholar] [CrossRef]
- Tamas, A.; Vass, R.A.; Helyes, Z.; Csanaky, K.; Szanto, Z.; Nemeth, J. Exmination of PACAP During Lactation. In Current Topics in Neurotoxicity, Pituitary Adenylate Cyclase Activating Polypeptide—PACAP; Reglodi, D., Tamas, A., Eds.; Springer Nature: New York, NY, USA, 2016; Volume 11, pp. 161–178. [Google Scholar]
- Dyballa, N.; Metzger, S. Fast and sensitive colloidal coomassie G-250 staining for proteins in polyacrylamide gels. J. Vis. Exp. 2009, 30, 1431. [Google Scholar] [CrossRef]
- Huang, Y.; Krein, P.M.; Muruve, D.A.; Winston, B. Complement factor B gene regulation: Synergistic effects of TNF-α and IFN-γ in macrophages. J. Immunol. 2002, 169, 2627–2635. [Google Scholar] [CrossRef]
- Peters, M.G.; Ambrus, J.L., Jr.; Fauci, A.S.; Brown, E.J. The Bb fragment of complement factor B acts as a B cell growth factor. J. Exp. Med. 1988, 168, 1225–1235. [Google Scholar] [CrossRef] [Green Version]
- Ambrus, J.L., Jr.; Peters, M.G.; Fauci, A.S.; Brown, E.J. The Ba fragment of complement factor B inhibits human B lymphocyte proliferation. J. Immunol. 1990, 144, 1549–1553. [Google Scholar] [CrossRef] [Green Version]
- Hillarp, A.; Dahlbäck, B. Novel subunit in C4b-binding protein required for protein S binding. J. Biol. Chem. 1998, 263, 12759–12764. [Google Scholar] [CrossRef]
- Xu, N.; Dahlbäck, B.; Ohlin, A.K.; Nilsson, A. Association of vitamin K-dependent coagulation proteins and C4b binding protein with triglyceride-rich lipoproteins of human plasma. Art. Thromb. Vasc. Biol. 1998, 18, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Dahlback, B. The tale of protein S and C4b-binding protein, a story of affection. Thromb. Haemost. 2007, 98, 90–96. [Google Scholar] [CrossRef]
- Turk, R.; Piras, C.; Kovacic, M.; Samardzija, M.; Ahmed, H.; De Canio, M.; Roncada, P. Proteomics of inflammatory and oxidative stress response in cows with subclinical and clinical mastitis. J. Prot. 2012, 75, 4412–4428. [Google Scholar] [CrossRef]
- Mahley, R.W.; Innerarity, T.L.; Rall, S.C., Jr.; Weisgraber, K.H. Plasma lipoproteins: Apolipoprotein structure and function. J. Lipid. Res. 1984, 25, 1277–1294. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, W.; Wang, B.; Zhu, H.; Ye, L.; Feng, M. Antioxidant effect of apolipoprotein A-I on high-fat diet-induced non-alcoholic fatty liver disease in rabbits. Acta. Bioc. Biophys. 2013, 45, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Ontsouka, E.C.; Huang, X.; Stieger, B.; Albrecht, C. Characteristics and Functional Relevance of Apolipoprotein-A1 and Cholesterol Binding in Mammary Gland Tissues and Epithelial Cells. PLoS ONE 2013, 8, e70407. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Di Bartolo, B.A.; Nakhla, S.; Heather, A.K.; Mitchell, T.W.; Jessup, W.; Celermajer, D.S.; Barter, P.J.; Rye, K.A. Anti-inflammatory effects of apolipoprotein A-I in the rabbit. Atherosclerosis 2010, 212, 392–397. [Google Scholar] [CrossRef]
- Kalogeris, T.J.; Fukagawa, K.; Tso, P. Synthesis and lymphatic transport of intestinal apolipoprotein A-IV in response to graded doses of triglyceride. J. Lipid. Res. 1994, 35, 1141–1151. [Google Scholar] [CrossRef]
- Tso, P.; Liu, M.; Kalogeris, T.J. The role of apolipoprotein A-IV in food intake regulation. J. Nutr. 1999, 8, 1503–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Kohan, A.B.; Kindel, T.L.; Corbin, K.L.; Nunemaker, C.J.; Obici, S.; Woods, S.C.; Davidson, S.; Toe, P. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc. Natl. Acad. Sci. USA 2012, 109, 9641–9646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monks, J.; Huey, P.U.; Hanson, L.; Eckel, R.H.; Neville, M.C.; Gavigan, S. A lipoprotein-containing particle is transferred from the serum across the mammary epithelium into the milk of lactating mice. J. Lip. Res. 2001, 42, 686–696. [Google Scholar] [CrossRef]
- Cazzola, M.; Bergamaschi, G.; Dezza, L.; Arosio, P. Manipulations of cellular iron metabolism for modulating normal and malignant cell proliferation: Achievements and prospects. Blood 1990, 75, 1903–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratledge, C.; Dover, L.G. Iron Metabolism in Pathogenic Bacteria. Ann. Rev. Microb. 2000, 54, 881–941. [Google Scholar] [CrossRef] [PubMed]
- Vargas, L.; Kawada, M.E.; Bazaes, S.; Karplus, P.A.; Faer-man, C.H. Insulin antagonism: A novel role for human serum transferrin. Horm. Metab. Res. 1998, 3, 113–117. [Google Scholar] [CrossRef]
- Ronne, H.; Ocklind, C.; Wiman, K.; Rask, L.; Obrink, B.; Peterson, P.A. Ligand-dependent regulation of intracellular protein transport: Effect of vitamin A on the secretion of the retinol-binding protein. J. Cell. Biol. 1983, 96, 907–910. [Google Scholar] [CrossRef]
- Quadro, L.; Blaner, W.S.; Salchow, D.J.; Vogel, S.; Piantedosi, R.; Gouras, P.; Freeman, S.; Cosma, M.P.; Colantuoni, V.; Gottesman, M.E. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. EMBO J. 1999, 18, 4633–4644. [Google Scholar] [CrossRef]
- Abel, E.D.; Peroni, O.; Kim, J.K.; Kim, Y.B.; Boss, O.; Hadro, E.; Minnemann, T.; Shulman, G.I.; Kahn, B.B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 2001, 409, 729–733. [Google Scholar] [CrossRef]
- Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005, 436, 356–362. [Google Scholar] [CrossRef]
- Nakata, M.; Yada, T. PACAP in the glucose and energy homeostasis: Physiological role and therapeutic potential. Curr. Pharm. Des. 2007, 13, 1105–1112. [Google Scholar] [CrossRef]
- Akesson, L.; Ahren, B.; Manganiello, V.C.; Holst, L.S.; Edgren, G.; Degerman, E. Dual effects of pituitary adenylate cyclase-activating polypeptide and isoproterenol on lipid metabolism and signaling in primary rat adipocytes. Endocrinology 2003, 144, 5293–5299. [Google Scholar] [CrossRef] [Green Version]
- Holm, C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. Trans. 2003, 31, 1120–1124. [Google Scholar] [CrossRef]
- Kosacka, J.; Schröder, T.; Bechmann, I.; Klöting, N.; Nowicki, M.; Mittag, A.; Gericke, M.; Spanel-Borowski, K.; Blüher, M. PACAP up-regulates the expression of apolipoprotein D in 3T3-L1 adipocytes. DRG/3T3-L1 co-cultures study. Neurosci. Res. 2011, 69, 8–16. [Google Scholar] [CrossRef]
- Delgado, M.; Abad, C.; Martinez, C.; Juarranz, M.G.; Leceta, J.; Ganea, D.; Gomari, R.P. PACAP in immunity and inflammation. Ann. N. Y. Acad. Sci. 2003, 992, 141–157. [Google Scholar] [CrossRef]
- Lugo, J.M.; Carpio, Y.; Oliva, A.; Morales, A.; Estrada, M.P. Pituitary adenylate cyclase-activating polypeptide (PACAP) A regulator of the innate and acquired immune functions in juvenile fish. Fish Shellfish Immunol. 2010, 29, 513–520. [Google Scholar] [CrossRef]
- Bezkorovainy, A. Antimicrobial Properties of Iron-Binding Proteins. In Diet and Resistance to Disease; Phillips, M., Baetz, A., Eds.; Springer: Boston, MA, USA, 1981; pp. 139–154. [Google Scholar]
Spot Number | Name of Identified Protein | Accession Number | N * | pI/Mw (Da) † | Ratio ‡ | p-Value |
---|---|---|---|---|---|---|
Immune-related proteins | ||||||
63 | complement factor B precursor | P81187 (Bos taurus) | 3 | 7.9/85,312 | 1.4 | 0.020 |
65 | complement factor B precursor | P81187 (Bos taurus) | 3 | 7.9/85,312 | 1.5 | 0.002 |
145 | Ig heavy chain precursor | S22080 (Bos taurus) | 3 | 6.1/50,593 | 1.3 | 0.000 |
150 | Ig heavy chain precursor | S22080 (Bos taurus) | 5 | 6.1/50,593 | 1.2 | 0.004 |
152 | immunoglobulin gamma 1 heavy chain constant region | ABE68619 (Bos taurus) | 2 | 6.5/35,878 | 1.3 | 0.000 |
260 | Ig gamma-2 chain C region | S06611 (Bos taurus) | 4 | 8.0/36,020 | 0.3 | 0.000 |
280 | IGL@ protein | Q3T101 (Bos taurus) | 3 | 5.8/24,625 | 0.6 | 0.000 |
310 | C4b-binding protein alpha chain | Q28065 (Bos taurus) | 4 | 6.3/21.766 | 0.7 | 0.000 |
Lipid-metabolism-related proteins | ||||||
184 | apolipoprotein A-IV precursor | Q32PJ2 (Bos taurus) | 9 | 5.3/42,991 | 0.6 | 0.001 |
285 | apolipoprotein A-I | P15497 (Bos taurus) | 9 | 5.6/28.415 | 0.7 | 0.019 |
287 | apolipoprotein A-I | P15497 (Bos taurus) | 6 | 5.6/28.415 | 0.7 | 0.003 |
Transport proteins | ||||||
103 | serotransferrin precursor | Q29443 (Bos taurus) | 6 | 6.8/77,689 | 1.3 | 0.008 |
105 | serotransferrin precursor | Q29443 (Bos taurus) | 5 | 6.8/77,689 | 1.2 | 0.002 |
107 | serotransferrin precursor | Q29443 (Bos taurus) | 16 | 6.8/77,689 | 1.2 | 0.002 |
124 | serotransferrin precursor | Q29443 (Bos taurus) | 5 | 6.8/77,689 | 1.2 | 0.003 |
299 | retinol-binding protein 4 | P18902 (Bos taurus) | 3 | 5.4/21,055 | 1.6 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czegledi, L.; Csosz, E.; Gulyas, G. Relationship between Plasma Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Level and Proteome Profile of Cows. Animals 2022, 12, 1559. https://doi.org/10.3390/ani12121559
Czegledi L, Csosz E, Gulyas G. Relationship between Plasma Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Level and Proteome Profile of Cows. Animals. 2022; 12(12):1559. https://doi.org/10.3390/ani12121559
Chicago/Turabian StyleCzegledi, Levente, Eva Csosz, and Gabriella Gulyas. 2022. "Relationship between Plasma Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Level and Proteome Profile of Cows" Animals 12, no. 12: 1559. https://doi.org/10.3390/ani12121559