Chemical Composition of the “Galo de Barcelos” (Barcelos Rooster Raw Meat)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Size
2.2. Analytical Determinations
2.3. Statistical Analysis
3. Results
3.1. Carcass Traits Evaluation
3.2. Chemical Composition of the Roosters Raw Meat
3.3. Drumstick and Breast Chemical Composition
3.4. Fatty Acid Profile
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charlton, K.E.; Epid, M.; Probst, Y.C.; Tapsell, L.C.; Blackall, P.J. Food, Health and Nutrition: Where Does Chicken Fit ? J. Home Econ. Inst. Aust. 2008, 15, 5–17. [Google Scholar]
- Marangoni, F.; Corsello, G.; Cricelli, C.; Ferrara, N.; Ghiselli, A.; Lucchin, L.; Poli, A. Role of poultry meat in a balanced diet aimed at maintaining health and wellbeing: An Italian consensus document. Food Nutr. Res. 2015, 59, 27606. [Google Scholar] [CrossRef] [PubMed][Green Version]
- INE Instituto Nacional de Estatística, Statistics Portugal. Consumo Humano de Carne per Capita (kg/hab) por Tipo de Carnes. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&contecto=pi&indOcorrCod=0000211&selTab=tab0 (accessed on 10 March 2022).
- Antequera, T.; Caballero, D.; Grassi, S.; Uttaro, B.; Perez-Palacios, T. Evaluation of fresh meat quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A review. Meat Sci. 2021, 172, 108340. [Google Scholar] [CrossRef]
- Kralik, G.; Kralik, Z.; Grčević, M.; Hanžek, D. Quality of Chicken Meat. Anim. Husb. Nutr. 2018, 63. [Google Scholar] [CrossRef][Green Version]
- Ponte, P.I.P.; Rosado, C.M.C.; Crespo, J.P.; Crespo, D.G.; Mourão, J.L.; Chaveiro-Soares, M.A.; Brás, J.L.A.; Mendes, I.; Gama, L.T.; Prates, J.A.M.; et al. Pasture intake improves the performance and meat sensory attributes of free-range broilers. Poult. Sci. 2008, 87, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Ponte, P.I.P.; Alves, S.P.; Bessa, R.J.B.; Ferreira, L.M.A.; Gama, L.T.; Brás, J.L.A.; Fontes, C.M.G.A.; Prates, J.A.M. Influence of pasture intake on the fatty acid composition, and cholesterol, tocopherols, and tocotrienols content in meat from free-range broilers. Poult. Sci. 2008, 87, 80–88. [Google Scholar] [CrossRef]
- Franco, D.; Rois, D.; Vázquez, J.A.; Lorenzo, J.M. Comparison of growth performance, carcass components, and meat quality between Mos rooster (Galician indigenous breed) and Sasso T-44 line slaughtered at 10 months. Poult. Sci. 2012, 91, 1227–1239. [Google Scholar] [CrossRef]
- Joo, S.T.; Kim, G.D.; Hwang, Y.H.; Ryu, Y.C. Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Sci. 2013, 95, 828–836. [Google Scholar] [CrossRef]
- MADRP. Ministério da Agricultura, do Desenvolvimento Rural e das Pescas. Produtos Tradicionais Portugueses; Direcção-Geral de Desenvolvimento Rural (DGDRural): Lisboa, Portugal, 2001; Volume I. [Google Scholar]
- Coelho, C.; Gonçalves, F.; Costa, M.; Pinho, V.; Sousa, J. Turismo em Brcelos; Câmara Municipal: Barcelos, Portugal, 2020. [Google Scholar]
- Brito, N.V.; Ribeiro, V.; Vaz, P.S. Implementation of a traceability system in the rooster production controlled by the “Confraria Gastronómica O Galo de Barcelos”. In Proceedings of the Congreso Nacional de Biotecnología, Vigo, Spain, 10–13 June 2019; p. 111. [Google Scholar]
- DRE Portaria 74/2014. Available online: https://data.dre.pt/eli/port/74/2014/3/20/p/dre/pt/html (accessed on 10 March 2022).
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists International, Ed.; AOAC: Washington, DC, USA, 2000. [Google Scholar]
- ISO 2917:1974; Meat and Meat Products—Measurement of pH (Reference Method). ISO: Geneva, Switzerland, 1974.
- ISO 1442:1997; Meat and Meat Products—Determination of Moisture Content (Reference Method). ISO: Geneva, Switzerland, 1997.
- ISO 936:1998; Meat and Meat Products—Determination of Total Ash (Reference Method). ISO: Geneva, Switzerland, 1998.
- ISO 937:1978; Meat and Meat Products—Determination of Nitrogen Content (Reference Method). ISO: Geneva, Switzerland, 1978.
- ISO 1841:1981; Meat and Meat Products—Determination of Chloride Content (Reference Method). ISO: Geneva, Switzerland, 1981.
- Cruz, R.; Casal, S.; Mendes, E.; Costa, A.; Santos, C.; Morais, S. Validation of a Single-Extraction Procedure for Sequential Analysis of Vitamin E, Cholesterol, Fatty Acids, and Total Fat in Seafood. Food Anal. Methods 2013, 6, 1196–1204. [Google Scholar] [CrossRef][Green Version]
- Brewer, V.B.; Kuttappan, V.A.; Emmert, J.L.; Meullenet, J.F.C.; Owens, C.M. Big-bird programs: Effect of strain, sex, and debone time on meat quality of broilers. Poult. Sci. 2012, 91, 248–254. [Google Scholar] [CrossRef]
- Pellattiero, E.; Tasoniero, G.; Cullere, M.; Gleeson, E.; Baldan, G.; Contiero, B.; Dalle Zotte, A. Are Meat Quality Traits and Sensory Attributes in Favor of Slow-Growing Chickens? Animals 2020, 10, 960. [Google Scholar] [CrossRef] [PubMed]
- Amorim, A.; Rodrigues, S.; Pereira, E.; Teixeira, A. Physicochemical composition and sensory quality evaluation of capon and rooster meat. Poult. Sci. 2016, 95, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Pateiro, M.; Rois, D.; Lorenzo, J.M.; Vazquez, J.A.; Franco, D. Effect of breed and finishing diet on growth performance, carcass and meat quality characteristics of Mos young hens. Span. J. Agric. Res. 2018, 16, e0402. [Google Scholar] [CrossRef]
- Castellini, C.; Dal Bosco, A.; Mugnai, C.; Pedrazzoli, M. Comparison of two chicken genotypes organically reared: Oxidative stability and other qualitative traits of the meat. Ital. J. Anim. Sci. 2006, 5, 29–42. [Google Scholar] [CrossRef]
- da Silva, D.C.F.; de Arruda, A.M.V.; Gonçalves, A.A. Quality characteristics of broiler chicken meat from free-range and industrial poultry system for the consumers. J. Food Sci. Technol. 2017, 54, 1818. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic sysytem on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef]
- Qiao, M.; Fletcher, D.L.; Northcutt, J.K.; Smith, D.P. The relationship between raw broiler breast meat color and composition. Poult. Sci. 2002, 81, 422–427. [Google Scholar] [CrossRef]
- Zanetti, E.; de Marchi, M.; Dalvit, C.; Molette, C.; Remignon, H.; Cassandro, M. Carcase characteristics and qualitative meat traits of three Italian local chicken breeds. Br. Poult. Sci. 2010, 51, 629–634. [Google Scholar] [CrossRef][Green Version]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Meat quality of three chicken genotypes reared according to the organic system. Ital. J. Food Sci. 2002, 14, 401–412. [Google Scholar]
- Dalle Zotte, A.; Tasoniero, G.; Baldan, G.; Cullere, M. Meat quality of male and female Italian Padovana and Polverara slow-growing chicken breeds. Ital. J. Anim. Sci. 2019, 18, 398–404. [Google Scholar] [CrossRef]
- Díaz, O.; Rodríguez, L.; Torres, A.; Cobos, A. Chemical composition and physico-chemical properties of meat from capons as affected by breed and age. Span. J. Agric. Res. 2010, 8, 91–99. [Google Scholar] [CrossRef][Green Version]
- Cassandro, M.; De Marchi, M.; Penasa, M.; Rizzi, C. Carcass characteristics and meat quality traits of the padovana chicken breed, a commercial line, and their cross. Ital. J. Anim. Sci. 2015, 14, 304–309. [Google Scholar] [CrossRef]
- Soares, M.L.C. Caracterização Fenotípica e Genotípica das Raças Autóctones de Galináceos Portugueses: Pedrês Portuguesa, Preta Lusitânica e “Amarela”. Ph.D. Thesis, Universidade do Porto, Porto, Portugal, 2015. [Google Scholar]
- Dias, R.C.; Krabbe, E.L.; Bavaresco, C.; Stefanello, T.B.; Kawski, V.L.; Panisson, J.C.; Maiorka, A.; Roll, V.F.B. Effect of strain and nutritional density of the diet on the water-protein ratio, fat and collagen levels in the breast and legs of broilers slaughtered at different ages. Poult. Sci. 2020, 99, 2033–2040. [Google Scholar] [CrossRef]
- Miguel, J.A.; Ciria, J.; Asenjo, B.; Calvo, J.L. Effect of caponisation on growth and on carcass and meat characteristics in Castellana Negra native Spanish chickens. Animal 2008, 2, 305–311. [Google Scholar] [CrossRef][Green Version]
- Chen, Y.; Qiao, Y.; Xiao, Y.; Chen, H.; Zhao, L.; Huang, M.; Zhou, G. Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens. Asian-Australas. J. Anim. Sci. 2016, 29, 855–864. [Google Scholar] [CrossRef]
- Bogosavljevic-Boskovic, S.; Mitrovic, S.; Djokovic, R.; Doskovic, V.; Djermanovic, V. Chemical composition of chicken meat produced in extensive indoor and free range rearing systems. Afr. J. Biotechnol. 2010, 9, 9069–9075. [Google Scholar]
- Jaturasitha, S.; Srikanchai, T.; Kreuzer, M.; Wicke, M. Differences in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island red). Poult. Sci. 2008, 87, 160–169. [Google Scholar] [CrossRef]
- Fanatico, A.C.; Cavitt, L.C.; Pillai, P.B.; Emmert, J.L.; Owens, C.M. Evaluation of slower-growing broiler genotypes grown with and without outdoor access: Meat quality. Poult. Sci. 2005, 84, 1785–1790. [Google Scholar] [CrossRef]
- Valsta, L.M.; Tapanainen, H.; Männistö, S. Meat fats in nutrition. Meat Sci. 2005, 70, 525–530. [Google Scholar] [CrossRef]
- Bochno, R.; Brzozowski, W.; Murawska, D. Age-related changes in the distribution of lean, fat with skin and bones in duck carcases. Br. Poult. Sci. 2010, 46, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Bonagurio, S.; Pérez, J.R.O.; Garcia, I.F.F.; Bressan, M.C.; Da Silva Corrêa Lemos, A.L. Qualidade da carne de cordeiros Santa Inês puros e mestiços com Texel abatidos com diferentes pesos. Rev. Bras. Zootec. 2003, 32, 1981–1991. [Google Scholar] [CrossRef][Green Version]
- Serrano, P. Desempenho, Parâmetros Sanguíneos, Perfil Graxo e Conteúdo de Colesterol na Carcaça de Frangos de Corte Alimentados com Diferentes Fontes de Ácidos Graxos. Master’s Thesis, Universidade Estadual Paulista, Sao Paolo, Brazil, 2002. [Google Scholar]
- Gibbs, R.A.; Rymer, C.; Givens, D.I. Fatty acid composition of cooked chicken meat and chicken meat products as influenced by price range at retail. Food Chem. 2013, 138, 1749–1756. [Google Scholar] [CrossRef] [PubMed]
- Sioen, I.A.; Pynaert, I.; Matthys, C.; De Backer, G.; Van Camp, J.; De Henauw, S. Dietary intakes and food sources of fatty acids for Belgian women, focused on n-6 and n-3 polyunsaturated fatty acids. Lipids 2006, 41, 415–422. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stadig, L.M.; Bas Rodenburg, T.; Reubens, B.; Aerts, J.; Duquenne, B.; Tuyttens, F.A.M. Effects of free-range access on production parameters and meat quality, composition and taste in slow-growing broiler chickens. Poult. Sci. 2016, 95, 2971–2978. [Google Scholar] [CrossRef]
- Givens, D.I.; Gibbs, R.A.; Rymer, C.; Brown, R.H. Effect of intensive vs. free range production on the fat and fatty acid composition of whole birds and edible portions of retail chickens in the UK. Food Chem. 2011, 127, 1549–1554. [Google Scholar] [CrossRef]
- Rule, D.C.; Broughton, K.S.; Shellito, S.M.; Maiorano, G. Comparison of muscle fatty acid profiles and cholesterol concentrations of bison, beef cattle, elk, and chicken. J. Anim. Sci. 2002, 80, 1202–1211. [Google Scholar] [CrossRef][Green Version]
- Wattanachant, S.; Benjakul, S.; Ledward, D.A. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 2004, 83, 123–128. [Google Scholar] [CrossRef]
- Cobos, A.; de la Hoz, L.; Cambero, M.I.; Ordóñez, J.A. Revisión: Influencia de la dieta animal en los ácidos grasos de los lípidos de la carne. Rev. Española Cienc. Tecnol. Aliment. 1994, 34, 35–51. [Google Scholar]
“Barcelos” Rooster (N = 10) | “Amarela” Rooster (N = 10) | Sig. | |||||
---|---|---|---|---|---|---|---|
Traits | Mean ± SD | Min | Max | Mean ± SD | Min | Max | B*A |
LW(g) | 4211.40 ± 105.22 | 4035.00 | 4355.00 | 3520.20 ± 224.80 | 3291.00 | 3835.00 | *** |
CW1(g) | 3860.40 ± 148.73 | 3700.00 | 4005.00 | 3238.00 ± 259.39 | 2945.00 | 3575.00 | *** |
CW2(g) | 3404.20 ± 149.99 | 3237.00 | 3590.00 | 2941.40 ± 270.97 | 2606.00 | 3264.00 | *** |
CW3(g) | 3072.00 ± 101.89 | 2915.00 | 3190.00 | 2630.00 ± 229.37 | 2350.00 | 2900.00 | *** |
EW(g) | 372.00 ± 14.58 | 356.00 | 387.00 | 311.40 ± 42.08 | 256.00 | 364.00 | *** |
“Barcelos” Rooster | “Amarela” Rooster | Sig. | ||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Min | Max | Mean ± SD | Min | Max | B*A | ||
Breast (N = 10) | pH | 5.68 *** ± 0.16 | 5.41 | 5.98 | 5.78 *** ± 0.13 | 5.65 | 5.91 | NS |
Moisture (%) | 73.28 ** ± 1.17 | 71.41 | 76.50 | 73.05 *** ± 1.45 | 71.60 | 74.50 | NS | |
Ash (%) | 1.15 * ± 0.06 | 1.03 | 1.28 | 1.13 * ± 0.04 | 1.09 | 1.17 | NS | |
Fat (%) | 1.89 *** ± 1.20 | 0.16 | 4.14 | 1.90 *** ± 1.01 | 0.89 | 2.91 | *** | |
Protein (%) | 25.15 *** ± 1.78 | 21.96 | 28.4 | 24.55 *** ± 0.52 | 24.03 | 25.07 | *** | |
Drumstick (N = 10) | pH | 5.91 ± 0.18 | 5.70 | 6.69 | 5.94 ± 0.05 | 5.89 | 6.00 | NS |
Moisture (%) | 71.81 ± 1.86 | 68.29 | 74.86 | 75.0 ± 0.83 | 74.52 | 76.0 | * | |
Ash (%) | 1.10 ± 0.07 | 0.99 | 1.27 | 1.10 ± 0.06 | 1.01 | 1.22 | NS | |
Fat (%) | 6.72 ± 1.66 | 4.35 | 9.38 | 5.4 ± 1.31 | 4.13 | 6.73 | *** | |
Protein (%) | 19.44 ± 1.24 | 16.56 | 21.70 | 19.7 ± 0.52 | 19.13 | 20.70 | *** |
“Barcelos” Rooster (N = 10) | “Amarela” Rooster (N = 10) | Sig | ||||||
---|---|---|---|---|---|---|---|---|
Breast (N = 10) | Fatty Acid (%) | Mean ± SD | Min | Max | Mean ± SD | Min | Max | B*A |
C16:0 | 21.34 ± 1.76 | 17.80 | 24.10 | 23.02 ± 0.59 | 22.43 | 23.61 | NS | |
C18:0 | 7.63 ± 0.68 | 6.30 | 8.70 | 6.45 ± 0.53 | 5.92 | 6.98 | ** | |
⅀SFA | 30.30 ± 1.61 | 27.60 | 33.40 | 33.2 ± 0.60 | 32.60 | 33.80 | *** | |
C16:1 | 3.85 *** ± 0.96 | 2.20 | 5.30 | 3.55 *** ± 0.31 | 3.24 | 3.86 | NS | |
C18:1 | 31.91 *** ± 2.72 | 26.00 | 36.10 | 33.10 *** ± 1.12 | 31.98 | 34.22 | ** | |
C20:1 | 0.47 * ± 0.08 | 0.30 | 0.60 | 0.42 ± 0.08 | 0.34 | 0.50 | NS | |
⅀MUFA | 36.74 *** ± 3.57 | 29.30 | 41.80 | 41.08 *** ± 1.10 | 39.98 | 42.18 | *** | |
C18:2n6 | 17.02 ** ± 2.05 | 14.10 | 21.60 | 14.15 *** ± 0.55 | 13.60 | 14.70 | *** | |
C20:4n6 | 4.88 *** ± 2.48 | 2.00 | 10.40 | 4.95 *** ± 0.81 | 4.14 | 5.76 | NS | |
C22:4n6 | 0.52 *** ± 0.2 | 0.30 | 0.90 | 0.63 *** ± 0.13 | 0.50 | 0.76 | NS | |
⅀n-6-PUFA | 22.75 ± 2.43 | 18.60 | 25.90 | 20.1 ± 2.23 | 17.87 | 22.33 | ** | |
C18:3n3 | 0.96 ** ± 0.22 | 0.70 | 1.50 | 1.06 *** ± 0.05 | 0.41 | 0.51 | NS | |
C22:5n3 | 0.66 *** ± 0.39 | 0.30 | 1.70 | 0.48 ** ± 0.08 | 0.40 | 0.56 | ** | |
C22:6n3 | 0.74 *** ± 0.33 | 0.30 | 1.40 | 0.42 ** ± 0.06 | 0.36 | 0.48 | ** | |
⅀n-3-PUFA | 2.47 *** ± 0.55 | 1.80 | 3.90 | 1.96 ± 0.68 | 0.80 | 2.16 | *** | |
⅀LC-PUFAS | 1.99 *** ± 0.88 | 1.00 | 4.10 | 1.56 ** ± 0.81 | 0.75 | 2.37 | *** | |
⅀PUFA | 25.21 ± 2.81 | 20.60 | 29.70 | 21.10 *** ± 1.25 | 19.90 | 22.42 | *** | |
TRANS | 2.57 ** ± 0.30 | 2.10 | 3.20 | 2.51 ± 0.26 | 2.25 | 2.77 | NS | |
Drumstick (N = 10) | C16:0 | 21.33 ± 1.60 | 19.10 | 24.10 | 22.87 ± 0.42 | 22.45 | 23.29 | ** |
C18:0 | 7.24 ± 0.77 | 6.00 | 8.60 | 6.15 ± 0.65 | 5.50 | 6.80 | ** | |
⅀SFA | 29.68 ± 1.96 | 26.40 | 33.30 | 33.50 ± 0.55 | 33.00 | 34.10 | *** | |
C16:1 | 5.19 ± 0.98 | 6.60 | 5.19 | 6.89 ± 0.25 | 6.64 | 7.14 | * | |
C18:1 | 35.19 ± 1.63 | 32.30 | 37.30 | 35.78 ± 0.42 | 35.36 | 36.20 | NS | |
C20:1 | 0.41 ± 0.06 | 0.30 | 0.50 | 0.37 ± 0.05 | 0.32 | 0.42 | NS | |
⅀MUFA | 41.45 ± 2.25 | 38.20 | 44.80 | 44.30 ± 1.12 | 43.20 | 45.40 | *** | |
C18:2n6 | 19.41 ± 2.14 | 15.10 | 22.50 | 17.19 ± 0.36 | 16.83 | 17.55 | *** | |
C20:4n6 | 2.13 ± 0.65 | 1.40 | 3.40 | 2.12 ± 0.19 | 1.93 | 2.31 | NS | |
C22:4n6 | 0.30 ± 0.08 | 0.20 | 0.40 | 0.42 ± 0.14 | 0.28 | 0.56 | NS | |
⅀n-6-PUFA | 22.18 ± 2.36 | 17.90 | 25.10 | 20.1 ± 2.12 | 17.98 | 22.22 | *** | |
C18:3n3 | 1.15 ± 0.19 | 0.90 | 1.50 | 1.20 ± 0.21 | 0.99 | 1.41 | NS | |
C22:5n3 | 0.25 ± 0.10 | 0.10 | 0.50 | 0.32 ± 0.11 | 0.21 | 0.43 | NS | |
C22:6n3 | 0.24 ± 0.09 | 0.10 | 0.40 | 0.28 ± 0.10 | 0.18 | 0.38 | NS | |
⅀n-3-PUFA | 1.75 ± 0.26 | 1.20 | 2.10 | 1.91 ± 0.08 | 1.83 | 1.99 | NS | |
⅀LC-PUFAS | 0.87 ± 0.22 | 0.60 | 1.30 | 1.15 ± 0.15 | 1.00 | 1.30 | * | |
⅀PUFA | 23.94 ± 2.49 | 19.40 | 27.30 | 17.3 ± 1.32 | 16.01 | 18.62 | *** | |
TRANS | 2.32 ± 0.23 | 2.00 | 2.80 | 2.28 ± 0.26 | 2.02 | 2.54 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, I.M.; Casal, S.; Lopes, J.C.; Domingues, J.; Vale, A.P.; Meira, M.; Marinho, M.C.; Vaz, P.S.; Brito, N.V. Chemical Composition of the “Galo de Barcelos” (Barcelos Rooster Raw Meat). Animals 2022, 12, 1556. https://doi.org/10.3390/ani12121556
Afonso IM, Casal S, Lopes JC, Domingues J, Vale AP, Meira M, Marinho MC, Vaz PS, Brito NV. Chemical Composition of the “Galo de Barcelos” (Barcelos Rooster Raw Meat). Animals. 2022; 12(12):1556. https://doi.org/10.3390/ani12121556
Chicago/Turabian StyleAfonso, Isabel Maria, Susana Casal, Júlio César Lopes, Jéssica Domingues, Ana Paula Vale, Márcio Meira, Maria Conceição Marinho, Pedro Santos Vaz, and Nuno V. Brito. 2022. "Chemical Composition of the “Galo de Barcelos” (Barcelos Rooster Raw Meat)" Animals 12, no. 12: 1556. https://doi.org/10.3390/ani12121556