Proximate Chemical Composition, Amino Acids Profile and Minerals Content of Meat Depending on Carcass Part, Sire Genotype and Sex of Meat Rabbits
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Growing of Rabbits
2.3. Slaughter of Rabbits and Meat Samples
2.4. Laboratory Methods
2.5. Statistical Analysis
3. Results
3.1. Slaughter Traits and Proximate Chemical Composition of Meat
3.2. Amino Acids Profile
3.3. Mineral Elements
4. Discussion
4.1. Slaughter Traits and Proximate Chemical Composition of Meat
4.2. Amino Acid Profile
4.3. Mineral Elements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalle Zotte, A.; Cullere, M.; Gleeson, E.; Cossu, M.E. Animal fat and vitamin E in rabbit diets: Total tract apparent digestibility, growth performance, carcass and meat quality traits. Czech J. Anim. Sci. 2020, 65, 380–388. [Google Scholar] [CrossRef]
- Elazab, M.A.; Khalifah, A.M.; Elokil, A.A.; Elkomy, A.E.; Rabie, M.M.; Mansour, A.T.; Morshedy, S.A. Effect of dietary rosemary and ginger essential oils on the growth performance, feed utilization, meat nutritive value, blood biochemicals, and redox status of growing NZW rabbits. Animals 2022, 12, 375. [Google Scholar] [CrossRef]
- Hernández, P. Carne de conejo, ideal para dietas bajas en ácido úrico. Revista Científica de Nutrición. N° 8 Septiembre. Boletín Cunicult. 2007, 154, 33–36. [Google Scholar]
- Dalle Zotte, A.; Szendrö, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Hermida, M.; Gonzalez, M.; Miranda, M.; Rodríguez-Otero, J.L. Mineral analysis in rabbit meat from Galicia (NW Spain). Meat Sci. 2006, 73, 635–639. [Google Scholar] [CrossRef]
- Cullere, M.; Zotte, A.D.; Tasoniero, G.; Giaccone, V.; Szendrő, Z.; Szín, M.; Odermatt, D.; Gerencser, Z.; Dal Bosco, A.; Matics, Z. Effect of diet and packaging system on the microbial status, pH, color and sensory traits of rabbit meat evaluated during chilled storage. Meat Sci. 2018, 141, 36–43. [Google Scholar] [CrossRef]
- Pereira, P.M.D.C.; Vicente, A.F.D.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; He, Z.; Hu, Y.; Li, H. Shotgun proteomic analysis of protein profile changes in female rabbit meat: The effect of breed and age. Ital. J. Anim. Sci. 2019, 18, 1335–1344. [Google Scholar] [CrossRef]
- Jiménez-Colmenero, F.; Herrero, A.M.; Cofrades, S.; Ruiz-Capillas, C. Meat: Eating quality and preservation. In The Encyclopedia of Food and Health; Caballero, B., Finglas, P., Toldrá, F., Eds.; Oxford Academic Press: Kidlington, UK, 2016; pp. 685–692. [Google Scholar]
- Triki, M.; Herrero, A.M.; Jiménez-Colmenero, F.; Ruiz-Capillas, C. Quality assessment of fresh meat from several species based on free amino acid and biogenic amine contents during chilled storage. Foods 2018, 7, 132. [Google Scholar] [CrossRef]
- Nasr, M.A.F.; Abd-Elhamid, T.; Hussein, M.A. Growth performance, carcass characteristics, meat quality and muscle amino-acid profile of different rabbits breeds and their crosses. Meat Sci. 2017, 134, 150–157. [Google Scholar] [CrossRef]
- Migdal, L.; Barabasz, B.; Niedbała, P.; Łapiński, S.; Pustkowiak, H.; Živković, B.; Migdał, W. A comparison of selected biochemical characteristics of meat from nutrias (Myocastor coypus Mol.) and rabbits (Oryctolagus cuniculus). Ann. Anim. Sci. 2013, 13, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Pla, M. A comparison of the carcass traits and meat quality of conventionally and organically produced rabbits. Livest. Sci. 2008, 115, 1–12. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Gugołek, A.; Kubiak, D.; Kerbaum, K.; Burczyk, E. The fatty acid profile of meat from New Zealand white rabbits raised under intensive and extensive production systems. Animals 2021, 11, 3126. [Google Scholar] [CrossRef]
- Zapletal, D.; Jakešová, P.; Žáková, E.; Šimek, V.; Straková, E. Growth performance, mortality and body and carcass characteristics of rabbit fatteners related to crossbreeding of Mecklenburger Schecke sires with dam line of HYLA rabbits. Czech J. Anim. Sci. 2020, 65, 337–345. [Google Scholar] [CrossRef]
- Szendrő, Z.; Matics, Z.; Gerencsér, Z.; Nagy, I.; Lengyel, M.; Horn, P.; Dalle Zotte, A. Effect of dam and sire genotypes on productive and carcass traits of rabbits. J. Anim. Sci. 2010, 88, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Dalle Zotte, A.; Paci, G. Rabbit growth performance, carcass traits and hind leg bone characteristics as affected by the sire breed, season, parity order and sex in an organic production system. Anim. Sci. Pap. Rep. 2014, 32, 143–159. [Google Scholar]
- Tůmová, E.; Bízková, Z.; Skřivanová, V.; Chodová, D.; Martinec, M.; Volek, Z. Comparisons of carcass and meat quality among rabbit breeds of different sizes, and hydrid rabbits. Livest. Sci. 2014, 165, 8–14. [Google Scholar] [CrossRef]
- Szendrő, Z.; Szendrő, K.; Dalle Zotte, A. Management of reproduction on small, medium and large rabbit farms. Asian Austral. J. Anim. 2012, 25, 738–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chodová, D.; Tůmová, E.; Martinec, M.; Bízková, Z.; Skřivanová, V.; Volek, Z.; Zita, L. Effect of housing system and genotype on rabbit meat quality. Czech J. Anim. Sci. 2014, 59, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Volek, Z.; Marounek, M. Effect of feeding growing–fattening rabbits a diet supplemented with whole white lupin (Lupinus albus cv. Amiga) seeds on fatty acid composition and indexes related to human health in hind leg meat and perirenal fat. Meat Sci. 2011, 87, 40–45. [Google Scholar] [CrossRef]
- Blasco, A.; Ouhayoun, J. Harmonization of criteria and terminology in rabbit meat research. Revised proposal. World Rabbit Sci. 1996, 4, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Straková, E.; Suchý, P.; Navrátil, P.; Karel, T.; Herzig, I. Comparison of the content of crude protein and amino acids in the whole bodies of cocks and hens of Ross 308 and Cobb 500 hybrids at the end of fattening. Czech J. Anim. Sci. 2015, 60, 67–74. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Tůmová, E.; Chodová, D.; Volek, Z.; Ketta, M. The effect of feed restriction, sex and age on the carcass composition and meat quality of nutrias (Myocastor coypus). Meat Sci. 2021, 182, 108625. [Google Scholar] [CrossRef] [PubMed]
- Perna, A.; Simonetti, A.; Grassi, G.; Gambacorta, E. Effect of a cauliflower (Brassica oleraceae var. Botrytis) leaf powder-enriched diet on performance, carcass and meat characteristics of growing rabbit. Meat Sci. 2019, 149, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Šťastník, O.; Mrkvicová, E.; Pavlata, L.; Anzenbacherová, E.; Prokop, J.; Roztočilová, A.; Umlasková, B.; Novotný, J.; Metnarová, E.; Vyhnánek, T.; et al. Purple wheat as a source of anthocyanins and its effect on the metabolism of rabbits. Vet. Med. Czech. 2019, 64, 539–546. [Google Scholar]
- Migdal, L.; Palka, S.; Kmiecik, M.; Derewicka, O. Association of polymorphisms in the GH and GHR genes with growth and carcass traits in rabbits (Oryctolagus cuniculus). Czech J. Anim. Sci. 2019, 64, 255–264. [Google Scholar] [CrossRef]
- Metzger, S.; Odermatt, M.; Szabó, A.; Radnai, I.; Biró-Németh, E.; Nagy, I.; Szendrő, Z. Effect of age and body weight on carcass traits and meat composition of rabbits. Arch. Tierzucht. 2011, 54, 406–418. [Google Scholar] [CrossRef] [Green Version]
- Matics, Z.S.; Nagy, I.; Gerencsér, Z.S.; Radnai, I.; Gyovai, P.; Donkó, T.; Zotte, A.D.; Curik, I.; Szendrő, Z.S. Pannon breeding program at Kaposvár University. World Rabbit Sci. 2014, 22, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Blasco, A.; Nagy, I.; Hernández, P. Genetics of growth, carcass and meat quality in rabbits. Meat Sci. 2018, 145, 178–185. [Google Scholar] [CrossRef]
- Szendrő, Z.; Metzger, S.; Nagy, I.; Szabó, A.; Petrási, Z.; Donkó, T.; Horn, P. Effect of divergent selection for the Computer Tomography measured thigh muscle volume on productive and carcass traits of growing rabbits. Livest. Sci. 2012, 149, 167–172. [Google Scholar] [CrossRef]
- Daszkiewicz, T.; Gugolek, A. A comparison of the quality of meat from female and male californian and flemish giant gray rabbits. Animals 2020, 10, 2216. [Google Scholar] [CrossRef] [PubMed]
- Króliczewska, B.; Miśta, D.; Korzeniowska, M.; Pecka-Kiełb, E.; Zachwieja, A. Comparative evaluation of the quality and fatty acid profile of meat from brown hares and domestic rabbits offered the same diet. Meat Sci. 2018, 145, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Pla, M.; Pascual, M.; Ariño, B. Protein, fat and moisture content of retail cuts of rabbit meat evaluated with the NIRS methodology. World Rabbit Sci. 2004, 12, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Hernández, P. Enhancement of nutritional quality and safety in rabbit meat. In Proceedings of the 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008; pp. 1287–1299. [Google Scholar]
- Ortiz Hernández, J.A.; Rubio Lozano, M.S. Effect of breed and sex carcass yield and meat quality. World Rabbit Sci. 2001, 9, 51–56. [Google Scholar] [CrossRef]
- North, M.K.; Dalle Zotte, A.; Hoffman, L.C. Growth, carcass and meat quality traits of two South African meat rabbit breeds. S. Afr. J. Anim. Sci. 2019, 49, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Bivolarski, B.; Vachkova, E.; Ribarski, S.; Uzunova, K.; Pavlov, D. Amino acid content and biological value of rabbit meat proteins, depending on weaning age. Bulg. J. Vet. Med. 2011, 14, 94–102. [Google Scholar]
- Ye, X.; Zhou, L.; Zhang, Y.; Xue, S.; Gan, F.Q.; Fang, S. Effect of host breeds on gut microbiome and serum metabolome in meat rabbits. BMC Vet. Res. 2021, 17, 24. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Wang, B.; Lu, J.Z.; Li, C.Y.; Kuang, L.D.; Tang, X.X.; Mei, X.L.; Xie, X.H. Analysis of the relationship between caecal flora difference and production performance of two rabbit species by high-throughput sequencing. Czech J. Anim. Sci. 2021, 66, 271–280. [Google Scholar] [CrossRef]
- Thomas, R.; Banik, S.; Barman, K.; Mohan, N.H.; Sarma, D.K. Profiles of colour, minerals, amino acids and fatty acids in Asha, the triple cross (Ghungroo x Hampshire x Duroc) fattener pig variety. Indian J. Anim. Res. 2019, 53, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhu, Y.; Wang, X.; He, Y.; Cao, B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus × Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechno. 2014, 5, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenzo, J.M.; Sarriés, M.V.; Franco, D. Sex effect on meat quality and carcass traits of foals slaughtered at 15 months of age. Animal 2013, 7, 1199–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinauskiene, R.; Leskauskaite, D.; Akromaite, E. Nutritional composition of farm chinchilla (Chinchilla lanigera) meat. J. Food Compos. Anal. 2019, 84, 103303. [Google Scholar] [CrossRef]
- Kęska, P.; Stadnik, J. Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico study. J. Sens. Stud. 2017, 32, 12301. [Google Scholar] [CrossRef]
- Kirimura, J.; Shimizu, A.; Kimizuka, A.; Ninomiya, T.; Katsuya, N. Contribution of peptides and amino acids to the taste of foods. J. Agr. Food Chem. 1969, 17, 689–695. [Google Scholar] [CrossRef]
- Zhao, C.J.; Schieber, A.; Gänzle, M.G. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations—A review. Food Res. Int. 2016, 89, 39–47. [Google Scholar] [CrossRef]
- Dashdorj, D.; Amna, T.; Hwang, I. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. Eur. Food Res. Technol. 2015, 241, 157–171. [Google Scholar] [CrossRef]
- Song, S.Q.; Tang, Q.; Fan, L.; Xu, X.D.; Song, Z.; Hayat, K.; Feng, T.; Wang, Y.F. Identification of pork flavour precursors from enzyme-treated lard using Maillard model system assessed by GC–MS and partial least squares regression. Meat Sci. 2017, 124, 15–24. [Google Scholar] [CrossRef]
- Navarro, M.; Dunshea, F.R.; Lisle, A.; Roura, E. Feeding a high oleic acid (C18:1) diet improves pleasing flavor attributes in pork. Food Chem. 2021, 357, 129770. [Google Scholar] [CrossRef]
- McCarron, D.A.; Reusser, M.E. Are low intakes of calcium and potassium important causes of cardiovascular disease? Am. J. Hypertens. 2001, 14, 206S–212S. [Google Scholar] [CrossRef] [Green Version]
- Mattioli, S.; Dal Bosco, A.; Duarte, J.M.M.; D’Amato, R.; Castellini, C.; Beone, G.M.; Fontanella, M.C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profle and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. 2019, 51, 98–105. [Google Scholar] [CrossRef] [PubMed]
- D´Arco, G.; Blasi, F.; Cossignani, L.; Di Giacomo, F.; Ciavardelli, D.; Ventura, F.; Scipioni, S.; Simonetti, M.S.; Damiani, P. Composition of meat and offal from weaned and fattened rabbits and results of stereospecific analysis of triacylglycerols and phosphatidylcholines. J. Sci. Food Agric. 2012, 92, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Simonová, M.P.; Chrastinová, L.; Chrenková, M.; Formelová, Z.; Kandričáková, A.; Bino, E.; Lauková, A. Benefits of enterocin M and sage combination on the physico-chemical traits, fatty acid, amino acid, and mineral content of rabbit meat. Probiotics Antimicro. 2020, 12, 1235–1245. [Google Scholar] [CrossRef] [PubMed]
- Parigi-Bini, R.; Xiccato, G.; Cinetto, M.; Dalle Zotte, A.; Converso, R. Effetto dell’età, del peso di macellazione e del sesso sulla qualità della carcassa e della carne cunicola. 1. Rilievi di macellazione e qualità della carcassa. Zootec. Nutr. Anim. 1992, 18, 157–172. [Google Scholar]
- Bovera, F.; Di Meo, C.; Piccolo, G.; Colatruglio, P.; Nizza, A. Il coniglio di fosso dell’isola d’Ischia: Indagine preliminare sulle caratteristiche delle carcasse e delle carni. Rivista Coniglicoltura 2005, 42, 42–45. [Google Scholar]
- Lombardi-Boccia, G.; Martinez-Dominguez, B.; Aguzzi, A. Total heme and nonheme iron in raw and cooked meats. J. Food Sci. 2002, 67, 1738–1741. [Google Scholar] [CrossRef]
- Cabrera, M.C.; Ramos, A.; Saadoun, A.; Brito, G. Selenium, copper, zinc, iron and manganese content of seven meat cuts from Hereford and Braford steers fed pasture in Uruguay. Meat Sci. 2010, 84, 518–528. [Google Scholar] [CrossRef]
- Hassan, A.; Sada, K.K.; Ketheeswaran, S.; Dubey, A.K.; Bhat, M.S. Role of zinc in mucosal health and disease: A review of physiological, biochemical, and molecular processes. Cureus 2020, 12, e8197. [Google Scholar] [CrossRef]
- Sachse, B.; Kolbaum, A.E.; Ziegenhagen, R.; Andres, S.; Berg, K.; Dusemund, B.; Hirsch-Ernst, K.I.; Kappenstein, O.; Mueller, F.; Roehl, C.; et al. Dietary manganese exposure in the adult population in Germany—What does it mean in relation to health risks? Mol. Nutr. Food Res. 2019, 63, 1900065. [Google Scholar] [CrossRef]
- Freeland-Graves, J.H.; Mousa, T.Y.; Sanjeevi, N. Nutritional requirements for manganese. In Manganese in Health and Disease; Costa, L.G., Aschner, M., Eds.; Royal Society of Chemistry: London, UK, 2015; pp. 34–75. [Google Scholar]
- Hernández, P.; Gondret, F. Rabbit meat quality. In Recent Advances in Rabbit Science; Maertens, L., Coudert, P., Eds.; ILVO: Melle, Belgium, 2006; pp. 269–290. [Google Scholar]
- López-Alonso, M.; Benedito, J.L.; Miranda, M.; Castillo, C.; Hernández, J.; Shore, R.F. Toxic and trace elements in liver, kidney and meat from cattle slaughtered in Galicia (NW Spain). Food Addit. Contam. 2000, 17, 447–457. [Google Scholar] [CrossRef]
Grower | Finisher | |
---|---|---|
Item | (Day 35 to 64) | (After Day 65) |
Crude protein | 157.4 | 154.1 |
Crude fibre | 125.8 | 128.1 |
Crude fat | 42.1 | 33.6 |
Crude starch | 151.8 | 150.3 |
Ash | 68.6 | 63.2 |
Calcium | 8.68 | 6.94 |
Inorganic phosphorus | 7.2 | 6.6 |
Asparagine | 12.5 | 12.6 |
Threonine | 5.3 | 5.4 |
Serine | 6.3 | 6.4 |
Glutamine | 28.8 | 27.6 |
Proline | 8.7 | 9.0 |
Glycine | 7.1 | 7.1 |
Alanine | 7.1 | 7.3 |
Valine | 7.5 | 7.4 |
Methionine | 1.6 | 1.5 |
Isoleucine | 5.4 | 5.4 |
Leucine | 9.8 | 9.7 |
Tyrosine | 4.7 | 4.3 |
Phenylalanine | 6.3 | 6.0 |
Histidine | 4.3 | 4.1 |
Lysine | 8.1 | 7.5 |
Arginine | 9.6 | 9.0 |
Item | Meat | p-Value | |
---|---|---|---|
Hind Leg | LTL | ||
Proximate chemical composition (g/kg of fresh meat) | |||
Dry matter | 241.7 ± 1.65 | 250.7 ± 1.74 | <0.001 |
Crude protein | 215.4 ± 1.16 | 227.4 ± 1.11 | <0.001 |
Ether extract | 24.6 ± 0.91 | 16.5 ± 0.67 | <0.001 |
Ash | 12.3 ± 0.05 | 11.9 ± 0.06 | <0.001 |
W/P | 3.53 ± 0.025 | 3.30 ± 0.022 | <0.001 |
Amino acids (g/100 g of total crude protein) | |||
Lysine | 8.86 ± 0.193 | 8.88 ± 0.172 | 0.844 |
Leucine | 7.29 ± 0.097 | 7.71 ± 0.093 | <0.001 |
Isoleucine | 4.29 ± 0.055 | 4.52 ± 0.056 | <0.001 |
Threonine | 4.00 ± 0.055 | 4.27 ± 0.052 | <0.001 |
Arginine | 5.64 ± 0.107 | 6.33 ± 0.182 | <0.001 |
Histidine | 3.76 ± 0.063 | 4.15 ± 0.063 | <0.001 |
Phenylalanine | 4.26 ± 0.138 | 3.90 ± 0.055 | 0.004 |
Valine | 4.74 ± 0.070 | 4.97 ± 0.071 | <0.001 |
Methionine | 1.84 ± 0.038 | 2.07 ± 0.042 | <0.001 |
∑ essential AA | 44.7 ± 0.05 | 49.8 ± 0.54 | <0.001 |
Serine | 3.44 ± 0.043 | 3.67 ± 0.042 | <0.001 |
Asparagine | 8.57 ± 0.097 | 8.95 ± 0.105 | <0.001 |
Glutamine | 14.4 ± 0.16 | 14.6 ± 0.16 | 0.150 |
Proline | 3.76 ± 0.050 | 3.70 ± 0.058 | 0.223 |
Glycine | 4.63 ± 0.062 | 4.29 ± 0.065 | <0.001 |
Alanine | 5.38 ± 0.094 | 5.33 ± 0.094 | 0.307 |
Tyrosine | 3.37 ± 0.079 | 3.54 ± 0.081 | <0.001 |
∑ non-essential AA | 43.6 ± 0.46 | 44.1 ± 0.472 | 0.095 |
∑ all AA | 88.3 ± 0.07 | 90.9 ± 0.91 | <0.001 |
Mineral elements (mg/100 g of fresh meat) | |||
Phosphorus | 229.8 ± 4.24 | 224.8 ± 9.60 | 0.558 |
Potassium | 232.9 ± 4.35 | 250.3 ± 5.85 | 0.005 |
Sodium | 55.4 ± 0.78 | 58.3 ± 1.61 | 0.113 |
Calcium | 27.8 ± 1.39 | 24.4 ± 1.12 | 0.003 |
Magnesium | 21.9 ± 0.43 | 22.9 ± 0.42 | 0.063 |
Copper | 0.05 ± 0.002 | 0.06 ± 0.002 | 0.003 |
Iron | 1.01 ± 0.032 | 1.03 ± 0.028 | 0.574 |
Manganese | 0.10 ± 0.006 | 0.10 ± 0.005 | 0.514 |
Zinc | 0.92 ± 0.014 | 0.96 ± 0.015 | 0.019 |
Item | Genotype | p-Value | |||||
---|---|---|---|---|---|---|---|
H | MS × H | Gen. | Sex | Gen. × Sex | |||
M | F | M | F | ||||
Slaughter weight (g) | 2754 ± 81.3 | 2941 ± 70.2 | 3321 ± 63.9 | 3331 ± 72.3 | <0.001 | 0.167 | 0.213 |
ADG (g) | 23.9 ± 1.39 | 26.4 ± 1.56 | 32.3 ± 1.05 | 31.9 ± 1.11 | <0.001 | 0.490 | 0.267 |
Carcass weight (g) | 1677 ± 64.1 | 1735 ± 78.0 | 2059 ± 46.4 | 1983 ± 48.2 | <0.001 | 0.715 | 0.421 |
Carcass dressing (%) | 60.9 ± 0.80 | 58.8 ± 0.97 | 61.1 ± 0.63 | 60.0 ± 0.27 | 0.137 | 0.012 | 0.453 |
Hind legs yield (%) | 33.7 ± 0.29 | 34.0 ± 0.17 | 32.7 ± 0.24 | 32.9 ± 0.25 | <0.001 | 0.209 | 0.956 |
Hind legs meat (g) | 378.2 ± 16.40 | 390.7 ± 16.86 | 434.8 ± 11.82 | 432.1 ± 11.84 | 0.026 | 0.105 | 0.371 |
LTL (g) | 210.9 ± 10.86 | 228.0 ± 13.75 | 256.5 ± 10.68 | 241.5 ± 7.16 | 0.036 | 0.108 | 0.173 |
Hind leg meat | |||||||
Dry matter | 237.3 ± 3.26 | 240.1 ± 4.16 | 245.0 ± 2.95 | 244.4 ± 2.54 | 0.362 | 0.815 | 0.637 |
Crude protein | 210.0 ± 2.11 b | 216.5 ± 2.44 a,b | 221.2 ± 1.39 a | 213.7 ± 2.09 a,b | 0.241 | 0.704 | <0.001 |
Ether extract | 22.8 ± 2.32 | 22.5 ± 1.51 | 24.0 ± 1.64 | 28.9 ± 1.18 | 0.404 | 0.229 | 0.077 |
Ash | 12.3 ± 0.11 a | 12.5 ± 0.09 a | 12.4 ± 0.07 a | 12.0 ± 0.08 b | 0.002 | 0.152 | <0.001 |
W/P | 3.64 ± 0.049 a | 3.52 ± 0.055 a,b | 3.41 ± 0.024 b | 3.54 ± 0.046 a,b | 0.238 | 0.824 | 0.005 |
LTL | |||||||
Dry matter | 247.8 ± 4.05 | 249.5 ± 3.12 | 255.8 ± 2.63 | 249.7 ± 3.88 | 0.827 | 0.436 | 0.336 |
Crude protein | 223.2 ± 2.25 | 227.6 ± 2.75 | 230.1 ± 1.10 | 228.7 ± 2.15 | 0.799 | 0.701 | 0.275 |
Ether extract | 18.3 ± 2.08 | 15.1 ± 0.87 | 17.3 ± 1.07 | 15.3 ± 0.86 | 0.166 | 0.028 | 0.451 |
Ash | 11.7 ± 0.18 | 12.0 ± 0.10 | 12.0 ± 0.05 | 11.9 ± 0.07 | 0.860 | 0.358 | 0.121 |
W/P | 3.38 ± 0.044 | 3.30 ± 0.051 | 3.23 ± 0.021 | 3.29 ± 0.046 | 0.740 | 0.960 | 0.239 |
Item | Genotype | p-Value | |||||
---|---|---|---|---|---|---|---|
H | MS × H | Gen. | Sex | Gen. × Sex | |||
M | F | M | F | ||||
Hind leg meat | |||||||
Lysine | 8.94 ± 0.102 a,b | 8.80 ± 0.147 b,c | 7.65 ± 0.164 c | 10.0 ± 0.57 a | 0.756 | 0.001 | <0.001 |
Leucine | 7.69 ± 0.184 | 7.64 ± 0.092 | 6.81 ± 0.137 | 7.02 ± 0.216 | <0.001 | 0.895 | 0.270 |
Isoleucine | 4.49 ± 0.099 | 4.51 ± 0.056 | 3.99 ± 0.077 | 4.18 ± 0.126 | <0.001 | 0.453 | 0.219 |
Threonine | 4.28 ± 0.096 | 4.19 ± 0.058 | 3.77 ± 0.069 | 3.77 ± 0.119 | <0.001 | 0.401 | 0.439 |
Arginine | 5.88 ± 0.064 | 5.60 ± 0.066 | 5.21 ± 0.086 | 5.86 ± 0.393 | 0.991 | 0.294 | 0.052 |
Histidine | 3.97 ± 0.059 a | 3.81 ± 0.076 a | 3.26 ± 0.065 b | 4.03 ± 0.144 a | 0.091 | 0.003 | <0.001 |
Phenylalanine | 4.07 ± 0.087 b | 3.99 ± 0.202 b | 3.54 ± 0.153 b | 5.43 ± 0.267 a | 0.114 | <0.001 | <0.001 |
Valine | 5.07 ± 0.148 a | 4.87 ± 0.071 a | 4.35 ± 0.093 b | 4.66 ± 0.144 | 0.002 | 0.883 | 0.034 |
Methionine | 2.05 ± 0.082 | 1.76 ± 0.047 | 1.87 ± 0.084 | 1.69 ± 0.043 | 0.444 | 0.004 | 0.477 |
∑ essential AA | 46.4 ± 0.69 a | 45.2 ± 0.67 a | 40.5 ± 0.76 b | 46.7 ± 0.73 a | 0.034 | 0.003 | <0.001 |
Serine | 3.63 ± 0.069 | 3.57 ± 0.055 | 3.31 ± 0.056 | 3.26 ± 0.107 | 0.001 | 0.285 | 0.718 |
Asparagine | 8.90 ± 0.124 a | 8.64 ± 0.183 a,b | 8.10 ± 0.163 b | 8.36 ± 0.231 a,b | 0.011 | 0.694 | 0.015 |
Glutamine | 14.8 ± 0.20 a | 14.7 ± 0.23 a | 13.4 ± 0.28 b | 14.8 ± 0.37 a | 0.012 | 0.105 | 0.006 |
Proline | 3.83 ± 0.079 | 3.99 ± 0.094 | 3.62 ± 0.075 | 3.60 ± 0.113 | <0.001 | 0.726 | 0.523 |
Glycine | 5.05 ± 0.072 a | 4.59 ± 0.130 b | 4.41 ± 0.084 b | 4.46 ± 0.118 b | <0.001 | 0.022 | 0.008 |
Alanine | 4.97 ± 0.259 | 5.73 ± 0.081 | 5.16 ± 0.111 | 5.67 ± 0.157 | 0.477 | 0.003 | 0.666 |
Tyrosine | 4.14 ± 0.076 a | 3.42 ± 0.093 b | 2.84 ± 0.042 c | 3.09 ± 0.053 c | 0.000 | 0.001 | <0.001 |
∑ non-essential AA | 45.3 ± 0.69 a | 44.6 ± 0.73 a | 40.8 ± 0.76 b | 43.5 ± 0.98 a,b | <0.001 | 0.459 | 0.020 |
∑ all AA | 91.8 ± 1.37 a | 89.8 ± 1.36 a | 81.3 ± 1.51 b | 90.2 ± 0.87 a | 0.002 | 0.031 | 0.001 |
LTL | |||||||
Lysine | 9.03 ± 0.088 a,b | 8.72 ± 0.130 a,b | 8.01 ± 0.187 b | 9.75 ± 0.558 a | 0.598 | 0.017 | 0.003 |
Leucine | 7.97 ± 0.129 a | 7.84 ± 0.112 a,b | 7.24 ± 0.199 b | 7.78 ± 0.225 a,b | 0.005 | 0.518 | 0.027 |
Isoleucine | 4.66 ± 0.086 | 4.60 ± 0.067 | 4.26 ± 0.113 | 4.55 ± 0.142 | 0.035 | 0.469 | 0.083 |
Threonine | 4.48 ± 0.074 a | 4.36 ± 0.066 a | 3.99 ± 0.110 b | 4.26 ± 0.111 a,b | 0.009 | 0.645 | 0.036 |
Arginine | 6.46 ± 0.060 a,b | 5.89 ± 0.097 b | 5.51 ± 0.140 b | 7.46 ± 0.583 a | 0.273 | 0.023 | <0.001 |
Histidine | 4.31 ± 0.058 a,b | 4.02 ± 0.056 b,c | 3.80 ± 0.097 c | 4.49 ± 0.160 a | 0.912 | 0.060 | <0.001 |
Phenylalanine | 4.15 ± 0.048 a | 3.84 ± 0.046 a,b | 3.52 ± 0.086 b | 4.11 ± 0.132 a | 0.165 | 0.150 | <0.001 |
Valine | 5.40 ± 0.066 a | 4.99 ± 0.083 a,b | 4.57 ± 0.137 b | 4.94 ± 0.158 b | 0.002 | 0.652 | 0.002 |
Methionine | 2.14 ± 0.073 | 1.97 ± 0.095 | 2.04 ± 0.069 | 2.12 ± 0.098 | 0.806 | 0.647 | 0.215 |
∑ essential AA | 48.6 ± 0.44 a,b | 46.2 ± 0.64 b,c | 42.9 ± 1.08 d | 49.5 ± 0.97 a | 0.209 | 0.028 | <0.001 |
Serine | 3.84 ± 0.046 a | 3.71 ± 0.060 a,b | 3.45 ± 0.091 b | 3.66 ± 0.095 a,b | 0.009 | 0.867 | 0.027 |
Asparagine | 9.40 ± 0.101 a | 8.90 ± 0.144 a,b | 8.47 ± 0.241 b | 9.04 ± 0.246 a,b | 0.047 | 0.934 | 0.009 |
Glutamine | 15.5 ± 0.13 a | 14.4 ± 0.22 a,b | 13.8 ± 0.34 b | 14.6 ± 0.38 a,b | 0.012 | 0.422 | 0.002 |
Proline | 3.65 ± 0.064 | 3.83 ± 0.106 | 3.60 ± 0.075 | 3.73 ± 0.183 | 0.271 | 0.285 | 0.943 |
Glycine | 4.76 ± 0.052 a | 4.37 ± 0.077 b | 3.91 ± 0.130 c | 4.13 ± 0.108 b,c | <0.001 | 0.231 | 0.002 |
Alanine | 4.92 ± 0.263 | 5.63 ± 0.077 | 5.22 ± 0.147 | 5.57 ± 0.155 | 0.532 | 0.019 | 0.506 |
Tyrosine | 4.34 ± 0.051 a | 3.49 ± 0.068 b | 3.09 ± 0.054 c | 3.25 ± 0.130 b,c | <0.001 | <0.001 | <0.001 |
∑ non-essential AA | 46.4 ± 0.49 a | 44.3 ± 0.62 a,b | 41.6 ± 1.06 b | 44.0 ± 1.01 a,b | 0.005 | 0.894 | 0.009 |
∑ all AA | 95.0 ± 0.92 a | 90.6 ± 1.18 a | 84.5 ± 2.14 b | 93.5 ± 1.19 a | 0.018 | 0.227 | <0.001 |
Item | Genotype | p-Value | |||||
---|---|---|---|---|---|---|---|
H | MS × H | Gen. | Sex | Gen. × Sex | |||
M | F | M | F | ||||
Hind leg meat | |||||||
Phosphorus | 231.8 ± 9.94 | 227.4 ± 11.57 | 228.7 ± 5.44 | 231.0 ± 6.62 | 0.218 | 0.605 | 0.462 |
Potassium | 243.8 ± 12.33 | 212.5 ± 6.15 | 240.5 ± 4.78 | 235.1 ± 7.55 | 0.014 | 0.129 | 0.328 |
Sodium | 60.1 ± 1.17 a | 52.9 ± 1.40 b | 52.2 ± 1.22 b | 56.5 ± 1.41 a,b | 0.238 | 0.271 | <0.001 |
Calcium | 25.0 ± 1.48 b | 37.0 ± 4.36 a | 26.1 ± 0.73 b | 23.1 ± 0.64 b | 0.341 | 0.038 | 0.002 |
Magnesium | 20.5 ± 0.61 | 19.3 ± 0.46 | 25.3 ± 0.80 | 22.7 ± 0.35 | <0.001 | 0.008 | 0.249 |
Copper | 0.04 ± 0.003 | 0.05 ± 0.004 | 0.06 ± 0.002 | 0.06 ± 0.002 | 0.506 | 0.243 | 0.090 |
Iron | 0.87 ± 0.071 b | 1.16 ± 0.090 a | 1.02 ± 0.013 a,b | 1.00 ± 0.013 a,b | 0.847 | 0.023 | 0.009 |
Manganese | 0.06 ± 0.009 | 0.07 ± 0.011 | 0.14 ± 0.004 | 0.13 ± 0.004 | <0.001 | 0.747 | 0.485 |
Zinc | 0.87 ± 0.026 | 0.88 ± 0.017 | 0.92 ± 0.029 | 1.02 ± 0.013 | 0.003 | 0.016 | 0.094 |
LTL | |||||||
Phosphorus | 219.4 ± 9.00 | 228.9 ± 16.75 | 228.1 ± 7.01 | 223.0 ± 5.46 | 0.172 | 0.735 | 0.967 |
Potassium | 272.2 ± 12.30 | 238.0 ± 14.66 | 260.3 ± 5.55 | 230.7 ± 9.33 | 0.773 | 0.018 | 0.969 |
Sodium | 52.1 ± 1.26 | 48.5 ± 1.62 | 63.5 ± 2.86 | 69.0 ± 2.63 | <0.001 | 0.556 | 0.097 |
Calcium | 24.9 ± 1.49 | 23.6 ± 2.56 | 25.2 ± 0.47 | 23.9 ± 1.09 | 0.415 | 0.607 | 0.846 |
Magnesium | 22.0 ± 0.69 | 21.1 ± 0.57 | 24.4. ± 0.79 | 24.0 ± 0.96 | 0.017 | 0.568 | 0.860 |
Copper | 0.05 ± 0.003 | 0.06 ± 0.004 | 0.06 ± 0.002 | 0.06 ± 0.002 | 0.785 | 0.187 | 0.172 |
Iron | 0.95 ± 0.07 | 1.14 ± 0.070 | 1.08 ± 0.019 | 0.96 ± 0.028 | 0.182 | 0.774 | 0.017 |
Manganese | 0.07 ± 0.008 | 0.08 ± 0.008 | 0.14 ± 0.004 | 0.12 ± 0.004 | <0.001 | 0.449 | 0.187 |
Zinc | 0.93 ± 0.036 | 0.92 ± 0.032 | 1.02 ± 0.021 | 0.99 ± 0.026 | 0.015 | 0.643 | 0.616 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gál, R.; Zapletal, D.; Jakešová, P.; Straková, E. Proximate Chemical Composition, Amino Acids Profile and Minerals Content of Meat Depending on Carcass Part, Sire Genotype and Sex of Meat Rabbits. Animals 2022, 12, 1537. https://doi.org/10.3390/ani12121537
Gál R, Zapletal D, Jakešová P, Straková E. Proximate Chemical Composition, Amino Acids Profile and Minerals Content of Meat Depending on Carcass Part, Sire Genotype and Sex of Meat Rabbits. Animals. 2022; 12(12):1537. https://doi.org/10.3390/ani12121537
Chicago/Turabian StyleGál, Robert, David Zapletal, Petra Jakešová, and Eva Straková. 2022. "Proximate Chemical Composition, Amino Acids Profile and Minerals Content of Meat Depending on Carcass Part, Sire Genotype and Sex of Meat Rabbits" Animals 12, no. 12: 1537. https://doi.org/10.3390/ani12121537
APA StyleGál, R., Zapletal, D., Jakešová, P., & Straková, E. (2022). Proximate Chemical Composition, Amino Acids Profile and Minerals Content of Meat Depending on Carcass Part, Sire Genotype and Sex of Meat Rabbits. Animals, 12(12), 1537. https://doi.org/10.3390/ani12121537