Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. The Newly Weaned Pig (Period 1; Day 1–21)
2.1.1. Experimental Design and Animal Management
2.1.2. Housing and Animal Management
2.2. Physiological Effects of Selenium-Enriched Mushroom Powder (Period 2; Day 21–39)
2.2.1. Sample Collection
2.2.2. Gut Morphological Analysis
2.2.3. Gene Expression
RNA Extraction and cDNA Synthesis
Quantitative PCR
2.2.4. Microbial Analysis
Microbial DNA Extraction
Illumina Sequencing
Bioinformatics
2.2.5. Volatile Fatty Acids Analysis
2.2.6. Feed Analysis
2.2.7. Antioxidant Activity Analysis
DPPH Free Radical Scavenging Assay
FRAP Assay
2.2.8. Total Selenium Analysis
2.2.9. Statistical Analysis
3. Results
3.1. Period 1 (Day 1–21 Post-Weaning)
Performance and Faecal Scores
3.2. Period 2 (Day 21–39 Post-Weaning)
3.2.1. Performance
3.2.2. Small Intestinal Morphology on Day 39
3.2.3. Differential Bacterial Abundance Analysis on Day 39
3.2.4. Volatile Fatty Acids on Day 39
3.2.5. Gene Expression in the Small Intestine on Day 39
3.2.6. Total Antioxidant of Muscle and Liver on Day 39
3.2.7. Total Selenium Content of Muscle and Liver on Day 39
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairbrother, J.M.; Nadeau, É.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Doherty, J.V.; Bouwhuis, M.A.; Sweeney, T. Novel marine polysaccharides and maternal nutrition to stimulate gut health and performance in post-weaned pigs. Anim. Prod. Sci. 2017, 57, 2376. [Google Scholar] [CrossRef]
- Sales, J. Effects of pharmacological concentrations of dietary zinc oxide on growth of post-weaning pigs: A meta-analysis. Biol. Trace Elem. Res. 2013, 152, 343–349. [Google Scholar] [CrossRef]
- Long, L.; Chen, J.; Zhang, Y.; Liang, X.; Ni, H.; Zhang, B.; Yin, Y. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. PLoS ONE 2017, 12, e0188587. [Google Scholar] [CrossRef] [Green Version]
- Mahan, D.; Cline, T.; Richert, B. Effects of dietary levels of selenium-enriched yeast and sodium selenite as selenium sources fed to growing-finishing pigs on performance, tissue selenium, serum glutathione peroxidase activity, carcass characteristics, and loin quality. J. Anim. Sci. 1999, 77, 2172–2179. [Google Scholar] [CrossRef] [Green Version]
- Dalgaard, T.S.; Briens, M.; Engberg, R.M.; Lauridsen, C. The influence of selenium and selenoproteins on immune responses of poultry and pigs. Anim. Feed Sci. Technol. 2018, 238, 73–83. [Google Scholar] [CrossRef]
- Lyons, M.; Papazyan, T.; Surai, P. Selenium in food chain and animal nutrition: Lessons from nature—Review. Asian Australas. J. Anim. Sci. 2007, 20, 1135–1155. [Google Scholar] [CrossRef]
- Amoako, P.O.; Uden, P.C.; Tyson, J.F. Speciation of selenium dietary supplements; formation of S-(methylseleno) cysteine and other selenium compounds. Anal. Chim. Acta 2009, 652, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Uglietta, R.; Doyle, P.T.; Walker, G.P.; Heard, J.W.; Leddin, C.M.; Stockdale, C.R.; McIntosh, G.H.; Young, G.P.; Dunshea, F.R. Bioavailability of selenium from selenium-enriched milk assessed in the artificially reared neonatal pig. Nutr. Diet. 2008, 65, S37–S40. [Google Scholar] [CrossRef]
- Liu, L.; Chen, D.; Yu, B.; Luo, Y.; Huang, Z.; Zheng, P.; Mao, X.; Yu, J.; Luo, J.; Yan, H.; et al. Influences of Selenium-enriched yeast on growth performance, immune function, and antioxidant capacity in weaned pigs exposure to oxidative stress. BioMed Res. Int. 2021, 2021, 5533210. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhao, Q.; Zhan, T.; Han, Y.; Tang, C.; Zhang, J. Effect of different selenium sources on growth performance, tissue selenium content, meat quality, and selenoprotein gene expression in finishing pigs. Biol. Trace Elem. Res. 2020, 196, 463–471. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the safety and efficacy of selenium compounds (E8) as feed additives for all animal species: Sodium selenite (coated granulated preparation), based on a dossier submitted by Doxal Italia SpA. EFSA J. 2015, 13, 4271. [Google Scholar]
- Cao, J.; Guo, F.; Zhang, L.; Dong, B.; Gong, L. Effects of dietary Selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. J. Anim. Sci. Biotechnol. 2014, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C.F.R. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Lin, C.; Bian, Z.; Xu, B. An insight into anti-inflammatory effects of fungal beta-glucans. Trends Food Sci. Technol. 2015, 41, 49–59. [Google Scholar] [CrossRef]
- Lindequist, U.; Niedermeyer, T.H.; Jülich, W.-D. The pharmacological potential of mushrooms. Evid. Based Complement. Alternat. Med. 2005, 2, 285–299. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.; Hu, Z.; Fu, H.; Hu, M.; Xu, X.; Chen, J. Chemical analysis and antioxidant activity in vitro of a β-D-glucan isolated from Dictyophora indusiata. Int. J. Biol. Macromol. 2012, 51, 70–75. [Google Scholar] [CrossRef]
- Giannenas, I.; Tontis, D.; Tsalie, E.; Chronis, E.; Doukas, D.; Kyriazakis, I. Influence of dietary mushroom Agaricus bisporus on intestinal morphology and microflora composition in broiler chickens. Res. Vet. Sci. 2010, 89, 78–84. [Google Scholar] [CrossRef]
- Giannenas, I.; Tsalie, E.; Chronis, E.; Mavridis, S.; Tontis, D.; Kyriazakis, I. Consumption of Agaricus bisporus mushroom affects the performance, intestinal microbiota composition and morphology, and antioxidant status of turkey poults. Anim. Feed Sci. Technol. 2011, 165, 218–229. [Google Scholar] [CrossRef]
- Maseko, T.; Callahan, D.L.; Dunshea, F.R.; Doronila, A.; Kolev, S.D.; Ng, K. Chemical characterisation and speciation of organic selenium in cultivated selenium-enriched Agaricus bisporus. Food Chem. 2013, 141, 3681–3687. [Google Scholar] [CrossRef] [PubMed]
- Cheung, P.C.K. The nutritional and health benefits of mushrooms. Nutr. Bull. 2010, 35, 292–299. [Google Scholar] [CrossRef]
- Ahmad, Z.; Sahota, A.; Akram, M.; Khalique, A.; Jatoi, A.; Shafique, M.; Usman, M.; Khan, U. Pre and post-moult productive efficiency in four varieties of indigenous Aseel chicken during different production cycles. J. Anim. Plant Sci. 2014, 24, 1276–1282. [Google Scholar]
- Canoğulları, S.; Ayașan, T.; Baylan, M.; Copur, G. The effect of organic and inorganic selenium supplementation on egg production parameters and egg selenium content of laying Japanese quail. Kafkas Üni. Vet. Fak. Derg. 2010, 16, 743–749. [Google Scholar] [CrossRef]
- Sauvant, D.; Perez, J.-M.; Tran, G. Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, Rabbits, Horses and Fish; Wageningen Academic Publishers: Amstelveen, The Netherlands, 2004. [Google Scholar]
- Hellemans, J.; Mortier, G.; de Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Gen. Biol. 2007, 8, r19. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Pena, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef] [Green Version]
- Eren, A.M.; Morrison, H.G.; Lescault, P.J.; Reveillaud, J.; Vineis, J.H.; Sogin, M.L. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015, 9, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Angly, F.E.; Dennis, P.G.; Skarshewski, A.; Vanwonterghem, I.; Hugenholtz, P.; Tyson, G.W. CopyRighter: A rapid tool for improving the accuracy of microbial community profiles through lineage-specific gene copy number correction. Microbiome 2014, 2, 11. [Google Scholar] [CrossRef] [PubMed]
- Clarke, L.; Sweeney, T.; Curley, E.; Gath, V.; Duffy, S.K.; Vigors, S.; Rajauria, G.; O’Doherty, J. Effect of β-glucanase and β-xylanase enzyme supplemented barley diets on nutrient digestibility, growth performance and expression of intestinal nutrient transporter genes in finisher pigs. Anim. Feed Sci. Technol. 2018, 238, 98–110. [Google Scholar] [CrossRef]
- Van Soest, P.V.; Robertson, J.; Lewis, B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; O’Doherty, J.V.; Tiwari, B.K.; Sweeney, T.; Rajauria, G. Enhancing the extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extraction followed by ultrasound and thermal technologies. Mar. Drugs 2019, 17, 457. [Google Scholar] [CrossRef] [Green Version]
- Rajauria, G.; Draper, J.; McDonnell, M.; O’Doherty, J.V. Effect of dietary seaweed extracts, galactooligosaccharide and vitamin E supplementation on meat quality parameters in finisher pigs. Innov. Food Sci. Emerg. Technol. 2016, 37, 269–275. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Rajauria, G.; Jaiswal, A.K.; Abu-Ghannam, N.; Gupta, S. Effect of hydrothermal processing on colour, antioxidant and free radical scavenging capacities of edible Irish brown seaweeds. Int. J. Food Sci. Technol. 2010, 45, 2485–2493. [Google Scholar] [CrossRef]
- Bierla, K.; Dernovics, M.; Vacchina, V.; Szpunar, J.; Bertin, G.; Lobinski, R. Determination of selenocysteine and selenomethionine in edible animal tissues by 2D size-exclusion reversed-phase HPLC-ICP MS following carbamidomethylation and proteolytic extraction. Anal. Bioanal. Chem. 2008, 390, 1789–1798. [Google Scholar] [CrossRef]
- Pierce, K.; Callan, J.; McCarthy, P.; O’Doherty, J. Performance of weanling pigs offered low or high lactose diets supplemented with avilamycin or inulin. Anim. Sci. 2005, 80, 313–318. [Google Scholar] [CrossRef]
- Cromwell, G.L. Why and how antibiotics are used in swine production. Anim. Biotechnol. 2002, 13, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Rattigan, R.; Sweeney, T.; Maher, S.; Ryan, M.T.; Thornton, K.; O’Doherty, J.V. Effects of reducing dietary crude protein concentration and supplementation with either laminarin or zinc oxide on the growth performance and intestinal health of newly weaned pigs. Anim. Feed Sci. Technol. 2020, 270, 114693. [Google Scholar] [CrossRef]
- Kumar, S.G.; Rahman, M.A.; Lee, S.H.; Hwang, H.S.; Kim, H.A.; Yun, J.W. Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics 2009, 9, 2149–2162. [Google Scholar] [CrossRef] [PubMed]
- Egan, A.M.; O’Doherty, J.V.; Vigors, S.; Sweeney, T. Prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, affecting feeding behaviour and satiety signals in vivo. PLoS ONE 2016, 11, e0149820. [Google Scholar] [CrossRef] [Green Version]
- Walsh, A.M.; Sweeney, T.; Bahar, B.; O’Doherty, J.V. Multi-functional roles of chitosan as a potential protective agent against obesity. PLoS ONE 2013, 8, e53828. [Google Scholar] [CrossRef] [PubMed]
- Majesty, D.; Ijeoma, E.; Winner, K.; Prince, O. Nutritional, anti-nutritional and biochemical studies on the oyster mushroom, Pleurotus ostreatus. EC Nutr. 2019, 14, 36–59. [Google Scholar]
- Dong, G.; Pluske, J. The low feed intake in newly-weaned pigs: Problems and possible solutions. Asian Australas. J. Anim. Sci. 2007, 20, 440–452. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters, W.A.; Knight, R. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334, 105–108. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Gadonna-Widehem, P.; Rome, V.; Hamoudi, D.; Rhazi, L.; Lakhal, L.; Larcher, T.; Bahi-Jaber, N.; Pinon-Quintana, A.; Guyonvarch, A. Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS ONE 2017, 12, e0169851. [Google Scholar] [CrossRef]
- Mach, N.; Berri, M.; Estellé, J.; Levenez, F.; Lemonnier, G.; Denis, C.; Leplat, J.J.; Chevaleyre, C.; Billon, Y.; Doré, J. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ. Microbiol. Rep. 2015, 7, 554–569. [Google Scholar] [CrossRef]
- Yang, H.; Yang, M.; Fang, S.; Huang, X.; He, M.; Ke, S.; Gao, J.; Wu, J.; Zhou, Y.; Fu, H. Evaluating the profound effect of gut microbiome on host appetite in pigs. BMC Microbiol. 2018, 18, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Zhu, Y.-H.; Zhou, D.; Wu, Q.; Song, D.; Dicksved, J.; Wang, J.-F. Oral administration of a select mixture of Bacillus probiotics affects the gut microbiota and goblet cell function following Escherichia coli challenge in newly weaned pigs of genotype MUC4 that are supposed to be enterotoxigenic E. coli F4ab/ac receptor negative. Appl. Environ. Microbiol. 2017, 83, e02747-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, R.A.; Kamal, L.D.; Ahmed, H.S. The mechanisms of Lactobacillus activities: Probiotic importance of Lactobacillus species. Egypt. Acad. J. Biol. Sci. 2021, 13, 45–63. [Google Scholar] [CrossRef]
- Valeriano, V.; Balolong, M.; Kang, D.K. Probiotic roles of Lactobacillus sp. in swine: Insights from gut microbiota. J. Appl. Microbiol. 2017, 122, 554–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massacci, F.R.; Berri, M.; Lemonnier, G.; Guettier, E.; Blanc, F.; Jardet, D.; Rossignol, M.N.; Mercat, M.-J.; Doré, J.; Lepage, P. Late weaning is associated with increased microbial diversity and Faecalibacterium prausnitzii abundance in the fecal microbiota of piglets. Anim. Microbiome 2020, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L.; Gratadoux, J.J.; Blugeon, S.; Bridonneau, C.; Furet, J.P.; Corthier, G.; et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl. Acad. Sci. USA 2008, 105, 16731–16736. [Google Scholar] [CrossRef] [Green Version]
- Lammi, M.K.; Qu, C. Selenium-related transctiptional regulation of gene expression. Int. J. Mol. Sci. 2018, 19, 2665. [Google Scholar] [CrossRef] [Green Version]
- Brandt-Kjelsen, A.; Govasmark, E.; Haug, A.; Salbu, B. Turnover of Se in adequately fed chickens using Se-75 as a tracer. J. Anim. Physiol. Anim. Nutr. 2014, 98, 547–558. [Google Scholar] [CrossRef]
- Zhang, S.; Xie, Y.; Li, M.; Yang, H.; Li, S.; Li, J.; Xu, Q.; Yang, W.; Jiang, S. Effects of different selenium sources on meat quality and shelf life of fattening pigs. Animals 2020, 10, 615. [Google Scholar] [CrossRef] [Green Version]
Treatments | |||||
---|---|---|---|---|---|
Ingredients (g/kg Unless Otherwise Stated) | Basal | ZnO | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel |
Sodium selenite (mg/kg) | 6.5 | 6.5 | 0 | 0 | 6.5 |
Mushroom Powder | 0 | 0 | 3.25 | 0 | 0 |
Se Mushroom Powder | 0 | 0 | 3.25 | 6.5 | 6.5 |
Wheat | 355.4 | 352.1 | 348.9 | 348.9 | 348.9 |
Full-fat soya bean | 170 | 170 | 170 | 170 | 170 |
Soya bean meal | 105 | 105 | 105 | 105 | 105 |
Whey powder (90%) | 50 | 50 | 50 | 50 | 50 |
Zinc oxide | 0 | 3.3 | 0 | 0 | 0 |
Soya oil | 30 | 30 | 30 | 30 | 30 |
Soya concentrate | 65 | 65 | 65 | 65 | 65 |
Flaked wheat | 130 | 130 | 130 | 130 | 130 |
Flaked maize | 70 | 70 | 70 | 70 | 70 |
Lysine-HCl | 4 | 4 | 4 | 4 | 4 |
DI-Methionine | 2 | 2 | 2 | 2 | 2 |
L-Threonine | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Tryptophan | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Sodium bicarbonate | 2 | 2 | 2 | 2 | 2 |
Monocalcium phosphate | 4 | 4 | 4 | 4 | 4 |
Vitamins and minerals a | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
Calcium carbonate (limestone) | 6 | 6 | 6 | 6 | 6 |
Salt | 2 | 2 | 2 | 2 | 2 |
Analysed chemical analysis | |||||
DM | 899.0 | 899.5 | 897.5 | 898.1 | 898.1 |
NDF | 99.0 | 98.7 | 99.5 | 99.3 | 99.3 |
GE (MJ/kg) | 16.9 | 16.9 | 16.8 | 16.9 | 16.9 |
Ash | 46.2 | 46.1 | 46.0 | 46.2 | 46.0 |
Crude fat | 79.9 | 80.3 | 80.1 | 80.0 | 80.2 |
β-glucan * (mg/kg) | 3.0 | 4.0 | 649.0 | 652.0 | 655.0 |
Crude fibre | 28.0 | 28.0 | 28.2 | 28.3 | 28.1 |
Crude protein | 208.0 | 208.3 | 208.5 | 208.5 | 208.4 |
Lysine (%) ¥ | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
Methionine (%) ¥ | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Threonine (%) ¥ | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 |
Methionine and cysteine (%) ¥ | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 |
Tryptophan (%) ¥ | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
Valine (g/kg) ¥ | 19.0 | 19.0 | 19.0 | 19.0 | 19.0 |
Lactose (g/kg) ¥ | 34.0 | 34.0 | 34.0 | 34.0 | 34.0 |
Selenium (mg/kg) | 0.28 | 0.30 | 0.16 | 0.31 | 0.62 |
Group | Gene | Accession No. | Forward Primer (5’-3’) Reverse Primer (5’-3’) | Amplicon Length (bp) |
---|---|---|---|---|
Immune response | IL6 | NM 214399.1 | F: GACAAAGCCACCACCCCTAA R: CTCGTTCTGTGACTGCAGCTTATC | 69 |
CXCL8 | NM 213867.1 | F: TGCACTTACTCTTGCCAGAACTG R: CAAACTGGCTGTTGCCTTCTT | 82 | |
IL10 | NM 214041.1 | F: GCCTTCGGCCCAGTGAA R: AGAGACCCGGTCAGCAACAA | 71 | |
IL17 | NM 001005729.1 | F: CCCTGTCACTGCTGCTTCTG R: TCATGATTCCCGCCTTCAC | 57 | |
INFG | NM 213948.1 | F: TCTAACCTAAGAAAGCGGAAGAGAA R: TTGCAGGCAGGATGACAATTA | 81 | |
TNF | NM 214022.1 | F: TGGCCCCTTGAGCATCA R: CGGGCTTATCTGAGGTTTGAGA | 68 | |
TLR4 | NM 001293317.1 | F: TGCATGGAGCTGAATTTCTACAA R: GATAAATCCAGCACCTGCAGTTC | 140 | |
Tight junctions and Mucins | MUC1 | XM 001926883.1 | F: ACACCCATGGGCGCTATGT R: GCCTGCAGAAACCTGCTCAT | 68 |
MUC2 | AK 231524 | F: CAACGGCCTCTCCTTCTCTGT R: GCCACACTGGCCCTTTGT | 70 | |
CLND1 | NM 001244539.1 |
F: CTGGGAGGTGCCCTACTTTG R: TGGATAGGGCCTTGGTGTTG | 72 | |
CLND3 | NM 001160075.1 | F: GAGGGCCTGTGGATGAACTG R: GAGTCGTACACTTTGCACTGCAT | 65 | |
Appetite regulators | CCK | NM 214237.2 | F: GGACCCCAGCCACAGAATAA R: GCGCCGGCCAAAATC | 61 |
PPY | XM 005668763.1 | F: CTCCTGATTCGGTTTGCAGAA R: GGACAGGAGCAGCAGGAAGA | 61 | |
GLP1 | NM 214237.2 | F: CAGTGCAGAAATGGCGAGAA R: GGTGGAGCCTCAGTCAGGAA | 61 | |
NPY | NM 001256367.1 | F: CAGGCAGAGATACGGAAAACG R: TCCGTGCCTCTCTCATCAAG | 71 | |
Nutrient transporters | FABP2 | NM 001031780.1 | F:CAGCCTCGCAGACGGAACTGAA R:GTGTTCTGGGCTGTGCTCCAAGA | 102 |
SLC2A2/GLUT2 | XM 001097417.1 | F:CCAGGCCCCATCCCCTGGTT R:GCGGGTCCAGTTGCTGAATGC | 96 | |
SLC2A5/GLUT5 | XM 021095252.1 | F:CCCAGGAGCCGGTCAAG R:TCAGCGTCGCCAAAGCA | 60 | |
SLC5A1/SGLT1 | NM 001164021 | F: GGCTGGACGAAGTATGGTGT R: ACAACCACCCAAATCAGAGC | 153 | |
SLC15A1/PEPT1 | NM 214347.1 | F:GGATAGCCTGTACCCCAAGCT R:CATCCTCCACGTGCTTCTTGA | 73 | |
Selenium transporters | SELENOP | NM 001134823.1 | F:CAGGCCAGCTGATACCTGTGT R:TTAGAATATCCTTCTTTCTCCAGTTTTACTC | 21 |
TXNRD1 | NM 214154.3 | F:CACCGTGACGGACTCAAAACT R:GCTTGAGGCTGGTGACTTCAT | 20 | |
DIO1 | NM 001001627.1 | F:GGCTCTGGGTGCTCTTTCAG R:CAGGAAACAATGTCATGAGCACTT | 21 | |
Reference genes | ACTB | AY550069.1 | F: CAAATGCTTCTAGGCGGACTGT R: TCTCATTTTCTGCGCAAGTT | 75 |
H3F3A | NM 001014389.2 | F: CATGGCTCGTACAAAGCAGA R: ACCAGGCCTGTAACGATGAG | 136 | |
YWHAZ | XM 001927228.1 | F: GGACATCGGATACCCAAGGA R: AAGTTGGAAGGCCGGTTAATTT | 71 |
Treatments * | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|
Basal | ZnO | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
ADG (kg) | 0.27 b | 0.27 b | 0.23 a | 0.26 a,b | 0.26 a,b | 0.013 | 0.017 |
ADFI (kg) | 0.39 c | 0.38 b,c | 0.32 a | 0.35 a,b | 0.36 b | 0.008 | <0.001 |
G:F | 0.65 | 0.66 | 0.63 | 0.69 | 0.66 | 0.045 | 0.939 |
Weight (kg) | 12.6 b | 12.5 b | 11.6 a | 12.2 a,b | 12.3 a,b | 0.266 | 0.034 |
Faecal score $ | 2.57 c | 2.37 a | 2.52 b,c | 2.44 a,b | 2.61 c | 0.038 | <0.001 |
Treatments * | SEM | p-Value | ||||
---|---|---|---|---|---|---|
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
ADG (kg) | 0.59 a | 0.62 a | 0.62 a | 0.67 b | 0.019 | 0.025 |
ADFI (kg) | 0.90 | 0.90 | 0.91 | 0.93 | 0.023 | 0.772 |
G:F | 0.67 a | 0.68 a,b | 0.68 a,b | 0.74 b | 0.025 | 0.049 |
Weight (kg) | 22.9 a | 23.5 a,b | 23.5 a,b | 24.3 b | 0.342 | 0.046 |
Treatments * | SEM | p-Value | ||||
---|---|---|---|---|---|---|
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Duodenum | ||||||
VH (µm) | 306.55 | 329.24 | 312.07 | 337.51 | 14.587 | 0.414 |
CD (µm) | 136.16 | 133.69 | 140.18 | 126.82 | 6.822 | 0.574 |
VH:CD | 2.31 | 2.53 | 2.25 | 2.67 | 0.161 | 0.250 |
Jejunum | ||||||
VH (µm) | 290.12 | 303.03 | 281.47 | 324.03 | 20.599 | 0.501 |
CD (µm) | 138.30 | 146.86 | 137.90 | 132.50 | 8.778 | 0.715 |
VH:CD | 2.13 | 2.07 | 2.04 | 2.47 | 0.117 | 0.056 |
Ileum | ||||||
VH (µm) | 267.90 | 265.69 | 265.27 | 283.68 | 13.630 | 0.744 |
CD (µm) | 134.41 | 127.89 | 127.05 | 130.98 | 6.127 | 0.827 |
VH:CD | 2.03 | 2.08 | 2.12 | 2.17 | 0.112 | 0.843 |
(a) | ||||||
---|---|---|---|---|---|---|
Treatments * | SEM | p-Value | ||||
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Bacteroidetes | 9.808 a | 25.447 c | 18.144 b | 20.927 a,b | 1.546 | <0.001 |
Actinobacteria | 0.724 | 0.319 | 1.431 | 0.966 | 0.323 | 0.194 |
Firmicutes | 83.194 | 72.091 | 77.637 | 76.413 | 3.167 | 0.116 |
Proteobacteria | 1.052 | 0.381 | 1.342 | 0.800 | 0.331 | 0.315 |
(b) | ||||||
Treatments * | SEM | p-Value | ||||
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Prevotellaceae | 9.860 a | 25.904 c | 18.707 b | 21.558 a,b | 1.564 | <0.001 |
Clostridiaceae | 9.914 | 6.367 | 8.464 | 6.568 | 1.000 | 0.059 |
Selenomonadaceae | 0.175 | 0.477 | 0.443 | 0.362 | 0.216 | 0.752 |
Oscillospiraceae | 0.796 | 0.324 | 0.269 | 0.307 | 0.226 | 0.364 |
Hungateiclostridiaceae | 0.957 | 0.968 | 0.645 | 0.828 | 0.331 | 0.888 |
Atopobiaceae | 0.317 | 0.236 | 0.964 | 0.610 | 0.253 | 0.252 |
Lactobacillaceae | 1.218 a | 4.270 b | 3.285 b | 0.983 a | 0.541 | 0.001 |
Ruminococcaceae | 43.546 b | 31.490 a | 34.813 a | 41.439 b | 2.210 | 0.002 |
Lachnospiraceae | 18.879 | 21.841 | 22.902 | 17.265 | 1.619 | 0.080 |
Eubacteriaceae | 2.489 | 2.380 | 1.417 | 3.266 | 0.553 | 0.177 |
Acidaminococcaceae | 0.948 | 0.809 | 0.776 | 0.581 | 0.316 | 0.880 |
Veillonellaceae | 0.574 | 0.780 | 1.083 | 1.580 | 0.357 | 0.263 |
Erysipelotrichaceae | 1.127 | 0.840 | 0.619 | 0.816 | 0.330 | 0.736 |
Streptococcaceae | 1.017 | 0.288 | 1.535 | 1.010 | 0.339 | 0.192 |
Coriobacteriaceae | 0.269 | 0.111 | 0.560 | 0.413 | 0.201 | 0.549 |
Campylobacteraceae | 0.118 | 0.190 | 0.612 | 0.278 | 0.189 | 0.357 |
Rikenellaceae | 0.260 | 0.520 | 0.161 | 0.258 | 0.194 | 0.652 |
(c) | ||||||
Treatments * | SEM | p-Value | ||||
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Blautia | 2.292 | 2.460 | 2.330 | 2.158 | 0.548 | 0.986 |
Prevotella | 4.776 a | 18.365 c | 13.494 b | 13.851 b | 1.263 | <0.001 |
Clostridium | 9.446 b | 5.729 a | 7.852 a,b | 5.951 a | 0.960 | 0.037 |
Dorea | 1.365 | 1.204 | 1.821 | 1.649 | 0.442 | 0.766 |
Prevotellamassilia | 3.138 a | 3.813 a | 4.054 a | 6.550 b | 0.752 | 0.023 |
Anaerovibrio | 0.124 | 0.347 | 0.447 | 0.365 | 0.201 | 0.703 |
Coprococcus | 2.547 | 1.781 | 1.383 | 2.053 | 0.498 | 0.405 |
Oscillibacter | 0.679 | 0.229 | 0.211 | 0.308 | 0.207 | 0.408 |
Anaerobacterium | 0.818 | 0.795 | 0.611 | 0.584 | 0.301 | 0.922 |
Olsenella | 0.315 | 0.238 | 0.987 | 0.615 | 0.255 | 0.234 |
Lactobacillus | 1.235 a | 4.285 b | 3.334 b | 0.990 a | 0.544 | 0.001 |
Faecalibacterium | 16.095 a | 14.448 a | 17.747 a | 24.937 b | 1.538 | 0.001 |
Agathobacter | 5.053 a | 6.407 a,b | 9.051 b | 5.988 a | 0.924 | 0.027 |
Fournierella | 1.226 | 1.404 | 2.140 | 1.491 | 0.449 | 0.496 |
Anaerobium | 0.953 | 0.246 | 0.566 | 0.330 | 0.249 | 0.284 |
Eubacterium | 2.507 | 2.384 | 1.437 | 3.298 | 0.555 | 0.176 |
Butyrivibrio | 0.097 | 0.026 | 0.014 | 0.095 | 0.081 | 0.893 |
Lachnobacterium | 0.430 | 0.754 | 0.407 | 0.389 | 0.252 | 0.735 |
Phascolarctobacterium | 0.938 | 0.684 | 0.776 | 0.587 | 0.309 | 0.872 |
Dialister | 0.380 | 0.517 | 0.628 | 1.231 | 0.294 | 0.250 |
Butyricicoccus | 0.418 | 0.456 | 0.651 | 0.603 | 0.262 | 0.902 |
Gemmiger | 9.255 | 6.655 | 8.219 | 9.187 | 1.037 | 0.301 |
Megasphaera | 0.193 | 0.271 | 0.473 | 0.351 | 0.203 | 0.786 |
Streptococcus | 1.016 | 0.289 | 1.561 | 1.020 | 0.341 | 0.181 |
Roseburia | 2.964 | 4.660 | 4.400 | 2.164 | 0.672 | 0.058 |
Mediterraneibacter | 0.805 | 1.049 | 0.628 | 0.674 | 0.319 | 0.808 |
Pseudobutyrivibrio | 0.210 | 0.464 | 0.579 | 0.359 | 0.226 | 0.690 |
Sporobacter | 9.496 b | 3.727 a | 3.872 a | 2.365 a | 0.758 | <0.001 |
Enorma | 0.270 | 0.112 | 0.427 | 0.203 | 0.175 | 0.705 |
Agathobaculum | 0.204 | 0.163 | 0.357 | 0.566 | 0.200 | 0.557 |
Ruminococcus | 5.343 b | 3.703 a,b | 2.500 a | 2.325 a | 0.658 | 0.013 |
Oribacterium | 0.045 | 0.345 | 0.361 | 0.249 | 0.173 | 0.650 |
Intestinimonas | 0.401 | 0.277 | 0.139 | 0.125 | 0.169 | 0.669 |
Campylobacter | 0.121 | 0.191 | 0.618 | 0.280 | 0.190 | 0.353 |
Alistipes | 0.163 | 0.380 | 0.166 | 0.259 | 0.176 | 0.810 |
Pseudoflavonifractor | 1.361 | 0.509 | 0.114 | 0.450 | 0.258 | 0.055 |
Kineothrix | 1.124 | 1.318 | 0.410 | 0.047 | 0.274 | 0.115 |
Treatments * | SEM | p-Value | ||||
---|---|---|---|---|---|---|
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
VFA (mmol/l digesta) | ||||||
Total | 170.64 | 160.76 | 175.87 | 169.53 | 15.112 | 0.912 |
Acetate | 126.24 | 109.84 | 123.51 | 122.70 | 12.120 | 0.788 |
Propionate | 32.23 | 31.54 | 34.00 | 31.58 | 2.477 | 0.880 |
Butyrate | 12.73 | 15.52 | 16.03 | 12.11 | 1.732 | 0.296 |
Isobutyrate | 0.69 | 0.43 | 0.50 | 0.73 | 0.120 | 0.260 |
Isovalerate | 1.26 | 2.06 | 0.64 | 1.07 | 0.436 | 0.165 |
Valerate | 1.75 | 1.37 | 1.19 | 1.34 | 0.233 | 0.365 |
Branch | 3.70 | 3.87 | 2.33 | 3.14 | 0.657 | 0.347 |
(a) | ||||||
---|---|---|---|---|---|---|
Treatments * | SEM | p-Value | ||||
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Appetite regulators | ||||||
PYY | 1.068 | 1.188 | 1.039 | 1.223 | 0.210 | 0.906 |
GLP1 | 0.676 | 1.017 | 0.653 | 0.933 | 0.300 | 0.758 |
NPY | 0.864 | 0.953 | 0.944 | 1.448 | 0.176 | 0.096 |
CCK | 1.128 | 1.307 | 1.049 | 1.406 | 0.196 | 0.557 |
Tight junctions | ||||||
CLDN1 | 1.374 | 1.289 | 1.027 | 0.921 | 0.249 | 0.535 |
CLDN3 | 0.813 | 1.596 | 1.495 | 1.335 | 0.268 | 0.214 |
Nutrient transporters | ||||||
SLC2A2/GLUT2 | 0.934 | 1.138 | 0.973 | 1.026 | 0.132 | 0.721 |
SLC2A5/GLUT5 | 0.998 | 1.182 | 1.312 | 1.252 | 0.264 | 0.859 |
SLC15A1/PEPT1 | 0.822 | 1.191 | 1.186 | 0.888 | 0.143 | 0.165 |
FABP2 | 0.784 | 1.280 | 1.196 | 0.977 | 0.140 | 0.085 |
Cytokines | ||||||
IFNG | 0.930 | 1.132 | 1.126 | 0.963 | 0.210 | 0.858 |
TNF | 1.037 | 1.073 | 1.071 | 0.923 | 0.089 | 0.590 |
TLR4 | 1.148 | 1.092 | 0.868 | 1.067 | 0.179 | 0.709 |
IL10 | 1.039 | 1.234 | 1.031 | 0.699 | 0.219 | 0.380 |
IL6 | 1.247 | 1.020 | 0.880 | 0.832 | 0.154 | 0.267 |
IL17 | 1.089 | 1.516 | 0.936 | 1.248 | 0.284 | 0.516 |
CXCL8/IL8 | 1.218 | 0.968 | 1.121 | 1.129 | 0.196 | 0.842 |
Mucins | ||||||
MUC1 | 1.104 | 1.063 | 1.462 | 1.421 | 0.292 | 0.671 |
MUC2 | 1.022 | 1.488 | 1.400 | 1.321 | 0.288 | 0.706 |
Selenium transporters | ||||||
SELENOP | 1.218 | 1.089 | 0.872 | 0.959 | 0.219 | 0.709 |
TXNRD1 | 0.921 | 1.019 | 1.248 | 1.018 | 0.155 | 0.506 |
DIO1 | 0.971 | 1.451 | 1.269 | 1.292 | 0.208 | 0.464 |
(b) | ||||||
Treatments * | SEM | p-Value | ||||
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Appetite regulators | ||||||
PYY | 1.093 | 1.314 | 0.716 | 1.146 | 0.243 | 0.359 |
GLP1 | 0.947 | 1.167 | 0.882 | 1.124 | 0.158 | 0.519 |
NPY | 0.836 | 0.988 | 0.915 | 1.547 | 0.255 | 0.199 |
CCK | 1.315 | 1.138 | 1.203 | 1.378 | 0.212 | 0.849 |
Tight junctions | ||||||
CLDN1 | 0.895 | 1.144 | 1.296 | 0.947 | 0.208 | 0.510 |
CLDN3 | 1.112 | 1.382 | 0.898 | 1.146 | 0.168 | 0.251 |
Nutrient transporters | ||||||
SLC2A2/GLUT2 | 1.196 | 1.112 | 1.069 | 1.234 | 0.180 | 0.909 |
SLC15A1/PEPT1 | 1.131 | 1.189 | 1.125 | 1.226 | 0.166 | 0.967 |
SLC5A1/SGLT1 | 0.902 a | 1.329 b | 0.901 a | 1.276 b | 0.107 | 0.037 |
FABP2 | 1.215 | 1.271 | 1.127 | 1.264 | 0.167 | 0.920 |
Cytokines | ||||||
IFNG | 0.777 a | 1.554 b | 1.149 a,b | 1.212 a,b | 0.166 | 0.027 |
TNF | 0.987 | 1.088 | 1.034 | 0.949 | 0.090 | 0.720 |
TLR4 | 0.987 | 1.048 | 1.162 | 1.231 | 0.165 | 0.729 |
IL10 | 1.103 | 0.996 | 1.101 | 1.136 | 0.171 | 0.941 |
IL6 | 0.891 | 1.012 | 1.154 | 1.021 | 0.248 | 0.908 |
IL17 | 0.722 | 1.531 | 0.785 | 1.575 | 0.275 | 0.059 |
CXCL8/IL8 | 1.012 | 1.130 | 0.901 | 1.294 | 0.170 | 0.405 |
Mucins | ||||||
MUC1 | 1.254 | 1.570 | 0.558 | 1.080 | 0.363 | 0.232 |
MUC2 | 1.334 | 1.151 | 0.699 | 1.251 | 0.201 | 0.138 |
Selenium transporters | ||||||
SELENOP | 0.664 a | 1.058 b | 1.252 a,b | 1.423 c | 0.090 | <0.001 |
TXNRD1 | 0.967 | 1.054 | 1.130 | 1.142 | 0.134 | 0.791 |
DIO1 | 0.830 | 1.171 | 0.945 | 1.173 | 0.299 | 0.824 |
(c) | ||||||
Treatments * | SEM | p-Value | ||||
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Appetite regulators | ||||||
PYY | 0.924 | 1.297 | 0.865 | 1.441 | 0.275 | 0.382 |
NPY | 0.798 | 1.269 | 1.054 | 1.092 | 0.242 | 0.625 |
CCK | 0.719 | 0.795 | 0.913 | 0.634 | 0.101 | 0.211 |
Tight junctions | ||||||
CLDN1 | 1.214 | 1.340 | 0.863 | 1.015 | 0.200 | 0.307 |
CLDN3 | 1.893 | 1.185 | 0.642 | 1.017 | 0.293 | 0.059 |
Nutrient transporters | ||||||
SLC2A2/GLUT2 | 1.717 | 0.880 | 0.960 | 1.084 | 0.270 | 0.227 |
SLC2A5/GLUT5 | 1.631 | 0.866 | 0.782 | 1.119 | 0.246 | 0.145 |
SLC15A1/PEPT1 | 1.831 | 0.896 | 0.995 | 1.151 | 0.256 | 0.098 |
SLC5A1/SGLT1 | 1.580 | 0.999 | 1.122 | 1.413 | 0.276 | 0.456 |
FABP2 | 1.578 | 0.949 | 1.144 | 1.572 | 0.360 | 0.500 |
Cytokines | ||||||
IFNG | 1.030 | 1.054 | 1.058 | 1.051 | 0.152 | 0.999 |
TNF | 0.882 | 1.302 | 1.158 | 0.972 | 0.158 | 0.256 |
TLR4 | 1.299 | 1.055 | 1.458 | 1.082 | 0.288 | 0.694 |
IL10 | 1.126 | 1.151 | 1.283 | 0.983 | 0.209 | 0.781 |
IL6 | 0.769 | 1.251 | 1.358 | 1.150 | 0.186 | 0.208 |
IL17 | 0.997 | 1.580 | 0.810 | 1.953 | 0.339 | 0.082 |
CXCL8/IL8 | 1.297 | 0.980 | 1.069 | 1.169 | 0.200 | 0.725 |
Mucins | ||||||
MUC1 | 1.852 b | 0.910 a | 0.606 a | 1.541 b | 0.263 | 0.011 |
MUC2 | 1.213 | 1.378 | 0.668 | 1.360 | 0.232 | 0.098 |
Selenium tranporters | ||||||
SELENOP | 1.191 | 0.961 | 1.125 | 1.318 | 0.256 | 0.781 |
TXNRD1 | 1.028 | 1.073 | 0.902 | 1.204 | 0.143 | 0.505 |
DIO1 | 0.351 | 1.150 | 0.793 | 0.957 | 0.205 | 0.112 |
Treatments * | SEM | p-Value | ||||
---|---|---|---|---|---|---|
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Muscle | ||||||
FRAP | 52.39 | 57.56 | 51.64 | 43.94 | 5.068 | 0.316 |
DPPH | 15.92 | 16.48 | 14.51 | 14.48 | 0.813 | 0.221 |
Liver | ||||||
FRAP | 55.12 | 53.44 | 49.36 | 57.483 | 3.653 | 0.467 |
DPPH | 15.24 | 13.43 | 14.97 | 14.75 | 0.641 | 0.223 |
Treatments * | SEM | p-Value | ||||
---|---|---|---|---|---|---|
Basal | 0.15 SeMP | 0.3 SeMP | 0.6 SeMP/Sel | |||
Muscle (µg/kg) | 632.78 a | 616.59 a | 754.88 b | 841.92 c | 25.009 | <0.001 |
Liver (µg/kg) | 1791.69 b | 1430.26 a | 1685.18 b | 2166.21 c | 70.569 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conway, E.; Sweeney, T.; Dowley, A.; Vigors, S.; Ryan, M.; Yadav, S.; Wilson, J.; O’Doherty, J.V. Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets. Animals 2022, 12, 1503. https://doi.org/10.3390/ani12121503
Conway E, Sweeney T, Dowley A, Vigors S, Ryan M, Yadav S, Wilson J, O’Doherty JV. Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets. Animals. 2022; 12(12):1503. https://doi.org/10.3390/ani12121503
Chicago/Turabian StyleConway, Eadaoin, Torres Sweeney, Alison Dowley, Stafford Vigors, Marion Ryan, Supriya Yadav, Jude Wilson, and John V. O’Doherty. 2022. "Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets" Animals 12, no. 12: 1503. https://doi.org/10.3390/ani12121503
APA StyleConway, E., Sweeney, T., Dowley, A., Vigors, S., Ryan, M., Yadav, S., Wilson, J., & O’Doherty, J. V. (2022). Selenium-Enriched Mushroom Powder Enhances Intestinal Health and Growth Performance in the Absence of Zinc Oxide in Post-Weaned Pig Diets. Animals, 12(12), 1503. https://doi.org/10.3390/ani12121503