Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Sampling and Genotyping
2.2. Quality Control Filters
2.3. Estimates of FST and Median Homozygosity
2.4. Determining of Ancestral Alleles
2.5. Reconstruction of Haplotypes
2.6. Calculation of Integrated Haplotype Score (iHS) and Cross-Population EHH (XP-EHH)
2.7. Core SNP Alleles and Haplotype Frequencies in Candidate Regions
2.8. Study of Identified Genes in Candidate Regions
3. Results
3.1. SNP Genotyping and Data Mining
3.2. Distribution of FST and Median Homozygosity
3.3. Calculation of Integrated Haplotype Score (iHS)
3.4. Cross-Population EHH (XP-EHH)
3.5. Study of Core Haplotypes and Their Ancestral Status in Candidate Regions
3.6. Study of the Identified Genes Associated with Fat Metabolisms in Candidate Regions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sabeti, P.C.; Schaffner, S.F.; Fry, B.; Lohmueller, J.; Varilly, P.; Shamovsky, O.; Palma, A.; Mikkelsen, T.S.; Altshuler, D.; Lander, E.S. Positive natural selection in the human lineage. Science 2006, 312, 1614–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fariello, M.-I.; Servin, B.; Tosser-Klopp, G.; Rupp, R.; Moreno, C.; Consortium, I.S.G.; Cristobal, M.S.; Boitard, S. Selection signatures in worldwide sheep populations. PLoS ONE 2014, 9, e103813. [Google Scholar] [CrossRef] [Green Version]
- Moradi, M.H.; Nejati-Javaremi, A.; Moradi-Shahrbabak, M.; Dodds, K.G.; McEwan, J.C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012, 13, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaldari, M.; Azarfar, A.; Pahlavan, R. The size of fat tail does not have an effect on growth performance and carcass characteristics in Lori-Bakhtiari lambs. Small Rumin. Res. 2020, 187, 106088. [Google Scholar] [CrossRef]
- Negussie, E.; Rottmann, O.J.; Pirchner, F.; Rege, J.E.O. Patterns of growth and partitioning of fat depots in tropical fat-tailed Menz and Horro sheep breeds. Meat Sci. 2003, 64, 491–498. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, H.; Sahana, G.; Zan, Y.; Fan, H.; Liu, J.; Shi, L.; Wang, H.; Du, L.; Wang, L. Genome-wide association studies revealed candidate genes for tail fat deposition and body size in the Hulun Buir sheep. J. Anim. Breed. Genet. 2019, 136, 362–370. [Google Scholar] [CrossRef]
- Kalds, P.; Luo, Q.; Sun, K.; Zhou, S.; Chen, Y.; Wang, X. Trends towards revealing the genetic architecture of sheep tail patterning: Promising genes and investigatory pathways. Anim. Genet. 2021, 52, 799–812. [Google Scholar] [CrossRef]
- Nejati-Javaremi, A.; Izadi, F.; Rahmati, G.H.; Moradi, M.; Izadi, F. Selection in fat-tailed sheep based on two traits of fat-tail and body weight versus single-trait total body weight. Int. J. Agri. Biol. 2007, 9, 645–648. [Google Scholar]
- Moioli, B.; Pilla, F.; Ciani, E. Signatures of selection identify loci associated with fat tail in sheep. J. Anim. Sci. 2015, 93, 4660–4669. [Google Scholar] [CrossRef]
- Wei, C.; Wang, H.; Liu, G.; Wu, M.; Cao, J.; Liu, Z.; Liu, R.; Zhao, F.; Zhang, L.; Lu, J. Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds. BMC Genom. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Li, S.; Liu, Q.; Wang, Z.; Zhou, Z.; Di, R.; An, X.; Miao, B.; Wang, X.; Hu, W. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails. BMC Genom. 2019, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Yang, M.; Han, J.; Ma, Q.; Han, J.; Song, Z.; Luosang, C.; Gorkhali, N.A.; Yang, B.; He, X.; et al. Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep. BMC Genom. 2020, 21, 800. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Shen, M.; Xie, X.-L.; Liu, G.-J.; Xu, Y.-X.; Lv, F.-H.; Yang, H.; Yang, Y.-L.; Liu, C.-B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Shao, J.; He, S.; Pan, X.; Yang, Z.; Nanaei, H.A.; Chen, L.; Li, R.; Wang, Y.; Gao, S.; Xu, H. Allele-specific expression reveals the phenotypic differences between thin-and fat-tailed sheep. Res. Sq. 2020. [CrossRef]
- Luo, R.; Zhang, X.; Wang, L.; Zhang, L.; Li, G.; Zheng, Z. GLIS1, a potential candidate gene affect fat deposition in sheep tail. Mol. Biol. Rep. 2021, 48, 4925–4931. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, G.; Xu, X.; Geng, R.; Zhou, J.; Yang, Y.; Yang, Z.; Chen, Y. Transcriptome profile analysis of adipose tissues from fat and short-tailed sheep. Gene 2014, 549, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Li, Z.; Cai, Y.; Xu, H.; Yang, R.; Lan, X. Genetic variants in fat-and short-tailed sheep from high-throughput RNA-sequencing data. Anim. Genet. 2018, 49, 483–487. [Google Scholar] [CrossRef]
- Bakhtiarizadeh, M.R.; Alamouti, A.A. RNA-Seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, M.; Wang, J.; Wang, S.; Wang, X.; Yang, J.; Gao, L.; Gan, S. Comparative transcriptome analysis of key genes and pathways activated in response to fat deposition in two sheep breeds with distinct tail phenotype. Front. Genet. 2021, 12, 1–20. [Google Scholar] [CrossRef]
- Schrooten, C.; Bink, M.; Bovenhuis, H. Whole genome scan to detect chromosomal regions affecting multiple traits in dairy cattle. J. Dairy Sci. 2004, 87, 3550–3560. [Google Scholar] [CrossRef] [Green Version]
- McClure, M.C.; Morsci, N.S.; Schnabel, R.D.; Kim, J.W.; Yao, P.; Rolf, M.M.; McKay, S.D.; Gregg, S.J.; Chapple, R.H.; Northcutt, S.L. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Anim. Genet. 2010, 41, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Mackay, T.F.C. The genetic architecture of quantitative traits. Annu. Rev. Genet. 2001, 35, 303–339. [Google Scholar] [CrossRef] [PubMed]
- Makinen, H.S.; Shikano, T.; Cano, J.M.; Merila, J. Hitchhiking mapping reveals a candidate genomic region for natural selection in three-spined stickleback chromosome VIII. Genetics 2008, 178, 453–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moioli, B.; Scatà, M.C.; Steri, R.; Napolitano, F.; Catillo, G. Signatures of selection identify loci associated with milk yield in sheep. BMC Genet. 2013, 14, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, J.M.; Haigh, J. The hitch-hiking effect of a favourable gene. Genet. Res. 1974, 23, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.; Kim, T.-H.; Lee, K.-T.; Kwak, W.; Lee, T.; Lee, S.-W.; Kim, M.-J.; Cho, K.; Kim, N.; Chung, W.-H. A genome-wide scan for signatures of directional selection in domesticated pigs. BMC Genom. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Akey, J.M. Constructing genomic maps of positive selection in humans: Where do we go from here? Genome Res. 2009, 19, 711–722. [Google Scholar] [CrossRef] [Green Version]
- Shikano, T.; Ramadevi, J.; Merilä, J. Identification of local-and habitat-dependent selection: Scanning functionally important genes in nine-spined sticklebacks (Pungitius pungitius). Mol. Biol. Evol. 2010, 27, 2775–2789. [Google Scholar] [CrossRef] [Green Version]
- Kohn, M.H.; Pelz, H.-J.; Wayne, R.K. Natural selection mapping of the warfarin-resistance gene. Proc. Natl. Acad. Sci. USA 2000, 97, 7911–7915. [Google Scholar] [CrossRef] [Green Version]
- Rost, S.; Fregin, A.; Ivaskevicius, V.; Conzelmann, E.; Hörtnagel, K.; Pelz, H.-J.; Lappegard, K.; Seifried, E.; Scharrer, I.; Tuddenham, E.G.D. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004, 427, 537–541. [Google Scholar] [CrossRef]
- Kang, D.; Zhou, G.; Zhou, S.; Zeng, J.; Wang, X.; Jiang, Y.; Yang, Y.; Chen, Y. Comparative transcriptome analysis reveals potentially novel roles of Homeobox genes in adipose deposition in fat-tailed sheep. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrangelo, S.; Moioli, B.; Ahbara, A.; Latairish, S.; Portolano, B.; Pilla, F.; Ciani, E. Genome-wide scan of fat-tail sheep identifies signals of selection for fat deposition and adaptation. Anim. Prod. Sci. 2018, 59, 835–848. [Google Scholar] [CrossRef]
- Ahbara, A.; Bahbahani, H.; Almathen, F.; Al Abri, M.; Agoub, M.O.; Abeba, A.; Kebede, A.; Musa, H.H.; Mastrangelo, S.; Pilla, F. Genome-wide variation, candidate regions and genes associated with fat deposition and tail morphology in Ethiopian indigenous sheep. Front. Genet. 2019, 9, 699. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Sadeghi, M.; Moradi-Shahrbabak, M. Identification of single nucleotide polymorphisms of PPP2CA gene and its effect on carcass, growth and fat storage traits in Lori Bakhtiari and Zel sheep. Anim. Prod. Res. 2016, 5, 70–78. [Google Scholar]
- Voight, B.F.; Kudaravalli, S.; Wen, X.; Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 2006, 4, e72. [Google Scholar]
- Sabeti, P.C.; Varilly, P.; Fry, B.; Lohmueller, J.; Hostetter, E.; Cotsapas, C.; Xie, X.; Byrne, E.H.; McCarroll, S.A.; Gaudet, R. Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449, 913–918. [Google Scholar] [CrossRef]
- McRae, K.M.; McEwan, J.C.; Dodds, K.G.; Gemmell, N.J. Signatures of selection in sheep bred for resistance or susceptibility to gastrointestinal nematodes. BMC Genom. 2014, 15, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Qanbari, S. On the extent of linkage disequilibrium in the genome of farm animals. Front. Genet. 2020, 10, 1304. [Google Scholar] [CrossRef] [Green Version]
- Sabeti, P.C.; Reich, D.E.; Higgins, J.M.; Levine, H.Z.P.; Richter, D.J.; Schaffner, S.F.; Gabriel, S.B.; Platko, J.V.; Patterson, N.J.; McDonald, G.J.; et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002, 419, 832–837. [Google Scholar] [CrossRef]
- Grossman, S.R.; Shylakhter, I.; Karlsson, E.K.; Byrne, E.H.; Morales, S.; Frieden, G.; Hostetter, E.; Angelino, E.; Garber, M.; Zuk, O. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 2010, 327, 883–886. [Google Scholar] [CrossRef] [Green Version]
- Oeth, P.; Beaulieu, M.; Park, C.; Kosman, D.; del Mistro, G.; van den Boom, D.; Jurinke, C. iPLEX assay: Increased plexing efficiency and flexibility for MassArray system through single base primer extension with mass-modified terminators. Seq. Appl. Note 2005, 27, 1–12. [Google Scholar]
- Barendse, W.; Harrison, B.E.; Bunch, R.J.; Thomas, M.B.; Turner, L.B. Genome wide signatures of positive selection: The comparison of independent samples and the identification of regions associated to traits. BMC Genom. 2009, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Huang, X.; Li, M.; Qin, S.; Fang, S.; Ma, Y. GWAS and post-GWAS to identification of genes associated with sheep tail fat deposition. Preprints 2019, 6, 1–11. [Google Scholar]
- MacEachern, S.; Hayes, B.; McEwan, J.; Goddard, M. An examination of positive selection and changing effective population size in Angus and Holstein cattle populations (Bos taurus) using a high density SNP genotyping platform and the contribution of ancient polymorphism to genomic diversity in Domestic ca. BMC Genom. 2009, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar]
- Hudson, R.R.; Slatkin, M.; Maddison, W.P. Estimation of levels of gene flow from DNA sequence data. Genetics 1992, 132, 583–589. [Google Scholar] [CrossRef]
- Sayres, M.A.W. Genetic diversity on the sex chromosomes. Genome Biol. Evol. 2018, 10, 1064. [Google Scholar] [CrossRef]
- McRae, K.M. Signatures of Selective Sweeps in Parasite Selection Flocks; Univeristy of Otago: Mosgiel, New Zealand, 2012. [Google Scholar]
- Gabriel, S.B.; Schaffner, S.F.; Nguyen, H.; Moore, J.M.; Roy, J.; Blumenstiel, B.; Higgins, J.; DeFelice, M.; Lochner, A.; Faggart, M. The structure of haplotype blocks in the human genome. Science 2002, 296, 2225–2229. [Google Scholar] [CrossRef] [Green Version]
- Gautier, M.; Vitalis, R. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 2012, 28, 1176–1177. [Google Scholar] [CrossRef]
- Stephens, M.; Smith, N.J.; Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 2001, 68, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, F.; Achuthan, P.; Akanni, W.; Allen, J.; Amode, M.R.; Armean, I.M.; Bennett, R.; Bhai, J.; Billis, K.; Boddu, S. Ensembl 2019. Nucleic Acids Res. 2019, 47, D745–D751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do, D.N.; Bissonnette, N.; Lacasse, P.; Miglior, F.; Sargolzaei, M.; Zhao, X.; Ibeagha-Awemu, E.M. Genome-wide association analysis and pathways enrichment for lactation persistency in Canadian Holstein cattle. J. Dairy Sci. 2017, 100, 1955–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennis, G.; Sherman, B.T.; Hosack, D.A.; Yang, J.; Gao, W.; Lane, H.C.; Lempicki, R.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003, 4, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gokdal, O.; Ulker, H.; Karakus, F.; Cengiz, F.; Temur, C.; Handil, H. Growth, feedlot performance and carcass characteristics of Karakas and crossbred lambs (F1)(Ile de France x Akkaraman (G1) x Karakas) under rural farm conditions in Turkey. S. Afr. J. Anim. Sci. 2004, 34, 223–232. [Google Scholar]
- Qanbari, S.; Gianola, D.; Hayes, B.; Schenkel, F.; Miller, S.; Moore, S.; Thaller, G.; Simianer, H. Application of site and haplotype-frequency based approaches for detecting selection signatures in cattle. BMC Genom. 2011, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Stainton, J.J.; Haley, C.S.; Charlesworth, B.; Kranis, A.; Watson, K.; Wiener, P. Detecting signatures of selection in nine distinct lines of broiler chickens. Anim. Genet. 2015, 46, 37–49. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, J.; Zhang, Q.; Chen, L.; Wang, J.; Liu, J.; Ding, X. A genome scan for selection signatures in pigs. PLoS ONE 2015, 10, e0116850. [Google Scholar] [CrossRef] [Green Version]
- Gurgul, A.; Jasielczuk, I.; Semik-Gurgul, E.; Pawlina-Tyszko, K.; Stefaniuk-Szmukier, M.; Szmatoła, T.; Polak, G.; Tomczyk-Wrona, I.; Bugno-Poniewierska, M. A genome-wide scan for diversifying selection signatures in selected horse breeds. PLoS ONE 2019, 14, e0210751. [Google Scholar] [CrossRef] [Green Version]
- Pickrell, J.K.; Coop, G.; Novembre, J.; Kudaravalli, S.; Li, J.Z.; Absher, D.; Srinivasan, B.S.; Barsh, G.S.; Myers, R.M.; Feldman, M.W. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009, 19, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Davidson, A. The Oxford Companion to Food; Oxford University Press: Cary, NC, USA; ISBN 019104072X.
- Ryder, M.L. Sheep & Man; Duckworth & Co. Press: London, UK, 1983; ISBN 0715636472. [Google Scholar]
- Hayes, B.J.; Chamberlain, A.J.; Maceachern, S.; Savin, K.; McPartlan, H.; MacLeod, I.; Sethuraman, L.; Goddard, M.E. A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle. Anim. Genet. 2009, 40, 176–184. [Google Scholar] [CrossRef]
- Huang, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiang, R.; Li, W.; Li, F.; Yue, X. Transcriptomic analyses revealed common tailed and perirenal adipose differentially expressed genes in four Chinese indigenous sheep breeds. Livest. Sci. 2019, 230, 103832. [Google Scholar] [CrossRef]
- Zhu, C.; Fan, H.; Yuan, Z.; Hu, S.; Ma, X.; Xuan, J.; Wang, H.; Zhang, L.; Wei, C.; Zhang, Q. Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Liu, E.; Liu, Z.; Kijas, J.W.; Zhu, C.; Hu, S.; Ma, X.; Zhang, L.; Du, L.; Wang, H. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 2017, 48, 55–66. [Google Scholar] [CrossRef]
- Bakhtiarizadeh, M.R.; Salehi, A.; Alamouti, A.A.; Abdollahi-Arpanahi, R.; Salami, S.A. Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Sun, H.; Zhang, Z.; Zhang, C.-Y.; Zhao, Q.; Xiao, Q.; Olasege, B.S.; Ma, P.-P.; Zhang, X.-Z.; Wang, Q.-S. Selection signature reveals genes associated with susceptibility loci affecting respiratory disease due to pleiotropic and hitchhiking effect in Chinese indigenous pigs. Asian-Australas. J. Anim. Sci. 2020, 33, 187. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Li, M.; Qin, S.; Zhao, F.; Fang, S. Detection of copy number variation and selection signatures on the X chromosome in Chinese indigenous sheep with different types of tail. Asian-Australas. J. Anim. Sci. 2020, 33, 1378. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Bahbahani, H.; Moioli, B.; Ahbara, A.; Al Abri, M.; Almathen, F.; Da Silva, A.; Belabdi, I.; Portolano, B.; Mwacharo, J.M. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 2019, 14, e0209632. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Li, N.; Cheng, H.; Ma, Y. Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds. Biol. Open 2021, 10, bio054932. [Google Scholar] [CrossRef]
- Ciani, E.; Mastrangelo, S.; Da Silva, A.; Marroni, F.; Ferenčaković, M.; Ajmone-Marsan, P.; Baird, H.; Barbato, M.; Colli, L.; Delvento, C. On the origin of European sheep as revealed by the diversity of the Balkan breeds and by optimizing population-genetic analysis tools. Genet. Sel. Evol. 2020, 52, 1–14. [Google Scholar] [CrossRef]
Chromosome | Region (bp) | Length (bp) | Ovine SNP50k BeadChip SNPs |
---|---|---|---|
5 | 46,971,979–47,919,440 | 947,461 | 15 |
7 | 46,392,398–46,852,870 | 460,472 | 10 |
X | 58,424,602–61,409,447 | 2,984,845 | 20 |
Chromosome | No. of SNPs Assayed with Sequenom | No. of SNPs That Passed Quality Control | Total Number of SNPs Used for Final Analysis | Average Distance between SNPs (kb) |
---|---|---|---|---|
5 | 71 | 32 | 41 (15 + 26) 1 | 23.69 |
7 | 62 | 26 | 30 (10 + 20) | 17.77 |
X | 57 | 29 | 36 (20 + 16) | 82.91 |
Chromosome 5 | ||||||||
Core SNP Alleles | Core Haplotype Frequencies | |||||||
SNP Variants | C/T | A/G | T/C | A/G | A/C | Fat Tail Breed | Thin Tail Breed | |
Genomic position (bp) | 47,149,354 | 47,149,400 | 47,165,900 | 47,171,110 | 47,175,489 | |||
Ancestral allele | T | G | T | G | C | |||
Haplotype 1 | C | A | C | A | A | 0.90 | 0.15 | |
Haplotype 2 | - * | G | - | - | - | 0.01 | 0.06 | |
Haplotype 3 | - | G | T | - | - | 0.01 | - | |
Haplotype 4 | - | G | - | G | C | - | 0.12 | |
Haplotype 5 | T | G | - | - | - | - | 0.13 | |
Haplotype 6 | T | - | T | - | - | 0.01 | - | |
Haplotype 7 | T | G | T | - | - | 0.04 | 0.11 | |
Haplotype 8 | T | G | T | G | C | 0.02 | 0.31 | |
Other Haplotypes | - | 0.14(6 Haplotypes) | ||||||
Chromosome 7 | ||||||||
Core SNP Alleles | Core Haplotype Frequencies | |||||||
SNP Variants | C/T | A/C | T/C | A/C | Fat Tail Breed | Thin Tail Breed | ||
Genomic position (bp) | 46,604,500 | 46,604,644 | 46,604,722 | 46,642,359 | ||||
Ancestral allele | C | C | C | A | ||||
Haplotype 1 | C | C | C | C | 0.06 | 0.80 | ||
Haplotype 2 | - | - | - | A | 0.20 | 0.14 | ||
Haplotype 3 | T | A | - | - | 0.02 | 0.03 | ||
Haplotype 4 | T | A | - | A | 0.14 | - | ||
Haplotype 5 | T | A | T | - | 0.31 | 0.02 | ||
Haplotype 6 | T | A | T | A | 0.27 | - | ||
Chromosome X | ||||||||
Core SNP Alleles | Core Haplotype Frequencies | |||||||
SNP Variants | A/G | C/T | T/C | T/A | G/C | G/A | Fat Tail Breed | Thin Tail Breed |
Position (bp) | 59,742,181 | 59,750,338 | 59,912,586 | 59,971,891 | 59,971,909 | 59,984,949 | ||
Ancestral allele | A | T | T | T | C | A | ||
Haplotype 1 | G | C | T | T | G | G | 0.89 | 0.12 |
Haplotype 2 | - | - | C | - | C | A | - | 0.01 |
Haplotype 3 | - | - | C | A | C | A | - | 0.18 |
Haplotype 4 | A | T | - | A | C | A | - | 0.04 |
Haplotype 5 | A | T | C | - | - | - | 0.11 | 0.08 |
Haplotype 6 | A | T | C | - | C | A | - | 0.01 |
Haplotype 7 | A | T | C | A | C | A | - | 0.54 |
Species | Chromosome | RefSeq Number | Gene Name | Gene Symbol | Function |
---|---|---|---|---|---|
Ovis aries | X | NM_001037811 | hydroxysteroid (17-beta) dehydrogenase 10 | HSD17B10 | lipid metabolic process |
X | NM_000044 | androgen receptor | Ar | lipid binding | |
X | NM_173963 | synaptophysin | Syp | lipid binding (Cholestrol binding) | |
Bos taurus | 5 | NM_002715 | protein phosphatase 2 (formerly 2A), catalytic subunit, alpha isoform | PPP2CA | cellular lipid metabolic process lipid metabolic process memberan lipid metabolic process sphingolipid metabolic process |
X | NM_001034500 | emopamil binding protein (sterol isomerase) | EBP | lipid metabolic process |
Chr. | Gene Symbol | Gene Name | Functions * |
---|---|---|---|
5 | TCF7 | Transcription factor 7 (T-cell specific, HMG-box) | regulation of gene expression |
7 | PTGDR | Prostaglandin D2 receptor (DP) | developmental process |
NID2 | Nidogen 2 (osteonidogen) | cellular macromolecule metabolic process | |
X | AR | Androgen receptor | gland development, organ development, system development, anatomical structure development, regulation of gene expression |
FOXP3 | Forkhead box P3 | organ development, system development, anatomical structure development, regulation of developmental process, regulation of gene expression | |
FGD1 | FYVE, RhoGEF and PH domain containing 1 | organ development, system development, anatomical structure development, regulation of developmental process | |
BMP15 | Bone morphogenetic proteins 15 | organ development, system development, anatomical structure development, regulation of developmental process | |
HSD17B10 | hydroxysteroid (17-beta) dehydrogenase 10 | organ development, system development, anatomical structure development | |
TIMP1 | TIMP metallopeptidase inhibitor 1 | organ development, system development, anatomical structure development | |
PFKFB1 | Hydroxysteroid (17-beta) dehydrogenase 10 | organ development, system development, anatomical structure development | |
SLC35A2 | Solute Carrier Family 35 Member A2 | organ development, system development, anatomical structure development | |
ALAS2 | Aminolevulinate, delta-, synthase 2 | organ development, system development, anatomical structure development | |
HEPH | Hephaestin | organ development, system development, anatomical structure development | |
PCSK1N | Proproteinconvertasesubtilisin/kexin type 1 inhibitor | organ development, system development, anatomical structure development | |
SHROOM4 | Shroom family member 4 | organ development, system development, anatomical structure development | |
CACNA1F | Calcium channel, voltage-dependent, L type, alpha 1F subunit | system development, anatomical structure development | |
TFE3 | Transcription factor binding to IGHM enhancer 3 | regulation of developmental process, regulation of gene expression | |
ELK1 | ELK1, member of ETS oncogene family | regulation of gene expression | |
KDM5C | Lysine (K)-specific demethylase 5C | regulation of gene expression | |
ZNF41, 81 | Zinc finger protein 41, 81 | regulation of gene expression |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradi, M.H.; Nejati-Javaremi, A.; Moradi-Shahrbabak, M.; Dodds, K.G.; Brauning, R.; McEwan, J.C. Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection. Animals 2022, 12, 1423. https://doi.org/10.3390/ani12111423
Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, Dodds KG, Brauning R, McEwan JC. Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection. Animals. 2022; 12(11):1423. https://doi.org/10.3390/ani12111423
Chicago/Turabian StyleMoradi, Mohammad Hossein, Ardeshir Nejati-Javaremi, Mohammad Moradi-Shahrbabak, Ken G. Dodds, Rudiger Brauning, and John C. McEwan. 2022. "Hitchhiking Mapping of Candidate Regions Associated with Fat Deposition in Iranian Thin and Fat Tail Sheep Breeds Suggests New Insights into Molecular Aspects of Fat Tail Selection" Animals 12, no. 11: 1423. https://doi.org/10.3390/ani12111423