Effects of Betaine-Biotin-Chromium Supplementation and Concentrate to Roughage Ratio on Nutrient Utilization Efficiency in Thai Native Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Animal Care
2.2. Animals, Experimental Design, and Dietary Treatments
2.3. Statistical Analysis
3. Results
3.1. Nutrient Intake and Apparent Digestibility
3.2. Ruminal Fermentation and Blood Metabolites
3.3. Nitrogen Balance
3.4. Energy Partitioning and Energy Efficiency
3.5. Weight Gain, Feed Conversion Ratio, Feed Efficiency, and Nutrient Utilization Efficiency
4. Discussion
4.1. Nutrient Intake and Apparent Digestibility
4.2. Ruminal Fermentation and Blood Metabolites
4.3. Nitrogen Balance
4.4. Energy Partitioning and Energy Efficiency
4.5. Weight Gain, Feed Conversion Ratio, Feed Efficiency, and Nutrient Utilization Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rashid, M.M.; Huque, K.S.; Hoque, M.A.; Sarker, N.R.; Haque Bhuiyan, A.K.F. Effect of concentrate to roughage ratio on cost effective growth performance of brahman crossbred calves. J. Agric. Sci. 2015, 5, 286–295. [Google Scholar] [CrossRef] [Green Version]
- Wanapat, M.; Gunun, P.; Anantasook, N.; Kang, S. Changes of rumen pH, fermentation and microbial population as influenced by different ratios of roughage (rice straw) to concentrate in dairy steers. J. Agric. Sci. 2014, 152, 675–685. [Google Scholar] [CrossRef]
- Waldrop, G.L.; Holden, H.M.; Maurice, M.S. The enzymes of biotin dependent CO2 metabolism: What structures reveal about their reaction mechanisms. Protein Sci. 2012, 21, 1597–1619. [Google Scholar] [CrossRef] [Green Version]
- Zimmerly, C.A.; Weiss, W.P. Effects of supplemental dietary biotin on performance of Holstein cows during early lactation. J. Dairy Sci. 2001, 84, 498–506. [Google Scholar] [CrossRef]
- Ferreira, G.; Weiss, W.P. Effect of biotin on activity and gene expression of biotin-dependent carboxylases in the liver of dairy cows. J. Dairy Sci. 2007, 90, 1460–1466. [Google Scholar] [CrossRef]
- Fitzgerald, T.; Norton, B.W.; Elliott, R.; Podlich, H.; Svendsen, O.L. The influence of long-term supplementation with biotin on the prevention of lameness in pasture fed dairy cows. J. Dairy Sci. 2000, 83, 338–344. [Google Scholar] [CrossRef]
- Sung, K.I.; Ghassemi Nejad, J.; Hong, S.M.; Ohh, S.J.; Lee, B.H.; Peng, J.L.; Ji, D.H.; Kim, B.W. Effects of forage level and chromium-methionine chelate supplementation on performance, carcass characteristics and blood metabolites in Korean native (Hanwoo) steers. J. Anim. Sci. Technol. 2015, 57, 14–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spears, J.W.; Whisnant, C.S.; Huntington, G.B.; Lloyd, K.E.; Fry, R.S.; Krafka, K.; Lamptey, A.; Hyda, J. Chromium propionate enhances insulin sensitivity in growing cattle. J. Dairy Sci. 2012, 95, 2037–2045. [Google Scholar] [CrossRef] [Green Version]
- Sumner, J.M.; Valdez, F.; McNamara, J.P. Effects of chromium propionate on response to an intravenous glucose tolerance test in growing Holstein heifers. J. Dairy Sci. 2007, 90, 3467–3474. [Google Scholar] [CrossRef] [PubMed]
- Kegley, E.B.; Galloway, D.L.; Fakler, T.M. Effect of dietary chromium-l-methionine on glucose metabolism in beef steers. J. Anim. Sci. 2000, 78, 3177–3183. [Google Scholar] [CrossRef]
- Bernhard, B.C.; Burdick, N.C.; Rathmann, R.J.; Carroll, J.A.; Finck, D.N.; Jennings, M.A.; Young, T.R.; Johnson, B.J. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period. J. Anim. Sci. 2012, 90, 4857–4865. [Google Scholar] [CrossRef]
- Wang, M.Q.; Xu, Z.R.; Zha, L.Y.; Lindemann, M.D. Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Anim. Feed Sci. Technol. 2007, 139, 69–80. [Google Scholar] [CrossRef]
- Kneeskern, S.G.; Dilger, A.C.; Loerch, S.C.; Shike, D.W.; Felix, T.L. Effects of chromium supplementation to feedlot steers on growth performance, insulin sensitivity, and carcass characteristics. J. Anim. Sci. 2016, 94, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Peterson, S.E.; Rezamand, J.E.; Williams, W.; Price, W.; Chahine, M.; McGuire, M.A. Effects of dietary betaine on milk yield and milk composition of mid-lactation Holstein dairy cows. J. Dairy Sci. 2012, 95, 6557–6562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, L.W.; Dunshea, F.R.; Allen, J.D.; Rungruang, S.; Collier, J.L.; Long, N.M.; Collier, R.J. Evaluation of dietary betaine in lactating Holstein cows subjected to heat stress. J. Dairy Sci. 2016, 99, 9745–9753. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ying, S.; An, W.; Lian, H.; Zhou, G.; Han, Z. Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow. Genet. Mol. Res. 2014, 13, 7577–7586. [Google Scholar] [CrossRef]
- Wang, C.; Liu, C.; Zhang, G.W.; Du, H.S.; Wu, Z.Z.; Liu, Q.; Guo, G.; Huo, W.J.; Zhang, J.; Pei, C.X.; et al. Effects of rumen-protected folic acid and betaine supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bull. Br. J. Nutr. 2020, 123, 1109–1116. [Google Scholar] [CrossRef]
- Poolthajit1, S.; Wachirapakorn, C.; Haitook, T.; Srakaew, W.; Prapaiwong, T.; Tongnum, A. Effect of a combination of vitamin- mineral supplementation and concentrate-to-roughage ratio diets on ruminal fermentation, gas kinetics, and microbial biomass production using in vitro gas production technique. Agric. Nat. Resour. 2021, 55. (Accepted). [Google Scholar]
- Working Committee of Thai Feeding Standard for Ruminant (WTSR). Nutrient Requirement of Beef Cattle in Indochinese Peninsula, 1st ed.; Klungnanavithaya Press: Khon Kaen, Thailand, 2010. [Google Scholar]
- AOAC. Official Methods of Analysis; Association of Official Analysis Chemists: Washington, DC, USA, 2005; pp. 376–384. [Google Scholar]
- Cai, Y. Analysis method for silage. In Field and Laboratory Methods for Grassland Science; Japanese Society of Grassland Science, Ed.; Tosho Printing Co. Ltd.: Tokyo, Japan, 2004. [Google Scholar]
- International Panel on Climate Change (IPCC) Fourth IPCC Assessment Report; Cambridge University Press: Cambridge, UK, 2007.
- SAS. SAS/STAT User’s Guide; Version 6.12; SAS Inst. Inc.: Cary, NC, USA, 1998. [Google Scholar]
- Cherdthong, A.; Wanapat, M.; Kongmun, P.; Pilajun, R.; Khejornsart, P. Rumen fermentation, microbial protein synthesis and cellulolytic bacterial population of swamp buffaloes as affected by roughage to concentrate ratio. J. Anim. Vet. Adv. 2010, 9, 1667–1675. [Google Scholar] [CrossRef]
- Majee, D.N.; Schwab, E.C.; Bertics, S.J.; Seymour, W.M.; Shaver, R.D. Lactation performance by dairy cows fed supplemental biotin and B-vitamin blend. J. Dairy Sci. 2003, 86, 2106–2112. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.M.; Ma, J.; Wang, Z.; Zou, H.; Hu, R.; Peng, Q. Betaine Supplementation improves the production performance, rumen fermentation, and antioxidant profile of dairy cows in heat stress. Animals 2020, 10, 634. [Google Scholar] [CrossRef] [Green Version]
- Deka, R.S.; Mani, V.; Kumar, M.; Shiwajirao, Z.S.; Kaur, H. Chromium supplements in the feed for lactating murrah Buffaloes (Bubalus bubalis): Influence on nutrient utilization, lactation performance, and metabolic. Biol. Trace Elem. Res. 2015, 168, 362–371. [Google Scholar] [CrossRef]
- Bunting, L.D.; Fernandez, J.M.; Thompson, D.L.; Southern, L.L. Influence of chromium picolinate on glucose usage and metabolic criteria in growing Holstein calves. J. Anim. Sci. 1994, 72, 1591–1599. [Google Scholar] [CrossRef]
- Kumar, M.; Kaur, H.; Deka, R.S.; Mani, V.; Tyagi, A.K.; Chandra, G. Dietary inorganic chromium in summer-exposed buffalo calves (Bubalus bubalis): Effects on biomarkers of heat stress, immune status, and endocrine variables. Biol. Trace Elem. Res. 2015, 167, 18–27. [Google Scholar] [CrossRef]
- Biswas, P.; Haldar, S.; Pakhira, M.C.; Ghosh, T.K.; Biswas, C. Efficiency of nutrient utilization and reproductive performances of prepubertal anestrous dairy heifers supplemented with inorganic and organic chromium compounds. J. Sci. Food Agric. 2006, 86, 804–815. [Google Scholar] [CrossRef]
- Suksathit, S.; Wachirapakorn, C.; Opatpatanakit, Y. Effects of levels of ensiled pineapple waste and pangola hay fed as roughage sources on feed intake, nutrient digestibility and ruminal fermentation of Southern Thai native cattle. Songklanakarin J. Sci. Technol. 2011, 33, 281–289. [Google Scholar]
- Kongphitee, K.; Sommart, K.; Phonbumrung, T.; Gunha, T.; Suzuki, T. Feed intake, digestibility and energy partitioning in beef cattle fed diets with cassava pulp instead of rice straw. Asian-Australas. J. Anim. Sci. 2018, 31, 1431–1441. [Google Scholar] [CrossRef]
- Maekawa, M.; Beauchemin, K.A.; Christensen, D.A. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci. 2002, 85, 1165–1175. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, G.; Li, Y.; Zhang, Y. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals 2020, 10, 223. [Google Scholar] [CrossRef] [Green Version]
- Cherdthong, A.; Wanapat, M. Rumen microbes and microbial protein synthesis in Thai native beef cattle fed with various feed block. Arch. Anim. Nutr. 2013, 67, 448–460. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Wang, C.; Liu, J.X. Effects of dietary biotin supplementation on performance and hoof quality of Chinese Holstein dairy cows. Livest. Prod. Sci. 2012, 148, 168–173. [Google Scholar] [CrossRef]
- Stahlhut, H.S.; Whisnant, C.S.; Lloyd, K.E.; Baird, E.J.; Legleiter, L.R.; Hansen, S.L.; Spears, J.W. Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. J. Anim. Sci. 2006, 128, 253–265. [Google Scholar] [CrossRef]
- Sasaki, S. Mechanism of insulin action on glucose metabolism in ruminants. Anim. Sci. J. 2002, 73, 423–433. [Google Scholar] [CrossRef]
- Leiva, T.; Cooke, R.F.; Brandão, A.P.; Aboin, A.C.; Ranches, J.; Vasconcelos, J.L.M. Effects of excessive energy intake and supplementation with chromium propionate on insulin resistance parameters, milk production, and reproductive outcomes of lactating dairy cows. Livest. Sci. 2015, 180, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.K. A critical review of chromium picolinate and biotin. US Pharm. 2006, 31 (Diabetes Suppl.), 1–4. [Google Scholar]
- Turgut, M.; Cinar, V.; Pala, R.; Tuzcu, M.; Orhan, C.; Telceken, H.; Sahin, N.; Deeh, P.B.D.; Komorowski, J.R.; Sahin, K. Biotin and chromium histidinate improve glucose metabolism and proteins expression levels of IRS-1, PPAR-γ, and NF-kB in exercise-trained rats. Int. J. Sport Nutr. 2018, 15, 45. [Google Scholar] [CrossRef]
- Subepang, S.; Suzuki, T.; Phonbumrung, T.; Sommart, K. Enteric methane emissions, energy partitioning, and energetic efficiency of zebu beef cattle fed total mixed ration silage. Asian-Australas. J. Anim. Sci. 2019, 32, 548–555. [Google Scholar] [CrossRef]
- Tangjitwattanachai, N.; Phaowphaisal, I.; Otsuka, M.; Sommart, K. Enteric methane emission, energetic efficiency and energy requirements for maintenance of beef cattle in the tropics. Jpn. Agric. Res. Q. 2015, 49, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Thip-uten, S.; Pholsen, S.; Kritapon, S.; Phonbumrung, T.; Yinmin, C.; Higgs, D.E.B. Growth performance and methane production of Thai native beef cattle under grazing and cut-carry Ruzi grass with or without concentrate supplementation. Prawarun Agric. J. 2019, 16, 190–203. [Google Scholar]
- De Silva, L.A.F.; Amhold, E.; Rabelo, R.E.; de Freitas, S.L.R.; Buso, B.L.S.; Rodrigues, D.F.; Assis, B.M. Comparative study of biotin supplementation on weight gain and occurrence of digital diseases in cattle (Bos taurus x Bos indicus). Rev. Bras. De Ciência Veterinária 2018, 25, 6–12. [Google Scholar] [CrossRef]
- Dong, L.F.; Yan, T.; Ferris, C.P.; McDowell, D.A. Comparison of maintenance energy requirement and energetic efficiency between lactating Holstein-Friesian and other groups of dairy cows. J. Dairy Sci. 2015, 98, 1136–1144. [Google Scholar] [CrossRef] [Green Version]
Item | Concentrate | Rice Straw | BBC |
---|---|---|---|
Ingredients, % DM | |||
Cassava chip | 35.0 | ||
Corn meal | 10.0 | ||
Rice bran | 10.0 | ||
Palm kernel cake | 19.0 | ||
Cassava pulp, dried | 14.0 | ||
Soybean meal | 8.0 | ||
Urea | 1.8 | ||
Sulfur | 0.2 | ||
Salt | 0.5 | ||
Dicalcium phosphate | 1.0 | ||
Premix | 0.5 | ||
Chemical composition | |||
Dry matter (DM), % | 95.4 | 96.4 | 97.9 |
------------------- % DM ------------------ | |||
Organic matter (OM) | 94.8 | 88.9 | 56.5 |
Crude protein (CP) | 16.1 | 3.7 | 7.5 |
Ether extracts (EE) | 3.0 | 0.9 | 1.5 |
Neutral detergent fiber (NDF) | 29.7 | 80.8 | - |
Acid detergent fiber (ADF) | 13.8 | 49.3 | - |
Ash | 5.2 | 11.0 | 43.6 |
Energy content, MJ/kg DM | |||
Gross energy (GE) | 16.9 | 16.0 | - |
Digestible energy (DE) | 15.7 | 8.3 | - |
Metabolizable energy (ME) | 12.8 | 6.8 | - |
Item | Control | 60C:40R | 70C:30R | SEM | Contrast (p-Value) | ||||
---|---|---|---|---|---|---|---|---|---|
3BBC | 6BBC | 3BBC | 6BBC | C vs. T | A | B | |||
Dry matter intake, kg/d | |||||||||
Concentrate | 2.59 a | 2.14 b | 2.17 b | 2.53 a | 2.48 a | 0.04 | ** | ** | 0.73 |
Rice straw | 1.08 a | 1.37 b | 1.36 b | 1.01 a | 1.02 a | 0.03 | * | ** | 0.95 |
BBC | 0.0 a | 0.01 b | 0.022 c | 0.012 b | 0.022 c | 0.001 | ** | 0.54 | ** |
Total | 3.67 | 3.53 | 3.55 | 3.57 | 3.52 | 0.06 | 0.08 | 0.94 | 0.87 |
Concentrate proportion | 0.70 a | 0.61 b | 0.61 b | 0.71 a | 0.70 a | 0.003 | ** | ** | 0.54 |
%BW | 3.07 a | 3.00 b | 2.97 b | 2.99 b | 3.00 b | 0.02 | * | 0.55 | 0.49 |
g/kg W0.75 | 101.5 a | 98.4 a,b | 97.4 b | 98.1 b | 98.3 b | 0.75 | ** | 0.68 | 0.62 |
Nutrient intake, kg/d | |||||||||
OM | 3.4 | 3.3 | 3.3 | 3.3 | 3.3 | 0.06 | * | 0.67 | 0.80 |
CP | 0.5 a | 0.4 b | 0.4 b | 0.5 a | 0.4 a | 0.01 | ** | ** | 0.68 |
EE | 0.09 a | 0.08 b | 0.08 b | 0.09 a | 0.09 a | 0.002 | * | ** | 0.56 |
NDF | 1.6 a,b | 1.8 b | 1.7 b | 1.6 a | 1.6 a | 0.03 | 0.72 | ** | 0.79 |
ADF | 0.89 a | 0.97 b | 0.97 b | 0.85 a | 0.84 a | 0.02 | 0.34 | ** | 0.88 |
Apparent digestibility, % | |||||||||
DM | 68.4 | 65.9 | 68.8 | 69.7 | 67.6 | 1.19 | 0.78 | 0.30 | 0.78 |
OM | 71.8 | 69.6 | 72.1 | 72.8 | 71.2 | 1.06 | 0.76 | 0.31 | 0.67 |
CP | 63.9 a | 59.4 b | 64.4 a | 66.1 a | 65.6 a | 1.27 | 0.97 | ** | 0.10 |
EE | 86.5 | 85.7 | 84.4 | 88.5 | 85.9 | 1.38 | 0.83 | 0.14 | 0.18 |
NDF | 46.5 | 47.3 | 51.4 | 48.9 | 45.2 | 1.96 | 0.44 | 0.27 | 0.93 |
ADF | 32.2 | 35.9 | 40.7 | 36.0 | 30.6 | 2.42 | 0.21 | 0.06 | 0.90 |
Item | Control | 60C:40R | 70C:30R | SEM | Contrast (p-Value) | ||||
---|---|---|---|---|---|---|---|---|---|
3BBC | 6BBC | 3BBC | 6BBC | C vs. T | A | B | |||
Rumen fermentation end-products | |||||||||
Ruminal pH | 6.74 | 6.78 | 6.78 | 6.68 | 6.76 | 0.05 | 0.90 | 0.23 | 0.45 |
NH3-N, mg/dL | 11.8 | 11.3 | 12.8 | 13.1 | 11.5 | 0.74 | 0.68 | 0.74 | 0.96 |
Total VFA, mM | 92.7 | 81.9 | 80.1 | 92.3 | 114.2 | 10.06 | 0.96 | * | 0.34 |
Acetic acid (A), mol/100 mol | 60.9 | 58.8 | 61.0 | 60.8 | 58.4 | 1.10 | 0.34 | 0.76 | 0.93 |
Propionic acid (P), mol/100 mol | 22.6 | 24.1 | 23.6 | 23.4 | 25.5 | 0.98 | 0.17 | 0.58 | 0.47 |
Butyric acid, mol/100 mol | 16.5 | 16.9 | 15.4 | 15.9 | 16.1 | 1.10 | 0.78 | 0.85 | 0.57 |
A:P ratio | 2.69 | 2.55 | 2.67 | 2.73 | 2.42 | 0.16 | 0.57 | 0.83 | 0.56 |
Blood metabolites | |||||||||
BUN, mg/dL | 8.93 | 7.33 | 6.73 | 7.67 | 8.80 | 0.55 | 0.05 | * | 0.63 |
Glucose, mg/dL | 92.2 | 86.5 | 87.7 | 90.8 | 91.4 | 1.56 | 0.11 | * | 0.58 |
Insulin, µIU/mL | 1.68 | 1.95 | 1.96 | 1.78 | 2.09 | 0.12 | 0.08 | 0.89 | 0.24 |
Glucose-to-insulin ratio, mg/µIU | 0.56 a | 0.47 b | 0.47 b | 0.52 a,b | 0.46 b | 0.03 | ** | 0.43 | 0.31 |
Item | Control | 60C:40R | 70C:30R | SEM | Contrast (p-Value) | ||||
---|---|---|---|---|---|---|---|---|---|
3BBC | 6BBC | 3BBC | 6BBC | C vs. T | A | B | |||
Nitrogen intake, g/d | 70.0 a | 60.8 b | 61.5 b | 68.5 a | 67.2 a | 1.09 | ** | ** | 0.77 |
Nitrogen excretion, g/d | |||||||||
Feces | 25.0 a | 24.3 a | 21.5 b | 22.9 a,b | 22.7 a,b | 0.78 | * | 0.89 | 0.07 |
Urine | 15.2 | 12.0 | 12.1 | 15.4 | 12.7 | 1.20 | 0.13 | 0.13 | 0.31 |
Total | 40.2 a | 36.4 a,b,c | 33.6 c | 38.3 a,b | 35.4 b,c | 1.31 | * | 0.18 | * |
Nitrogen absorption, g/d | 45.0 a | 36.5 b | 39.9 b | 45.5 a | 44.5 a | 1.32 | * | ** | 0.38 |
Nitrogen retention, g/d | 29.8 a,b | 24.5 b | 27.9 a,b | 30.2 a | 31.8 a | 1.65 | 0.53 | * | 0.16 |
Nitrogen absorption, % of nitrogen intake | 64.2 a | 59.8 b | 64.7 a | 66.3 a | 65.6 a | 1.28 | 0.96 | * | 0.12 |
Nitrogen retention, % of nitrogen intake | 42.0 | 39.5 | 45.0 | 43.7 | 46.1 | 2.30 | 0.50 | 0.22 | 0.09 |
Item | Control | 60C:40R | 70C:30R | SEM | Contrast (p-Value) | ||||
---|---|---|---|---|---|---|---|---|---|
3BBC | 6BBC | 3BBC | 6BBC | C vs. T | A | B | |||
Energy intake, MJ/d | 61.1 | 59.4 | 59.9 | 60.4 | 60.1 | 0.87 | 0.24 | 0.53 | 0.90 |
Energy excretion, MJ/d | |||||||||
Feces | 19.1 | 19.1 | 17.1 | 17.1 | 17.7 | 0.65 | 0.09 | 0.28 | 0.34 |
Urine | 1.7 | 2.3 | 2.3 | 1.9 | 1.9 | 0.40 | 0.41 | 0.32 | 0.98 |
Total | 20.8 | 21.4 | 19.5 | 19.0 | 19.6 | 0.81 | 0.31 | 0.18 | 0.45 |
Digestible energy intake, MJ/d | 42.0 | 40.3 | 42.8 | 43.4 | 42.3 | 1.05 | 0.89 | 0.24 | 0.49 |
Methane energy 1/, MJ/d | 3.97 | 3.86 | 3.90 | 3.93 | 3.90 | 0.06 | 0.25 | 0.50 | 0.90 |
Metabolizable energy, MJ/d | 36.3 | 34.1 | 36.6 | 37.5 | 36.6 | 1.02 | 0.91 | 0.13 | 0.48 |
Energy efficiency | |||||||||
DE/GE | 0.69 | 0.68 | 0.70 | 0.71 | 0.70 | 0.01 | 0.44 | 0.24 | 0.52 |
ME/GE | 0.60 | 0.57 | 0.60 | 0.61 | 0.60 | 0.01 | 0.91 | 0.13 | 0.45 |
ME/DE | 0.86 | 0.85 | 0.85 | 0.86 | 0.87 | 0.01 | 0.42 | 0.15 | 0.62 |
Item | Control | 60C:40R | 70C:30R | SEM | Contrast (p-Value) | ||||
---|---|---|---|---|---|---|---|---|---|
3BBC | 6BBC | 3BBC | 6BBC | C vs. T | A | B | |||
Initial BW, kg | 114.8 | 110.6 | 112.1 | 112.5 | 109.6 | 2.00 | 0.14 | 0.89 | 0.72 |
Final BW, kg | 124.3 | 124.4 | 127.3 | 126.4 | 126.1 | 1.45 | 0.29 | 0.81 | 0.37 |
Weight changed, kg | 9.5 a | 13.8 ab | 15.3 b | 13.9 a,b | 16.5 b | 1.42 | * | 0.66 | 0.17 |
Weight gain, g/d | 452.5 a | 658.1 a,b | 727.6 b | 660.0 a,b | 787.6 b | 67.69 | * | 0.55 | 0.10 |
Feed conversion ratio, kg feed/kg gain | |||||||||
8.9 a | 5.5 b | 5.2 b | 5.5 b | 4.6 b | 0.70 | ** | 0.68 | 0.46 | |
Feed efficiency, kg gain/kg feed | |||||||||
0.12 a | 0.19 a,b | 0.21 b | 0.19 a,b | 0.23 b | 0.02 | * | 0.80 | 0.28 | |
Nutrient utilization efficiency | |||||||||
Energy, MJ/d | |||||||||
Requirement 1/ | 31.7 a | 37.8 a,b | 40.2 b | 38.1 a,b | 41.9 b | 2.08 | ** | 0.64 | 0.16 |
Intake | 36.3 | 33.3 | 35.5 | 36.6 | 35.3 | 1.02 | 0.32 | 0.16 | 0.68 |
Efficiency 2/ | 0.87 a | 1.18 b | 1.21 b | 1.10 b | 1.23 b | 0.06 | ** | 0.76 | 0.47 |
Protein, g/d | |||||||||
Requirement 1/ | 354.0 a | 430.4 a,b | 457.4 b | 431.2 a,b | 479.2 b | 25.06 | ** | 0.66 | 0.16 |
Intake | 437.5 a | 380.3 b | 384.4 b | 428.0 a | 419.8 a | 6.85 | ** | ** | 0.76 |
Efficiency | 0.81 a | 1.17 b | 1.24 b | 1.04 b | 1.16 b | 0.06 | ** | 0.29 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poolthajit, S.; Srakaew, W.; Haitook, T.; Wachirapakorn, C. Effects of Betaine-Biotin-Chromium Supplementation and Concentrate to Roughage Ratio on Nutrient Utilization Efficiency in Thai Native Cattle. Animals 2021, 11, 2747. https://doi.org/10.3390/ani11092747
Poolthajit S, Srakaew W, Haitook T, Wachirapakorn C. Effects of Betaine-Biotin-Chromium Supplementation and Concentrate to Roughage Ratio on Nutrient Utilization Efficiency in Thai Native Cattle. Animals. 2021; 11(9):2747. https://doi.org/10.3390/ani11092747
Chicago/Turabian StylePoolthajit, Sukanya, Wuttikorn Srakaew, Theerachai Haitook, and Chalong Wachirapakorn. 2021. "Effects of Betaine-Biotin-Chromium Supplementation and Concentrate to Roughage Ratio on Nutrient Utilization Efficiency in Thai Native Cattle" Animals 11, no. 9: 2747. https://doi.org/10.3390/ani11092747
APA StylePoolthajit, S., Srakaew, W., Haitook, T., & Wachirapakorn, C. (2021). Effects of Betaine-Biotin-Chromium Supplementation and Concentrate to Roughage Ratio on Nutrient Utilization Efficiency in Thai Native Cattle. Animals, 11(9), 2747. https://doi.org/10.3390/ani11092747