Effect of Post-Grazing Sward Height, Sire Genotype and Indoor Finishing Diet on Steer Intake, Growth and Production in Grass-Based Suckler Weanling-to-Beef Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design and Management
2.3. Pasture Management
2.4. Pasture Measurements
2.5. Grazing Behaviour
2.6. Indoor Feed Intake
2.7. Feedstuff Analysis
2.8. Animal Live-Weight and Body Composition
2.9. Carcass and Post-Slaughter Measurements
2.10. Systems Output/Ha Measurements
2.11. Statistical Analysis
3. Results
3.1. Sward Characterisation
3.2. Chemical Composition
3.3. Grazing Behaviour and Herbage Intake
3.4. Animal Growth and Carcass Traits
3.5. Herbage Production
4. Discussion
4.1. Post-Grazing Sward Height
4.2. Genotype
4.3. Finishing Diet
4.4. Additional Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taylor, R.; McGee, M.; Kelly, A.; Grant, J.; Crosson, P. A comparison of production systems and identification of profit drivers for Irish suckler beef farms. Int. J. Agric. Manag. 2018, 6, 100–110. [Google Scholar]
- Drennan, M.J.; McGee, M. Performance of spring-calving beef suckler cows and their progeny to slaughter on intensive and extensive grassland management systems. Livest. Sci. 2009, 120, 1–12. [Google Scholar] [CrossRef]
- McGee, M.; Drennan, M.J.; Crosson, P. Effect of concentrate feeding level in winter and turnout date to pasture in spring on biological and economical performance of weanling cattle in suckler beef production systems. Ir. J. Agric. Food Res. 2014, 53, 1–19. [Google Scholar]
- Regan, M.; McGee, M.; Moloney, A.P.; Kelly, A.K.; O’Riordan, E.G. Grass-based suckler steer weanling-to-beef production systems: Effect of breed and slaughter age. Sustain. Meat Milk Prod. Grassl. 2018, 23, 488–490. [Google Scholar]
- Bronkema, S.M.; Rowntree, J.E.; Jain, R.; Schweihofer, J.P.; Bitler, C.A.; Fenton, J.I. A nutritional survey of commercially available grass-finished beef. Meat Muscle Biol. 2019, 3, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, J.; Lee, M. Use of human-edible animal feeds by ruminant livestock. Animal 2018, 12, 1735–1743. [Google Scholar] [CrossRef] [PubMed]
- Sitienei, I.; Gillespie, J.; Scaglia, G. Producer perceptions of the importance of challenges currently facing the United States grass-finished beef industry. Prof. Anim. Sci. 2015, 31, 315–323. [Google Scholar] [CrossRef]
- Kenny, D.; Murphy, C.P.; Sleator, R.D.; Judge, M.M.; Evans, R.D.; Berry, D.P. Animal-level factors associated with the achievement of desirable specifications in Irish beef carcasses graded using the EUROP classification system. J. Anim. Sci. 2020, 98, 1–7. [Google Scholar] [CrossRef]
- Costa, C.M.; Difante, G.S.; Costa, A.B.G.; Gurgel, A.L.C.; Ferreira, M.A., Jr.; Santos, G.T. Grazing intensity as a management strategy in tropical grasses for beef cattle production: A meta-analysis. Animal 2021, 15, 100192. [Google Scholar] [CrossRef]
- O’Riordan, E.G.; Keane, M.G.; McGee, M. Effects of Turn-Out Date to Pasture in Spring and Post-Grazing Sward Height on Performance of Dairy Crossbred Steers during the Grazing Season. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 15 March 2011; p. 86. [Google Scholar]
- O’Riordan, E.G.; McNamee, A.; Keane, M.G.; Buckley, F.; McGee, M. Performance and Carcass traits of Holstein-Friesian, Jersey x Holstein-Friesian and Norwegian Red x Holstein-Friesian Steers; Effect of Turnout Date and Post-Grazing Sward Height. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 15 March 2011; p. 106. [Google Scholar]
- Tuñon, G.; Kennedy, E.; Horan, B.; Hennessy, D.; Lopez-Villalobos, N.; Kemp, P.; Brennan, A.; O’Donovan, M. Effect of grazing severity on perennial ryegrass herbage production and sward structural characteristics throughout an entire grazing season. Grass Forage Sci. 2014, 69, 104–118. [Google Scholar] [CrossRef]
- Ganche, E.; O’Donovan, M.; Delaby, L.; Boland, T.M.; Kennedy, E. Does post-grazing sward height influence sward characteristics, seasonal herbage dry-matter production and herbage quality? Grass Forage Sci. 2015, 70, 130–143. [Google Scholar] [CrossRef]
- Chapman, D.; McCarthy, S.; Wims, C. Maximising leaf availability using pasture growth principles. Tech. Ser. 2014, 23, 1–4. [Google Scholar]
- Ganche, E.; Delaby, L.; O’Donovan, M.; Boland, T.M.; Galvin, N.; Kennedy, E. Post-grazing sward height imposed during the first 10 weeks of lactation: Influence on early and total lactation dairy cow production, and spring and annual sward characteristics. Livest. Sci. 2013, 157, 299–311. [Google Scholar] [CrossRef]
- Mayne, C.S.; Newberry, R.D.; Woodcock, S.C.F.; Wilkins, R.J. Effect of grazing severity on grass utilization and milk production of rotationally grazed dairy cows. Grass Forage Sci. 1987, 42, 59–72. [Google Scholar] [CrossRef]
- Macdonald, K.A.; Penno, J.W.; Lancaster, J.A.S.; Roche, J.R. Effect of Stocking Rate on Pasture Production, Milk Production, and Reproduction of Dairy Cows in Pasture-Based Systems. J. Dairy Sci. 2008, 91, 2151–2163. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, S.; Wims, C.; Kay, J.; Chapman, D.; MacDonald, K. Grazing management-striking a balance. Dairy NZ Tech. Ser. 2014, 23, 13–16. [Google Scholar]
- Maher, J. Lessons learned from the beef finalists of the Teagasc Grass10 Farmer of the Year Competition. In Proceedings of the Teagasc, National Beef Conference 2017 ‘Planning for Healthy Profits’, Tullamore, Ireland, 17 October 2017; pp. 15–20. [Google Scholar]
- DAFM. AIM Bovine Statistics Report 2019. Available online: https://www.gov.ie/en/publication/467e3-cattle-aim/#bovine-electronic-herd-register (accessed on 2 March 2021).
- DEFRA. The Cattle Book 2008. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/69220/pb13572-cattlebook-2008-090804.pdf (accessed on 5 March 2021).
- ICAR. French Livestock Genetics and Territories. Available online: https://www.icar.org/Documents/Bourg-en-Bresse2011/Presentations/French%20Livestock%20-%2022%20am/Livestock%20in%20France_Philippe%20AME.pdf (accessed on 5 March 2021).
- Moloney, A.P.; McGee, M. Factors Influencing the Growth of Meat Animals. In Lawrie’s Meat Science, 8th ed.; Elsevier Woodhead Publishing: Cambridge, UK, 2017; pp. 19–47. [Google Scholar]
- O’Donovan, M.; Dillon, P. Measurement of Grassland Management Practice on Commercial Dairy Farms; Teagasc: Dublin 4, Ireland, 1999. [Google Scholar]
- O’Riordan, E.; Devaney, S.; French, P. Sward height as a measure of pasture herbage supply. Ir. J. Agric. Food Res. 1997, 36, 107. [Google Scholar]
- Lawrence, P.; Kenny, D.A.; Earley, B.; McGee, M. Grazed grass herbage intake and performance of beef heifers with predetermined phenotypic residual feed intake classification. Animal 2012, 6, 1648–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, V.G.; Batello, C.; Berretta, E.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2. [Google Scholar] [CrossRef]
- Werner, J.; Viel, J.; Niederhauser, J.; O’Leary, N.; Umstatter, C.; O’Brien, B. Validation of new algorithms for the RumiWatch noseband sensor to detect grazing behaviour of dairy cows. Sustain. Meat Milk Prod. Grassl. 2018, 23, 917–919. [Google Scholar]
- Porter, M.; Murray, R. The volatility of components of grass silage on oven drying and the inter-relationship between dry-matter content estimated by different analytical methods. Grass Forage Sci. 2001, 56, 405–411. [Google Scholar] [CrossRef] [Green Version]
- Lenehan, C.; Moloney, A.P.; O’Riordan, E.G.; Kelly, A.; McGee, M. Comparison of rolled barley with citrus pulp as a supplement for growing cattle offered grass silage. Adv. Anim. Biosci. 2017, 8, s33–s37. [Google Scholar] [CrossRef]
- Noziere, P.; Sauvant, D.; Delaby, L. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- O’Mara, F. A Net Energy System for Cattle and Sheep; University College Dublin, Department of Animal Science and Production: Dublin 4, Ireland, 1996. [Google Scholar]
- Mezgebo, G.B.; Monahan, F.J.; McGee, M.; O’Riordan, E.G.; Picard, B.; Richardson, R.I.; Moloney, A.P. Biochemical and organoleptic characteristics of muscle from early and late maturing bulls in different production systems. Animal 2017, 11, 1636–1644. [Google Scholar] [CrossRef] [Green Version]
- Wims, C.M.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures. Animal 2014, 8, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Keating, T.; O’Kiely, P. Comparison of old permanent grassland, Lolium perenne and Lolium multiflorum swards grown for silage: 1. Effects on beef production per hectare. Ir. J. Agric. Food Res. 2000, 39, 1–24. [Google Scholar]
- Minchin, W.; O’Riordan, E.G.; McGee, M. Effect of Post-Grazing Height on Performasnce of Beef Suckler Cows and Growth of Their Calves during the Grazing Season. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 15 March 2011; p. 92. [Google Scholar]
- Minchin, W.; McGee, M. Effect of post-grazing sward height on grass production and performance of four beef heifer genotypes. Adv. Anim. Biosci. 2010, 1, 324. [Google Scholar] [CrossRef] [Green Version]
- Lahart, B.; Prendiville, R.; Buckley, F.; Kennedy, E.; Conroy, S.B.; Boland, T.M.; McGee, M. The repeatability of feed intake and feed efficiency in beef cattle offered high-concentrate, grass silage and pasture-based diets. Animal 2020, 14, 2288–2297. [Google Scholar] [CrossRef] [PubMed]
- Cazcarra, R.F.; Petit, M.; Dhour, P. The effect of sward height on grazing behavior and herbage intake of 3 sizes of charolais cattle grazing cocksfoot (dactylis-glomerata) swards. Anim. Sci. 1995, 61, 511–518. [Google Scholar] [CrossRef]
- Chacon, E.; Stobbs, T.H. Influence of progressive defoliation of a grass sward on the eating behaviour of cattle. Aust. J. Agric. Res. 1976, 27, 709–727. [Google Scholar] [CrossRef]
- Barrett, P.D.; Laidlaw, A.S.; Mayne, C.S.; Christie, H. Pattern of herbage intake rate and bite dimensions of rotationally grazed dairy cows as sward height declines. Grass Forage Sci. 2001, 56, 362–373. [Google Scholar] [CrossRef]
- Amaral, M.F.; Mezzalira, J.C.; Bremm, C.; Da Trindade, J.K.; Gibb, M.J.; Suñe, R.W.M.; Carvalho, P.C.F. Sward structure management for a maximum short-term intake rate in annual ryegrass. Grass Forage Sci. 2013, 68, 271–277. [Google Scholar] [CrossRef]
- Ribeiro Filho, H.M.N.; Delagarde, R.; Peyraud, J.L. Inclusion of white clover in strip-grazed perennial ryegrass swards: Herbage intake and milk yield of dairy cows at different ages of sward regrowth. Anim. Sci. 2003, 77, 499–510. [Google Scholar] [CrossRef]
- Dale, A.J.; Laidlaw, A.S.; McGettrick, S.; Gordon, A.; Ferris, C.P. The effect of grazing intensity on the performance of high-yielding dairy cows. Grass Forage Sci. 2018, 73, 798–810. [Google Scholar] [CrossRef]
- Stakelum, G.; Dillon, P. The effect of grazing pressure on rotationally grazed pastures in spring/early summer on subsequent sward characteristics. Ir. J. Agric. Food Res. 2007, 46, 15–28. [Google Scholar]
- Taylor, R.; McGee, M.; Kelly, A.; Crosson, P. Bioeconomic and greenhouse gas emissions modelling of the factors influencing technical efficiency of temperate grassland-based suckler calf-to-beef production systems. Agric. Syst. 2020, 183, 102860. [Google Scholar] [CrossRef]
- Herron, J.; Curran, T.; Moloney, A.; McGee, M.; O’Riordan, E.; O’Brien, D. Life cycle assessment of pasture-based suckler steer weanling-to-beef production systems: Effect of breed and slaughter age. Animal 2021, 15, 100247. [Google Scholar] [CrossRef] [PubMed]
- Regan, M. Grass-Based Production Systems for Suckler-Bred Male Cattle. M.Agr.Sc. Thesis, University College Dublin, Dublin 4, Ireland, 2018; 142p. [Google Scholar]
- Keane, M.G.; Drennan, M.J. A comparison of Friesian, Aberdeen Angus× Friesian and Belgian Blue× Friesian steers finished at pasture or indoors. Livest. Sci. 2008, 115, 268–278. [Google Scholar] [CrossRef]
- Marren, D.; McGee, M.; Moloney, A.P.; Kelly, A.K.; O’Riordan, E.G. Comparison of Early- and Late-Maturing Suckler Bred Steers on Contrasting Production Systems Slaughtered Prior to a Second Winter Period. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 10–11 March 2014; p. 121. [Google Scholar]
- Marren, D.; McGee, M.; Moloney, A.P.; Kelly, A.K.; O’Riordan, E.G. Comparison of Early- and Late-Maturing Suckler Bred Bulls on Contrasting Production Systems, Slaughtered at Three Carcass Weights. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 12 March 2013; p. 72. [Google Scholar]
- Cuvelier, C.; Cabaraux, J.F.; Dufrasne, I.; Clinquart, A.; Hocquette, J.F.; Istasse, L.; Hornick, J.L. Performance, slaughter characteristics and meat quality of young bulls from Belgian Blue, Limousin and Aberdeen Angus breeds fattened with a sugar-beet pulp or a cereal-based diet. Anim. Sci. 2006, 82, 125–132. [Google Scholar] [CrossRef]
- Marren, D.; McGee, M.; Moloney, A.P.; Kelly, A.K.; O’Riordan, E.G. Comparison of Early- and Late-Maturing Suckler Bred Bulls, Slaughtered at Four Carcass Weights. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 10–11 March 2014; p. 71. [Google Scholar]
- Albertí, P.; Panea, B.; Sañudo, C.; Olleta, J.; Ripoll, G.; Ertbjerg, P.; Christensen, M.; Gigli, S.; Failla, S.; Concetti, S. Live weight, body size and carcass characteristics of young bulls of fifteen European breeds. Livest. Sci. 2008, 114, 19–30. [Google Scholar] [CrossRef]
- Keane, M.G. Relative Tissue Growth Patterns and Carcass Composition in Beef Cattle; Teagasc: Meath, Ireland, 2011. [Google Scholar]
- McGee, M. Recent Developments in Feeding Beef Cattle on Grass Silage-Based Diets. In Silage Production and Utilisation; Wageningen Acad. Publisher: Wageningen, The Netherlands, 2005. [Google Scholar]
- Doyle, P.R.; McGee, M.; Moloney, A.P.; Kelly, A.K.; O’Riordan, E.G. Effect of pre-grazing herbage mass on pasture production and performance of suckler-bred steers during the grazing season and subsequent indoor finishing period. Livest. Sci. In Review.
- Clarke, A.M.; Drennan, M.J.; McGee, M.; Kenny, D.A.; Evans, R.D.; Berry, D.P. Intake, live animal scores/measurements and carcass composition and value of late-maturing beef and dairy breeds. Livest. Sci. 2009, 126, 57–68. [Google Scholar] [CrossRef]
- Caplis, J.; Keane, M.G.; Moloney, A.P.; O’Mara, F.P. Effects of Supplementary Concentrate Level with Grass Silage, and Separate or Total Mixed Ration Feeding, on Performance and Carcass Traits of Finishing Steers. Ir. J. Agric. Food Res. 2005, 44, 27–43. [Google Scholar]
- Crosson, P.; McGee, M.; Drennan, M.J. The economic impact of turnout date to pasture in spring of yearling cattle on suckler beef farms. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 12–13 March 2009; p. 77. [Google Scholar]
- Ferraro, D.O.; Oesterheld, M. Effect of defoliation on grass growth. A quantitative review. Oikos 2002, 98, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.K. The physiology of tiller death in grasses. Grass Forage Sci. 1978, 33, 197–203. [Google Scholar] [CrossRef]
- Teagasc. 2027 Sectoral Road Map: Beef. Available online: https://www.teagasc.ie/media/website/publications/2020/2027-Sectoral-Road-Map---Beef.pdf (accessed on 29 January 2021).
- Teagasc. 2027 Sectoral Road Map: Dairy. Available online: https://www.teagasc.ie/media/website/publications/2020/Road-Map-2027-Dairy-201120.pdf (accessed on 29 January 2021).
- McCarthy, B.; Pierce, K.M.; Delaby, L.; Brennan, A.; Fleming, C.; Horan, B. The effect of stocking rate and calving date on grass production, utilization and nutritive value of the sward during the grazing season. Grass Forage Sci. 2013, 68, 364–377. [Google Scholar] [CrossRef]
Variable | Genotype | PGSH | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
EM | LM | 4 | 6 | G | PGSH | ||
Structural characteristics | |||||||
Pre-grazing herbage mass (kg DM/ha) 1,4 | 1956 | 1968 | 2009 | 1931 | 66.7 | NS | NS |
Pre-grazing height (cm) 1 | 11.4 | 11.5 | 11.6 | 11.3 | 0.28 | NS | NS |
Canopy density (kg DM/cm/ha) 2 | 286 | 277 | 290 | 276 | 5.2 | NS | 0.06 |
Post-grazing sward height (cm) 1 | 5.1 | 5.2 | 4.2 | 5.8 | 0.06 | NS | *** |
Post-grazing herbage mass (kg DM/ha) 1,5 | 438 | 445 | 222 | 589 | 17.2 | NS | *** |
Reduced herbage mass (kg DM/ha) 1,6 | 1518 | 1523 | 1787 | 1342 | 64.8 | NS | *** |
Grazing utilisation (%) | 76 | 76 | 88 | 68 | 0.9 | NS | *** |
Sward morphology 3 | |||||||
Leaf (%) | 72 | 72 | 71 | 73 | 1.5 | NS | NS |
Stem (%) | 17 | 17 | 17 | 17 | 1.2 | NS | NS |
Dead (%) | 11 | 11 | 12 | 10 | 0.9 | NS | * |
Pre-grazing leaf mass (kg DM/ha) | 1340 | 1336 | 1547 | 1128 | 28.1 | NS | *** |
Pre-grazing stem mass (kg DM/ha) | 322 | 307 | 375 | 255 | 20.6 | NS | *** |
Pre-grazing dead mass (kg DM/ha) | 203 | 220 | 268 | 155 | 18.1 | NS | *** |
Feed allowance | |||||||
Daily herbage allowance (kg DM/animal/day) 1,7 | 7.9 | 7.7 | 6.3 | 8.8 | 0.51 | NS | ** |
Daily area grazed (m2/steer/day) | 38 | 36 | 31 | 41 | 1.9 | NS | *** |
Average residency time (days) | 3.8 | 4.0 | 4.6 | 3.4 | 0.16 | NS | *** |
Average weekly pasture cover (kg DM/ha) 1 | 1026 | 1039 | 1050 | 1015 | 35.6 | NS | NS |
Average silage herbage mass (kg DM/ha) 1 | 2292 | 2314 | 2212 | 2468 | 90.4 | NS | 0.06 |
Variable | Genotype | PGSH | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
EM | LM | 4 | 6 | G | PGSH | ||
DM (g/kg) | 214 | 215 | 222 | 209 | 3.1 | NS | ** |
DM composition (g/kg DM) | |||||||
OMD | 776 | 778 | 763 | 788 | 10.2 | NS | 0.1 |
DMD | 782 | 781 | 766 | 795 | 10.4 | NS | 0.07 |
CP | 155 | 155 | 146 | 162 | 6.57 | NS | 0.1 |
NDF | 423 | 432 | 429 | 426 | 15.1 | NS | NS |
ADF | 241 | 235 | 240 | 237 | 6.8 | NS | NS |
WSC | 271 | 268 | 262 | 275 | 18.3 | NS | NS |
Ash | 109 | 108 | 118 | 101 | 4.1 | NS | ** |
Variable | Genotype | PGSH | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
EM | LM | 4 | 6 | G | PGSH | ||
Steer DMI (kg/day) 1 | 6.2 | 5.7 | 4.7 | 7.2 | 0.39 | NS | ** |
Eating time per kg DMI (min) 2 | 87.2 | 97.2 | 108.7 | 75.8 | 5.29 | NS | ** |
DMI per grazing bout (kg) | 0.65 | 0.60 | 0.50 | 0.75 | 0.051 | NS | ** |
Bite mass (g/DM) | 0.24 | 0.23 | 0.20 | 0.27 | 0.017 | NS | * |
Intake rate (g/min) 3 | 14.4 | 13.1 | 11.3 | 16.2 | 1.05 | NS | ** |
Variable | Genotype | PGSH | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
EM | LM | 4 | 6 | G | PGSH | ||
First 24 h | |||||||
Grazing behaviour | |||||||
Eating time (mins/d) 1 | 579 | 612 | 607 | 585 | 15.7 | NS | NS |
Pre-hension time (mins/d) 2 | 489 | 515 | 508 | 496 | 19.4 | NS | NS |
Grazing bouts (n/d) | 10.3 | 9.3 | 9.7 | 10.0 | 0.50 | NS | NS |
Grazing bout duration (min/bout) | 61.1 | 66.6 | 66.0 | 61.7 | 2.42 | NS | NS |
Grazing bites (n/d) | 29,929 | 30,381 | 30,606 | 29,704 | 1291.7 | NS | NS |
Bite rate (bites/min) 3 | 61.2 | 59.0 | 60.3 | 59.9 | 0.95 | NS | NS |
Ruminating behaviour | |||||||
Ruminating time (min/d) | 448 | 441 | 433 | 456 | 21.6 | NS | NS |
Ruminating bouts (n/d) | 13.0 | 13.2 | 13.0 | 13.1 | 0.51 | NS | NS |
Ruminating bout duration (min/bout) | 36.8 | 35.8 | 36.0 | 36.6 | 1.44 | NS | NS |
Ruminating mastications (n/d) | 30,648 | 30,352 | 29,113 | 31,887 | 1756.9 | NS | NS |
Ruminating mastication rate (chews/min) | 68.2 | 68.7 | 67.1 | 69.8 | 0.74 | NS | * |
Ruminating boli (n/d) | 509 | 492 | 485 | 515 | 24.3 | NS | NS |
Ruminating mastictions per bolus (n/bolus) | 58.6 | 60.6 | 58.4 | 60.8 | 1.62 | NS | NS |
Ruminating boli per ruminating bout (n/bout) | 37.5 | 39.2 | 37.5 | 39.2 | 0.36 | NS | NS |
Last 24 h | |||||||
Grazing behaviour | |||||||
Eating time (mins/d) 1 | 444 | 453 | 411 | 486 | 12.1 | NS | ** |
Pre-hension time (mins/d) 2 | 372 | 372 | 335 | 409 | 13.5 | NS | ** |
Grazing bouts (n/d) | 9.0 | 10.0 | 9.3 | 9.7 | 0.43 | NS | NS |
Grazing bout duration (min/bout) | 52.6 | 51.1 | 48.7 | 55.0 | 1.96 | NS | * |
Grazing bites (n/d) | 21,028 | 20,098 | 16,585 | 24,541 | 1052.0 | NS | *** |
Bite rate (bites/min) 3 | 55.7 | 53.7 | 49.5 | 59.9 | 1.91 | NS | ** |
Ruminating behaviour | |||||||
Ruminating time (min/d) | 439 | 445 | 423 | 461 | 17.8 | NS | NS |
Ruminating bouts (n/d) | 13.5 | 14.2 | 13.9 | 13.8 | 0.53 | NS | NS |
Ruminating bout duration (min/bout) | 34.1 | 33.1 | 31.9 | 35.3 | 1.29 | NS | 0.09 |
Ruminating mastications (n/d) | 29,238 | 29,792 | 27,392 | 31,638 | 1430.6 | NS | 0.07 |
Ruminating mastication rate (chews/min) | 66.3 | 66.9 | 64.6 | 68.5 | 0.74 | NS | ** |
Ruminating boli (n/d) | 486 | 492 | 467 | 510 | 20.9 | NS | NS |
Ruminating mastications per bolus (n/bolus) | 58.5 | 58.8 | 56.5 | 60.9 | 1.62 | NS | 0.09 |
Ruminating boli per ruminating bout (n/bout) | 36.0 | 34.7 | 33.7 | 37.0 | 0.88 | NS | * |
Variable | Genotype | PGSH | Diet | SEM | p-Value 4,5,6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EM | LM | 4 | 6 | SO | SC | PGSH | Diet | G | PGSH | Diet | |
Dry matter intake (DMI) | |||||||||||
First winter DMI (kg/day) | 5.50 | 5.45 | 5.49 | 5.47 | − | − | 0.038 | − | NS | NS | − |
Pasture DMI (kg/day) | 6.31 | 5.94 | 5.96 | 6.29 | − | − | 0.082 | − | * | * | − |
Finishing period silage DMI (kg/day) | 7.84 | 7.32 | 7.63 | 7.52 | 8.49 | 6.66 | 0.070 | 0.079 | *** | NS | *** |
Finishing period SC DMI (kg/day) | 9.75 | 9.23 | 9.54 | 9.44 | 8.49 | 10.49 | 0.070 | 0.079 | *** | NS | *** |
First winter DMI (g/kg live-weight) | 15.7 | 15.1 | 15.4 | 15.3 | − | − | 0.14 | − | * | NS | − |
Pasture DMI (g/kg live-weight) | 13.5 | 12.7 | 12.9 | 13.2 | − | − | 0.23 | − | * | NS | − |
Finishing DMI (g/kg live-weight) | 15.8 | 15.3 | 15.9 | 15.2 | 14.2 | 16.9 | 0.15 | 0.13 | * | * | *** |
First winter FCR 1 | 16.7 | 16.5 | 16.6 | 17.1 | − | − | 0.72 | − | NS | NS | − |
Pasture FCR 1 | 6.6 | 7.0 | 7.0 | 6.6 | − | − | 0.19 | − | NS | NS | − |
Finishing period FCR 1 | 10.6 | 10.9 | 10.4 | 11.2 | 11.6 | 10.1 | 0.29 | 0.33 | NS | 0.08 | * |
Average daily gain (ADG) (kg) | |||||||||||
First winter | 0.33 | 0.33 | 0.33 | 0.32 | − | − | 0.017 | − | NS | NS | − |
Pasture 2 | 0.95 | 0.85 | 0.85 | 0.95 | − | − | 0.020 | − | ** | ** | − |
Finishing period | 0.92 | 0.85 | 0.92 | 0.84 | 0.73 | 1.04 | 0.028 | 0.032 | 0.10 | 0.08 | *** |
ADG weaning to slaughter 3 | 0.72 | 0.66 | 0.68 | 0.71 | 0.65 | 0.74 | 0.010 | 0.010 | ** | 0.08 | *** |
Carcass gain weaning to slaughter 3 | 0.40 | 0.38 | 0.38 | 0.40 | 0.36 | 0.42 | 0.006 | 0.006 | NS | 0.07 | *** |
Live-weight (kg) | |||||||||||
Housing first winter | 326 | 338 | 332 | 332 | − | − | 3.8 | − | 0.07 | NS | − |
Turnout to pasture | 375 | 386 | 379 | 382 | − | − | 5.2 | − | NS | NS | − |
Housing finishing period | 561 | 553 | 545 | 569 | 555 | 559 | 3.3 | 3.3 | 0.10 | *** | NS |
Slaughter 4 | 670 | 653 | 655 | 669 | 641 | 682 | 3.9 | 4.5 | * | * | *** |
Carcass traits | |||||||||||
Carcass weight (kg) | 367 | 376 | 366 | 377 | 353 | 390 | 3.4 | 2.7 | NS | 0.07 | *** |
Kill-out proportion (g/kg) | 548 | 577 | 560 | 564 | 552 | 573 | 2.8 | 2.6 | *** | NS | *** |
Conformation score (1–15) | 7.11 | 8.61 | 7.92 | 7.81 | 7.19 | 8.53 | 0.202 | 0.206 | *** | NS | ** |
Fat score (1–15) 5 | 8.50 | 6.81 | 7.58 | 7.72 | 6.78 | 8.53 | 0.146 | 0.162 | *** | NS | *** |
Subcutaneous fat colour | |||||||||||
“L” | 72.3 | 71.9 | 72.3 | 71.9 | 72.3 | 71.9 | 0.29 | 0.31 | NS | NS | NS |
“a” 6 | 10.9 | 9.5 | 10.0 | 10.4 | 9.3 | 11.1 | 0.19 | 0.23 | ** | NS | ** |
“b” | 23.3 | 22.8 | 23.0 | 23.2 | 22.8 | 23.4 | 0.24 | 0.24 | NS | NS | NS |
Genotype | PGSH | Diet | SEM | p-Value 1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ultrasonic Measurement | Time Interval | EM | LM | 4 | 6 | SO | SC | G + PGSH | Diet | G | PGSH | Diet |
Rib fat depth | Turnout to pasture | 2.54 | 1.86 | 2.25 | 2.16 | 0.073 | *** | NS | ||||
Housing finishing winter | 3.77 | 2.45 | 2.79 | 3.43 | 2.99 | 3.22 | 0.174 | 0.205 | *** | * | NS | |
Pre-slaughter 1 | 6.29 | 4.25 | 5.46 | 5.09 | 4.22 | 6.33 | 0.265 | 0.287 | *** | NS | ** | |
Lumbar fat depth | Turnout to pasture | 2.36 | 1.78 | 2.11 | 2.03 | 0.058 | *** | NS | ||||
Housing finishing winter | 2.65 | 2.05 | 2.30 | 2.40 | 2.27 | 2.43 | 0.103 | 0.136 | ** | NS | NS | |
Pre-slaughter | 4.07 | 2.81 | 3.60 | 3.29 | 2.91 | 3.98 | 0.148 | 0.178 | *** | NS | ** | |
Rump fat | Turnout to pasture | 2.40 | 1.80 | 2.19 | 2.01 | 0.109 | ** | NS | ||||
Housing finishing winter | 3.58 | 2.30 | 2.77 | 3.11 | 2.87 | 3.01 | 0.138 | 0.119 | *** | NS | NS | |
Pre-slaughter | 5.74 | 3.47 | 4.70 | 4.51 | 3.74 | 5.47 | 0.138 | 0.222 | *** | NS | ** | |
M. longissimus depth | Turnout to pasture | 50.1 | 55.5 | 53.6 | 52.0 | 0.75 | *** | NS | ||||
Housing finishing winter | 58.4 | 63.0 | 59.0 | 62.4 | 60.3 | 61.1 | 0.68 | 0.64 | ** | ** | NS | |
Pre-slaughter | 64.1 | 69.9 | 66.5 | 67.5 | 64.8 | 69.2 | 0.74 | 0.64 | *** | NS | *** |
Variable | Genotype | PGSH | SEM | p-Value | |||
---|---|---|---|---|---|---|---|
EM | LM | 4 | 6 | G | PGSH | ||
Grazing rotation cycles | |||||||
Number of grazing rotation cycles | 3.90 | 3.80 | 3.53 | 4.15 | 0.11 | NS | *** |
Average rest period (days) | 47.0 | 48.9 | 51.9 | 44.3 | 2.03 | NS | * |
Average grazing rotation cycle (days) | 50.4 | 52.3 | 55.3 | 47.7 | 2.00 | NS | * |
Herbage growth rate (kg DM/ha/day) | |||||||
Average growth rate | 41.0 | 40.2 | 42.9 | 38.5 | 1.71 | NS | 0.07 |
Early season | 74.8 | 75.6 | 74.1 | 75.0 | 6.06 | NS | NS |
Mid-season | 38.2 | 36.6 | 42.9 | 32.6 | 2.49 | NS | 0.06 |
Late season | 33.5 | 33.3 | 33.1 | 32.8 | 2.53 | NS | NS |
Herbage accumulation (kg DM/ha) | |||||||
Total herbage accumulation | 7504 | 7595 | 7802 | 7296 | 174.7 | NS | * |
of which grazed | 4725 | 4605 | 4463 | 4867 | 438.8 | NS | NS |
of which removed as silage | 2165 | 2301 | 2752 | 1714 | 408.8 | NS | 0.08 |
of which was the closing cover | 614 | 689 | 588 | 715 | 70.8 | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, P.R.; McGee, M.; Moloney, A.P.; Kelly, A.K.; O’Riordan, E.G. Effect of Post-Grazing Sward Height, Sire Genotype and Indoor Finishing Diet on Steer Intake, Growth and Production in Grass-Based Suckler Weanling-to-Beef Systems. Animals 2021, 11, 2623. https://doi.org/10.3390/ani11092623
Doyle PR, McGee M, Moloney AP, Kelly AK, O’Riordan EG. Effect of Post-Grazing Sward Height, Sire Genotype and Indoor Finishing Diet on Steer Intake, Growth and Production in Grass-Based Suckler Weanling-to-Beef Systems. Animals. 2021; 11(9):2623. https://doi.org/10.3390/ani11092623
Chicago/Turabian StyleDoyle, Peter R., Mark McGee, Aidan P. Moloney, Alan K. Kelly, and Edward G. O’Riordan. 2021. "Effect of Post-Grazing Sward Height, Sire Genotype and Indoor Finishing Diet on Steer Intake, Growth and Production in Grass-Based Suckler Weanling-to-Beef Systems" Animals 11, no. 9: 2623. https://doi.org/10.3390/ani11092623
APA StyleDoyle, P. R., McGee, M., Moloney, A. P., Kelly, A. K., & O’Riordan, E. G. (2021). Effect of Post-Grazing Sward Height, Sire Genotype and Indoor Finishing Diet on Steer Intake, Growth and Production in Grass-Based Suckler Weanling-to-Beef Systems. Animals, 11(9), 2623. https://doi.org/10.3390/ani11092623