Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork (Ciconia ciconia) Nestlings
Abstract
:Simple summary
Abstract
1. Introduction
- Optimize protocols for measurement of the following biomarkers in the collected blood samples, as well as adjust for the microplate reader: acetylcholinesterase, carboxylesterase, glutathione S-transferase and glutathione reductase activities, reactive oxygen species and glutathione levels, as well as total protein content.
- Determine the basal activities of the measured biomarkers in the blood of white stork nestlings from Croatia.
- Determine the sex of the white stork nestlings from the sampled blood.
2. Materials and Methods
2.1. Field Procedure and Blood Extraction
2.2. Sample Preparation
2.3. Chemicals
2.4. Enzymatic Biomarkers
2.4.1. Protocol for Measurement of Acetylcholinesterase (AChE) Activity
2.4.2. Protocol for Measurement of Carboxylesterase (CES) Activity
2.4.3. Protocol for Measurement of Glutathione S-Transferase (GST) Activity
2.4.4. Protocol for Measurement of Glutathione Reductase (GR) Activity
2.5. Fluorescent Dyes Protocols
2.5.1. CellTracker™ Green CMFDA (GSH) Dye
2.5.2. CM-H2DCFDA (ROS) Dye
2.6. Protein Quantification Assay
2.7. Sex Determination
2.8. Data Analysis
3. Results and Discussion
3.1. Sex Determination
3.2. Enzymatic Biomarkers
3.2.1. Overview of the Results
3.2.2. Acetylcholinesterase and Carboxylesterase Activity
3.2.3. Glutathione S-Transferase and Glutathione Reductase Activity
3.3. Fluorescent Dyes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- White Stork (Ciconia ciconia)—BirdLife Species Factsheet. Available online: http://datazone.birdlife.org/species/factsheet/white-stork-ciconia-ciconia (accessed on 22 October 2020).
- Rotics, S.; Turjeman, S.; Kaatz, M.; Resheff, Y.S.; Zurell, D.; Sapir, N.; Eggers, U.; Fiedler, W.; Flack, A.; Jeltsch, F.; et al. Wintering in Europe instead of Africa enhances juvenile survival in a long-distance migrant. Anim. Behav. 2017, 1, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Gordo, O.; Sanz, J.J.; Lobo, J.M. Spatial patterns of white stork (Ciconia ciconia) migratory phenology in the Iberian Peninsula. J. Ornithol. 2007, 148, 293–308. [Google Scholar] [CrossRef]
- Blanco, G. Population dynamics and communal roosting of White Storks foraging at a spanish refuse dump. Waterbirds 1996, 19, 273–276. [Google Scholar] [CrossRef]
- Del Hoyo, J.; Elliot, S.A.; Sargatal, J. Handbook of the Birds of the World; Lynx Edicions: Birdlife Int.: Barcelona, Spain, 1992. [Google Scholar]
- López-García, A.; Sanz-Aguilar, A.; Aguirre, J.I. The trade-offs of foraging at landfills: Landfill use enhances hatching success but decrease the juvenile survival of their offspring on white storks (Ciconia ciconia). Sci. Total Environ. 2021, 778, 146217. [Google Scholar] [CrossRef] [PubMed]
- Kruszyk, R.; Ciach, M. White Storks, Ciconia ciconia, forage on rubbish dumps in Poland-a novel behaviour in population. Eur. J. Wildl. Res. 2010, 56, 83–87. [Google Scholar] [CrossRef] [Green Version]
- Pineda-Pampliega, J.; Ramiro, Y.; Herrera-Dueñas, A.; Martinez-Haro, M.; Hernández, J.M.; Aguirre, J.I.; Höfle, U. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. Sci. Total Environ. 2021, 775, 145197. [Google Scholar] [CrossRef] [PubMed]
- Tortosa, F.S.; Caballero, J.M.; Reyes-López, J. Effect of rubbish dumps on breeding success in the White Stork in Southern Spain. Waterbirds 2002, 25, 39–43. [Google Scholar] [CrossRef]
- Blázquez, E.; Ji, A.; Mateo, R.; Jiménez, B. The use of White stork (Ciconia ciconia) nestlings in a biomonitoring programme for organochlorines through the region of Madrid (Spain). Organohalogen Compd. 2006, 68, 2081–2084. [Google Scholar]
- Goutner, V.; Furness, R.W. Feathers of White Stork Ciconia ciconia chicks in north-eastern Greece, as indicators of geographical variation in mercury contamination. Toxicol. Environ. Chem. 1998, 67, 379–390. [Google Scholar] [CrossRef]
- Tkachenko, H.; Kurhaluk, N. Pollution-induced oxidative stress and biochemical parameter alterations in the blood of white stork nestlings Ciconia ciconia from regions with different degrees of contamination in Poland. J. Environ. Monit. 2012, 14, 3182–3191. [Google Scholar] [CrossRef]
- Parsons, K.C.; Matz, A.C.; Hooper, M.J.; Pokras, M.A. Monitoring wading bird exposure to agricultural chemicals using serum cholinesterase activity. Environ. Toxicol. Chem. 2000, 19, 1317–1323. [Google Scholar] [CrossRef]
- Burger, J. Metals in avian feathers: Bioindicators of environmental pollution. Rev. Environ. Toxicol. 1993, 5, 203–311. [Google Scholar]
- Furness, R.W. Birds as monitors of pollutants. In Birds as Monitors of Environmental Change; Springer: Dodlek, The Netherlands, 1993; pp. 86–143. [Google Scholar]
- Janssens, E.; Dauwe, T.; Bervoets, L.; Eens, M. Inter- and intraclutch variability in heavy metals in feathers of great tit nestlings (Parus major) along a pollution gradient. Arch. Environ. Contam. Toxicol. 2002, 43, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramírez, P.; Martínez-López, E.; María-Mojica, P.; León-Ortega, M.; García-Fernández, A.J. Blood lead levels and δ-ALAD inhibition in nestlings of Eurasian Eagle Owl (Bubo bubo) to assess lead exposure associated to an abandoned mining area. Ecotoxicology 2011, 20, 131–138. [Google Scholar] [CrossRef]
- Marsili, L.; Fossi, M.C.; Casini, S.; Focardi, S. PCB levels in bird blood and relationship to MFO responses. Chemosphere 1996, 33, 699–710. [Google Scholar] [CrossRef]
- Maitra, S.; Anam, K.; Sarkar, R. Impact of Quinalphos on Blood Glucose, Liver and Muscle Glycogen, and Acetylcholinestrerase (AChE) Activity in Brain and Pancreas in Roseringed Tarakeet (Psittacula krameri Neumann). Pestic. Res. J. 1994, 6, 121–126. [Google Scholar]
- Anam, K.K.; Maitra, S.K. Impact of quinalphos on blood glucose and acetylcholinesterase (AChE) activity in brain and pancreas in a roseringed parakeet (Psittacula krameri borealis: Newmann). Arch. Environ. Contam. Toxicol. 1995, 29, 20–23. [Google Scholar] [CrossRef]
- Hart, A.D.M. Relationships between behavior and the inhibition of acetylcholinesterase in birds exposed to organophosphorus pesticides. Environ. Toxicol. Chem. 1993, 12, 321–336. [Google Scholar] [CrossRef]
- Soliman, K.M.; Mohallal, E.M.E.; Alqahtani, A.R.M. Little egret (Egretta garzetta) as a bioindicator of heavy metal contamination from three different localities in Egypt. Environ. Sci. Pollut. Res. 2020, 27, 23015–23025. [Google Scholar] [CrossRef]
- Schmoll, T.; Dietrich, V.; Winkel, W.; Lubjuhn, T. Blood sampling does not affect fledging success and fledging local recruitment in coal tits (Parus ater). J. Ornithol. 2004, 145, 79–80. [Google Scholar] [CrossRef]
- Bjedov, D.; Mikuška, A.; Velki, M.; Lončarić, Z.; Mikuška, T. The first analysis of heavy metals in the Grey Heron Ardea cinerea feathers from the Croatian colonies. Larus-Godišnjak Zavoda Ornitol. Hrvat. Akad. Znan. Umjetnosti. 2020, 55, 7–25. [Google Scholar] [CrossRef]
- Vorkamp, K.; Falk, K.; Møller, S.; Bossi, R.; Rigét, F.F.; Sørensen, P.B. Perfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) add to the chemical cocktail in peregrine falcon eggs. Sci. Total Environ. 2019, 648, 894–901. [Google Scholar] [CrossRef]
- Bauerová, P.; Krajzingrová, T.; Těšický, M.; Velová, H.; Hraníček, J.; Musil, S.; Svobodová, J.; Albrecht, T.; Vinkler, M. Longitudinally monitored lifetime changes in blood heavy metal concentrations and their health effects in urban birds. Sci. Total Environ. 2020, 723, 138002. [Google Scholar] [CrossRef] [PubMed]
- Bottini, C.L.J.; MacDougall-Shackleton, S.A.; Branfireun, B.A.; Hobson, K.A. Feathers accurately reflect blood mercury at time of feather growth in a songbird. Sci. Total Environ. 2021, 775, 145739. [Google Scholar] [CrossRef]
- Coeurdassier, M.; Fritsch, C.; Faivre, B.; Crini, N.; Scheifler, R. Partitioning of Cd and Pb in the blood of European blackbirds (Turdus merula) from a smelter contaminated site and use for biomonitoring. Chemosphere 2012, 87, 1368–1373. [Google Scholar] [CrossRef] [PubMed]
- Fairbrother, A. Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations. J. Wildl. Dis. 1997, 33, 383–384. [Google Scholar] [CrossRef] [Green Version]
- van den Heever, L.; Smit-Robinson, H.; Naidoo, V.; McKechnie, A.E. Blood and bone lead levels in South Africa’s Gyps vultures: Risk to nest-bound chicks and comparison with other avian taxa. Sci. Total Environ. 2019, 669, 471–480. [Google Scholar] [CrossRef]
- Bartkowiak, D.J.; Wilson, B.W. Avian plasma carboxylesterase activity as a potential biomarker of organophosphate pesticide exposure. Environ. Toxicol. Chem. 1995, 14, 2149–2153. [Google Scholar] [CrossRef]
- Elarabany, N.; El-Batrawy, O. Physiological changes in the Cattle Egret, Bubulcus ibis, as a bioindicator of air pollution in New Damietta City, Egypt. Afr. J. Biol. Sci. 2019, 15, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Meharg, A.A.; Pain, D.J.; Ellam, R.M.; Baos, R.; Olive, V.; Joyson, A.; Powell, N.; Green, A.J.; Hiraldo, F. Isotopic identification of the sources of lead contamination for white storks (Ciconia ciconia) in a marshland ecosystem (Doñana, S.W. Spain). Sci. Total Environ. 2002, 300, 81–86. [Google Scholar] [CrossRef]
- Oropesa, A.L.; Gravato, C.; Sánchez, S.; Soler, F. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides. Ecotoxicol. Environ. Saf. 2013, 97, 131–138. [Google Scholar] [CrossRef]
- Oropesa, A.L.; Gravato, C.; Guilhermino, L.; Soler, F. Antioxidant defences and lipid peroxidation in wild White Storks, Ciconia ciconia, from Spain. J. Ornithol. 2013, 154, 971–976. [Google Scholar] [CrossRef]
- Mikuska, T.; Fenyõsi, L.; Tomik, A.; Eichner, K.; Mikuška, A.; Šalić, V. Protocol za praćenje stanja (monitoringa) ptica (Aves) u aluvijalnim nizinama kontinentalnog dijela Hrvatske. Priručnik Istraživanje Bioraznolikosti Rijeke Drave Sveučilište Pečuhu Pécs 2007, 189–202. (In Croatian). Available online: http://zootax.ttk.pte.hu/img_konyv/fejezetek/189-202_Mikuska_et_al.pdf (accessed on 16 November 2020).
- Mikuska, T. Nacionalni program gnijezdeće populacije bijele rode. HAOP 2013. (In Croatian). Available online: http://www.haop.hr/sites/default/files/uploads/dokumenti/03_prirodne/monitoring_prog/Ciconia%20ciconia_Programme.pdf?fbclid=IwAR3hYet710y-fWcTADHmctYrwSkBAk6HDjUoqQB7OW6XOAd5iRMfge0JVdk (accessed on 17 November 2020).
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Hosokawa, M.; Satoh, T. Measurement of Carboxylesterase (CES) Activities. Curr. Protoc. Toxicol. 2001, 10, 1–14. [Google Scholar] [CrossRef]
- Habig, W.H.; Jakoby, W.B. Assays for Differentiation of Glutathione S-Transferases. Methods Enzymol. 1981, 77, 398–405. [Google Scholar] [PubMed]
- Lackmann, C.; Santos, M.M.; Rainieri, S.; Barranco, A.; Hollert, H.; Spirhanzlova, P.; Velki, M.; Seiler, T.-B. Novel procedures for whole organism detection and quantification of fluorescence as a measurement for oxidative stress in zebrafish (Danio rerio) larvae. Chemosphere 2018, 197, 200–209. [Google Scholar] [CrossRef]
- Fridolfsson, A.K.; Ellegren, H. A Simple and Universal Method for Molecular Sexing of Non-Ratite Birds. J. Avian Biol. 1999, 30, 116–121. [Google Scholar] [CrossRef]
- Begović, L.; Mihić, I.; Pospihalj, T.; Mikuška, T.; Mlinarić, S.; Mikuška, A. Evaluation of methods for molecular sex-typing of three heron species from different DNA sources. Turkish J. Zool. 2017, 41, 593–598. [Google Scholar] [CrossRef]
- GraphPad Prism Version 8.4.3. for Windows, GraphPad Software, La Jolla, California, USA. Available online: www.graphpad.com (accessed on 12 June 2020).
- Aleksić, J.M.; Stojanović, D.; Banović, B.; Jančić, R. A simple and efficient DNA isolation method for Salvia officinalis. Biochem. Genet. 2012, 50, 881–892. [Google Scholar] [CrossRef]
- Glasel, J.A. Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques 1995, 18, 62–63. [Google Scholar]
- Usman, T.; Yu, Y.; Liu, C.; Fan, Z.; Wang, Y. Comparison of methods for high quantity and quality genomic DNA extraction from raw cow milk. Genet. Mol. Res. 2014, 13, 3319–3328. [Google Scholar] [CrossRef]
- Hassan, R.; Husin, A.; Sulong, S.; Yusoff, S.; Johan, M.F.; Yahaya, B.H.; Ang, C.Y.; Ghazali, S.; Cheong, S.K. Guidelines for nucleic acid detection and analysis in hematological disorders. Malays. J. Pathol. 2015, 35, 165–173. [Google Scholar]
- Gallagher, S. Quantitation of Nucleic Acids with Absorption Spectroscopy. In Current Protocols in Protein Science; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Liu, P.F.; Avramova, L.V.; Park, C. Revisiting absorbance at 230 nm as a protein unfolding probe. Anal. Biochem. 2009, 389, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Stulnig, T.M.; Amberger, A. Exposing contaminating phenol in nucleic acid preparations. Biotechniques 1994, 16, 402–404. [Google Scholar] [PubMed]
- Lucena-Aguilar, G.; Sánchez-López, A.M.; Barberán-Aceituno, C.; Carrillo-Ávila, J.A.; López-Guerrero, J.A.; Aguilar-Quesada, R. DNA Source selection for downstream applications based on DNA quality indicators Analysis. In Biopreservation and Biobanking; Mary Ann Liebert Inc.: Larchmont, NY, USA, 2016; pp. 264–270. [Google Scholar]
- Pértille, F.; Brantsæter, M.; Nordgreen, J.; Coutinho, L.; Janczak, A.; Jensen, P.; Guerrero-Bosagna, C. DNA methylation profiles in red blood cells of adult hens correlate with their rearing conditions. J. Exp. Biol. 2017, 220, 3579–3587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padilla, S.; Wilson, V.Z.; Nostrandt, A.C. A novel method that markedly increases the sensitivity of the erythrocyte acetylcholinesterase assay, suitable for use in pesticide-treated rats. Toxicol. Mech. Methods. 1995, 5, 41–49. [Google Scholar] [CrossRef]
- Quinn, D.M. Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States. Chem. Rev. 1987, 87, 955–979. [Google Scholar] [CrossRef]
- Dubé, L.; Parent, A. The monoamine-containing neurons in avian brain: I. A study of the brain stem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry. J. Comp. Neurol. 1981, 196, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Gard, N.W.; Hooper, M.J. Age-dependent changes in plasma and brain cholinesterase activities of eastern bluebirds and European starlings. J. Wildl. Dis. 1993, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.H. Acetylcholinesterase in the hypothalamo-hypophyseal axis of the white-crowned sparrow, Zonotrichia leucophrys gambelii. Gen. Comp. Endocrinol. 1968, 11, 51–63. [Google Scholar] [CrossRef]
- Tully, T.N.; Osofsky, A.; Jowett, P.L.H.; Hosgood, G. Acetylcholinesterase concentrations in heparinized blood of Hispaniolan Amazon parrots (Amazona ventralis). J. Zoo Wildl Med. 2003, 34, 411–413. [Google Scholar] [CrossRef]
- Westlake, G.E.; Bunyan, P.J.; Martin, A.D.; Stanley, P.I.; Steed, L.C. Carbamate Poisoning. Effects of Selected Carbamate Pesticides on Plasma Enzymes and Brain Esterases of Japanese Quail (Coturnix coturnix japonica). J. Agric. Food Chem. 1981, 29, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.A.; Monteiro, M.S.; Soares, A.M.V.M.; Loureiro, S. Characterization of cholinesterases in plasma of three portuguese native bird species: Application to biomonitoring. PLoS ONE 2012, 7, 33975. [Google Scholar] [CrossRef]
- Abdollahi, M.; Jalali, N.; Ali Jafari, A. Organophosphate-induced chronic toxicity in occupationally exposed workers. MJIRI 1995, 9, 221–225. [Google Scholar]
- Tinoco-Ojanguren, R.; Halperin, D.C. Poverty, production, and health: Inhibition of erythrocyte cholinesterase via occupational exposure to organophosphate insecticides in Chiapas, Mexico. Arch. Environ. Health 1998, 53, 29–35. [Google Scholar] [CrossRef]
- Potter, P.; Wadkins, R. Carboxylesterases—Detoxifying Enzymes and Targets for Drug Therapy. Curr. Med. Chem. 2006, 13, 1045–1054. [Google Scholar] [CrossRef]
- Redinbo, M.R.; Potter, P.M. Mammalian carboxylesterases: From drug targets to protein therapeutics. Drug Discov. Today 2005, 10, 313–325. [Google Scholar] [CrossRef]
- Morcillo, S.M.; Perego, M.C.; Vizuete, J.; Caloni, F.; Cortinovis, C.; Fidalgo, L.E.; López-Beceiro, A.; Míguez, M.P.; Soler, F.; Pérez-López, M. Reference intervals for B-esterases in gull, Larus michahellis (Nauman, 1840) from Northwest Spain: Influence of age, gender, and tissue. Environ. Sci. Pollut. Res. 2018, 25, 1533–1542. [Google Scholar] [CrossRef] [PubMed]
- Sogorb, M.A.; Ganga, R.; Vilanova, E.; Soler, F. Plasma phenylacetate and 1-naphthyl acetate hydrolyzing activities of wild birds as possible non-invasive biomarkers of exposure to organophosphorus and carbamate insecticides. Toxicol. Lett. 2007, 168, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Stedman, E.; Stedman, E. The relative choline-esterase activities of serum and corpuscles from the blood of certain species. Biochem. J. 1935, 29, 2107–2111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lari, L.; Massi, A.; Fossi, M.C.; Casini, S.; Leonzio, C.; Focardi, S. Evaluation of toxic effects of the organophosphorus insecticide azinphos-methyl in experimentally and naturally exposed birds. Arch. Environ. Contam. Toxicol. 1994, 26, 234–239.57. [Google Scholar] [CrossRef]
- Fossi, M.C.; Leonzio, C.; Massi, A.; Lari, L.; Casini, S. Serum esterase inhibition in birds: A nondestructive biomarker to assess organophosphorus and carbamate contamination. Arch. Environ. Contam. Toxicol. 1992, 23, 99–104. [Google Scholar] [CrossRef]
- Isaksson, C.; Sturve, J.; Almroth, B.C.; Andersson, S. The impact of urban environment on oxidative damage (TBARS) and antioxidant systems in lungs and liver of great tits, Parus major. Environ. Res. 2009, 109, 46–50. [Google Scholar] [CrossRef]
- Leaver, M.J.; George, S.G. A piscine glutathione S-transferase which efficiently conjugates the end-products of lipid peroxidation. Mar. Environ. Res. 1998, 46, 71–74. [Google Scholar] [CrossRef]
- Hayes, J.D.; Pulford, D.J. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the lsoenzymes to cancer chemoprotection and drug resistance part I. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 445–520. [Google Scholar] [CrossRef]
- Nijhoff, W.A.; Mulder, T.P.J.; Verhagen, H.; Van Poppel, G.; Peters, W.H.M. Effects of consumption of brussels sprouts on plasma and urinary glutathione S-transferase class-α and -π in humans. Carcinogenesis 1995, 16, 955–957. [Google Scholar] [CrossRef]
- Abbasi, N.A.; Arukwe, A.; Jaspers, V.L.; Eulaers, I.; Mennilo, E.; Ibor, O.; Frantz, A.; Covaci, A.; Malik, R.N. Oxidative stress responses in relationship to persistent organic pollutant levels in feathers and blood of two predatory bird species from Pakistan. Sci. Total Environ. 2017, 580, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Virosta, P.; Espín, S.; Ruiz, S.; Panda, B.; Ilmonen, P.; Schultz, S.L.; Karouna-Renier, N.; García-Fernández, A.J.; Eeva, T. Arsenic-related oxidative stress in experimentally-dosed wild great tit nestlings. Environ. Pollut. 2020, 259, 113813. [Google Scholar] [CrossRef]
- Sánchez-Virosta, P.; Espín, S.; Ruiz, S.; Stauffer, J.; Kanerva, M.; García-Fernández, A.J.; Eeva, T. Effects of calcium supplementation on oxidative status and oxidative damage in great tit nestlings inhabiting a metal-polluted area. Environ. Res. 2019, 171, 484–492. [Google Scholar] [CrossRef]
- Berglund, Å.M.M.; Sturve, J.; Förlin, L.; Nyholm, N.E.I. Oxidative stress in pied flycatcher (Ficedula hypoleuca) nestlings from metal contaminated environments in northern Sweden. Environ. Res. 2007, 105, 330–339. [Google Scholar] [CrossRef]
- Berglund, Å.M.M.; Rainio, M.J.; Kanerva, M.; Nikinmaa, M.; Eeva, T. Antioxidant status in relation to age, condition, reproductive performance and pollution in three passerine species. J. Avian. Biol. 2014, 45, 235–246. [Google Scholar] [CrossRef]
- de la Casa-Resino, I.; Hernández-Moreno, D.; Castellano, A.; Soler Rodríguez, F.; Pérez-López, M. Biomarkers of oxidative status associated with metal pollution in the blood of the white stork (Ciconia ciconia) in Spain. Toxicol. Environ. Chem. 2015, 97, 588–598. [Google Scholar] [CrossRef]
- Espín, S.; Martínez-López, E.; León-Ortega, M.; Martínez, J.E.; García-Fernández, A.J. Oxidative stress biomarkers in Eurasian eagle owls (Bubo bubo) in three different scenarios of heavy metal exposure. Environ. Res. 2014, 131, 134–144. [Google Scholar] [CrossRef]
- Espín, S.; Martínez-López, E.; Jiménez, P.; María-Mojica, P.; García-Fernández, A.J. Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Environ. Res. 2014, 129, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Spalding, M.G.; Frederick, P.C. Subchronic effects of methylmercury on plasma and organ biochemistries in great egret nestlings. Environ. Toxicol. Chem. 2005, 24, 3078–3084. [Google Scholar] [CrossRef]
- Koivula, M.J.; Kanerva, M.; Salminen, J.P.; Nikinmaa, M.; Eeva, T. Metal pollution indirectly increases oxidative stress in great tit (Parus major) nestlings. Environ. Res. 2011, 111, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Rainio, M.J.; Kanerva, M.; Salminen, J.P.; Nikinmaa, M.; Eeva, T. Oxidative status in nestlings of three small passerine species exposed to metal pollution. Sci. Total Environ. 2013, 454–455, 466–473. [Google Scholar] [CrossRef]
- Carlberg, I.; Mannervik, B. Glutathione reductase. Methods Enzymol. 1985, 113, 484–490. [Google Scholar] [PubMed]
- Kamiński, P.; Kurhalyuk, N.; Jerzak, L.; Kasprzak, M.; Tkachenko, H.; Klawe, J.J.; Szady-Grad, M.; Koim, B.; Wiśniewska, E. Ecophysiological determinations of antioxidant enzymes and lipoperoxidation in the blood of White Stork Ciconia ciconia from Poland. Environ. Res. 2009, 109, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, P.; Kurhalyuk, N.; Kasprzak, M.; Jerzak, L.; Tkachenko, H.; Szady-Grad, M.; Klawe, J.J.; Koim, B. The impact of element-element interactions on antioxidant enzymatic activity in the blood of white stork (Ciconia ciconia) chicks. Arch. Environ. Contam. Toxicol. 2009, 56, 325–337. [Google Scholar] [CrossRef]
- Moreno-Rueda, G.; Redondo, T.; Trenzado, C.E.; Sanz, A.; Zúñiga, J.M. Oxidative stress mediates physiological costs of begging in magpie (Pica Pica) nestlings. PLoS ONE 2012, 7, e40367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tkachenko, H.; Kurhaluk, N. Blood oxidative stress and antioxidant defense profile of White Stork Ciconia ciconia chicks reflect the degree of environmental pollution. Ecol. Quest. 2014, 18, 79. [Google Scholar] [CrossRef] [Green Version]
- Upton, J.R.; Edens, F.W.; Ferket, P.R. The effects of dietary oxidized fat and selenium source on performance, glutathione peroxidase, and glutathione reductase activity in broiler chickens. J. Appl. Poult. Res. 2009, 18, 193–202. [Google Scholar] [CrossRef]
- Humphries, K.M.; Szweda, P.A.; Szweda, L.I. Aging: A shift from redox regulation to oxidative damage. Free Radic. Res. 2006, 40, 1239–1243. [Google Scholar] [CrossRef]
- Spiteller, G. Peroxidation of linoleic acid and its relation to aging and age dependent diseases. Mech. Ageing Dev. 2001, 122, 617–657. [Google Scholar] [CrossRef]
- Kregel, K.C.; Zhang, H.J. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, R18–R36. [Google Scholar] [CrossRef]
- Martin, I.; Grotewiel, M.S. Oxidative damage and age-related functional declines. Mech. Ageing Dev. 2006, 127, 411–423. [Google Scholar] [CrossRef]
- Vleck, C.M.; Haussmann, M.F.; Vleck, D. Avian senescence: Underlying mechanisms. J. Ornithol. 2007, 148, 611–624. [Google Scholar] [CrossRef]
- Couto, N.; Wood, J.; Barber, J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Cheng, F.-Y.; Chiu, H.-W.; Tsai, J.-C.; Fang, C.-Y.; Chen, C.-W.; Wang, Y.-J. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 2014, 35, 4706–4715. [Google Scholar] [CrossRef]
- Velki, M.; Lackmann, C.; Barranco, A.; Artabe, A.E.; Rainieri, S.; Hollert, H.; Seiler, T.-B. Pesticides diazinon and diuron increase glutathione levels and affect multixenobiotic resistance activity and biomarker responses in zebrafish (Danio rerio) embryos and larvae. Environ. Sci. Eur. 2019, 31, 4. [Google Scholar] [CrossRef]
- Lu, S.C. Regulation of glutathione synthesis. Mol. Aspects Med. 2009, 30, 42–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D.P. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol. 2002, 348, 93–112. [Google Scholar]
- Griffith, O.W. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic. Biol. Med. 1999, 27, 922–935. [Google Scholar] [CrossRef]
- Stier, A.; Bize, P.; Schull, Q.; Zoll, J.; Singh, F.; Geny, B.; Gros, F.; Royer, C.; Massemin, S.; Criscuolo, F. Avian erythrocytes have functional mitochondria, opening novel perspectives for birds as animal models in the study of ageing. Front. Zool. 2013, 10, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.L.; Huang, J.Y.; Shyur, L.F. Phytoagents for cancer management: Regulation of nucleic acid oxidation, ROS, and related mechanisms. Oxidative Med. Cell Longev. 2013, 2013, 925804. [Google Scholar] [CrossRef]
Parameter | n | Plasma | S9 | ||||
---|---|---|---|---|---|---|---|
- | - | Mean | SD | Variability (%) | Mean | SD | Variability (%) |
AChE [nmol min−1 mgprot−1] | 16 | 14.79 | 5.12 | 34.60 | 3.13 | 1.26 | 40.21 |
CES [nmol min−1 mgprot−1] | 16 | 21.53 | 9.59 | 44.54 | 5.85 | 1.96 | 33.53 |
GST [nmol min−1 mgprot−1] | 16 | 18.26 | 7.84 | 42.93 | 14.41 | 2.94 | 20.37 |
GR [pmol min−1 mgprot−1] | 16 | 98.11 | 65.67 | 66.94 | 840.55 | 235.42 | 28.01 |
CellTrackerTM Green CMFDA (RFU) | 16 | 7246.07 | 1571.19 | 21.68 | 24683.10 | 7603.60 | 30.80 |
CM-H2DCFDA (RFU) | 16 | 76.29 | 5.09 | 6.68 | 33.04 | 11.55 | 34.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bjedov, D.; Mikuška, A.; Lackmann, C.; Begović, L.; Mikuška, T.; Velki, M. Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork (Ciconia ciconia) Nestlings. Animals 2021, 11, 2341. https://doi.org/10.3390/ani11082341
Bjedov D, Mikuška A, Lackmann C, Begović L, Mikuška T, Velki M. Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork (Ciconia ciconia) Nestlings. Animals. 2021; 11(8):2341. https://doi.org/10.3390/ani11082341
Chicago/Turabian StyleBjedov, Dora, Alma Mikuška, Carina Lackmann, Lidija Begović, Tibor Mikuška, and Mirna Velki. 2021. "Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork (Ciconia ciconia) Nestlings" Animals 11, no. 8: 2341. https://doi.org/10.3390/ani11082341
APA StyleBjedov, D., Mikuška, A., Lackmann, C., Begović, L., Mikuška, T., & Velki, M. (2021). Application of Non-Destructive Methods: Biomarker Assays in Blood of White Stork (Ciconia ciconia) Nestlings. Animals, 11(8), 2341. https://doi.org/10.3390/ani11082341