Prediction of Carcass Traits of Santa Inês Lambs Finished in Tropical Pastures through Biometric Measurements
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sant’Ana, D.A.; Pache, M.C.B.; Martins, J.; Soares, W.P.S.; Melo, S.L.N.; Garcia, V.; Weber, V.A.M.; Heimbach, N.S.; Mateus, R.G.; Pistori, H. Weighing live sheep using computer vision techniques and regression machine learning. Machin. Learn. Applic. 2021, 5, 100076. [Google Scholar] [CrossRef]
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [Green Version]
- Morais, M.G.; Menezes, B.B.; Ribeiro, C.B.; Walker, C.C.; Fernandes, H.J.; Souza, A.R.D.L.; Ítavo, C.C.B.F.; Feijó, G.L.D. Models predict the proportion of bone, muscle, and fat in ewe lamb carcasses from in vivo measurements of the 9th to 11th rib section and of the 12th rib. Semina Ciênc. Agrár. 2016, 37, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Chay-Canul, A.J.; Sarmiento-Franco, L.A.; Salazar-Cuytun, E.R.; Tedeschi, L.O.; Moo-Huchin, V.; Solis, J.R.C.; Piñeiro-Vazquez, A.T. Evaluation of equations to estimate fat content in soft tissues of carcasses and viscera in sheep based on carbon and nitrogen content. Small Rumin. Res. 2019, 178, 106–110. [Google Scholar] [CrossRef]
- Ribeiro, F.R.B.; Tedeschi, L.O.; Rhoades, R.D.; Smith, S.B.; Martin, S.E.; Crouse, S.F. Evaluating the application of dual X-ray energy absorptiometry to assess dissectible and chemical fat and muscle from the 9th-to-11th rib section of beef cattle. Prof. Anim. Sci. 2011, 27, 472–476. [Google Scholar] [CrossRef]
- Barba, L.; Sánchez-Macías, D.; Barba, I.; Rodríguez, N. The potential of non-invasive pre-and post-mortem carcass measurements to predict the contribution of carcass components to slaughter yield of guinea pigs. Meat Sci. 2018, 140, 59–65. [Google Scholar] [CrossRef]
- Bautista-Díaz, E.; Mezo-Solis, J.A. Herrera-Camacho, J.; Cruz-Hernández, A.; Gomez-Vazquez, A.; Tedeschi, L.O.; Lee-Rangel, H.A.; Bello-Pérez, E.V.; Chay-Canul, A.J. Prediction of carcass traits of hair sheep lambs using body measurements. Animals 2020, 10, 1276. [Google Scholar] [CrossRef]
- Costa, R.G.; Lima, A.G.V.D.O.; Ribeiro, N.L.; Medeiros, A.N.D.; Medeiros, G.R.D.; Gonzaga Neto, S.; Oliveira, R.L. Predicting the carcass characteristics of Morada Nova lambs using biometric measurements. R. Bras. Zootec. 2020, 49, e20190179. [Google Scholar] [CrossRef]
- Nigm, A.A.; Abdalla, O.M.; Aboul-Ela, M.B.; Kamel, H.M.; Ahmed, M.A. Meat characteristics of sheep and goat breeds commonly consumed in UAE. 2. Use of body dimensions for predicting body and carcass weights. Emir. J. Food Agric. 1995, 7, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Moneim, A.Y. Body and carcass characteristics of Ossimi, Barki and Rahmani ram lambs raised under intensive production system. Egypt. J. Sheep Goat Sci. 2009, 4, 1–16. [Google Scholar]
- Shehata, M.F. Prediction of live body weight and carcass traits by some live body measurements in Barki lambs. Egypt. J. Anim. Product. 2013, 50, 69–75. [Google Scholar]
- Gomes, M.B.; Neves, M.L.M.W.; Barreto, L.M.G.; Ferreira, M.A.; Monnerat, J.P.I.S.; Carone, G.M.; Morais, J.S.; Veras, A.S.C. Prediction of carcass composition through measurements in vivo and measurements of the carcass of growing Santa Inês sheep. PLoS ONE 2021, 16, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Díaz, E.; Salazar-Cuytun, R.; Chay-Canul, A.J.; Herrera, R.A.G.; Piñeiro-Vázquez, Á.T.; Monforte, J.G.M.; Tedeschi, L.O.; Cruz-Hernández, A.; Gómez-Vázquez, A. Determination of carcass traits in Pelibuey ewes using biometric measurements. Small Rumin. Res. 2017, 147, 115–119. [Google Scholar] [CrossRef]
- Hermuche, P.M.; Maranhão, R.L.A.; Guimarães, R.F.; Carvalho, O.A.; Gomes, R.A.T.; Paiva, S.R.; McManus, C. Dynamics of Sheep Production in Brazil. ISPRS Int. J. Geoinf. 2013, 2, 665–679. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, E.L.A.; García, E.G. Indigenous sheep breeds in Brazil: Potential role for contributing to the sustainability of production systems. Trop. Anim. Health Prod. 2016, 48, 1305–1313. [Google Scholar] [CrossRef]
- Araújo, C.G.F.; Costa, M.G.; Difante, G.S.; Emerenciano Neto, J.V.; Gurgel, A.L.C.; Costa, C.M.; de Araújo, I.M.M.; Silva, G.T.; Medeiros, M.C. Carcass characteristics, meat quality and composition of lambs finished in cultivated pastures. Food Sci. Technol. 2021, 1–6. [Google Scholar] [CrossRef]
- Emerenciano Neto, J.V.; Difante, G.S.; Montagner, D.B.; Bezerra, M.G.S.; Galvão, R.C.P.; Vasconcelos, R.I.G. Características estruturais do dossel e acúmulo de forragem em gramíneas tropicais, sob lotação intermitente e pastejada por ovinos. Biosci. J. 2013, 29, 962–973. [Google Scholar]
- Trindade, T.F.M.; Difante, G.S.; Neto, J.V.E.; Fernandes, L.S.; Araújo, I.M.M.; Véras, E.L.L.; Costa, M.G.; Medeiros, M.C. Medeiros, M.C. Biometry and carcass characteristics of lambs Supplemented in tropical grass pastures during the dry Season. Biosci. J. 2018, 34, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Cezar, M.F.; Sousa, W.D. Carcaças Ovinas e Caprinas: Obtenção, Avaliação e Classificação; Agropecuária Tropical: Uberaba, Brazil, 2007; p. 147. [Google Scholar]
- Osório, J.C.S.; Jardim, P.O.C.; Pimentel, M.A.; Pouey, J.; Osório, M.T.M.; Lüder, W.E.; Borba, M.F. Meat production between castreded and non-castreded lambs. 1. Crossbred Hampshire Down x Corriedale. Cienc. Rural 1999, 29, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Mahieu, M.; Navès, M.; Arquet, R. Predicting the body mass of goats from body measurements. Livest. Res. Rural. Dev. 2011, 23, 1–15. [Google Scholar]
- Gurgel, A.L.C.; Difante, G.S.; Emerenciano Neto, J.V.; Santana, J.C.S.; Dantas, J.L.S.; Roberto, F.F.S.; Campos, N.R.F.; Costa, A.B.G. Use of biometrics in the prediction of body weight in crossbred lambs. Arq. Bras. Med. Vet. Zootec. 2021, 73, 261–264. [Google Scholar] [CrossRef]
- Oliveira, J.P.F.; Ferreira, M.A.; Alves, A.M.S.V.; Melo, A.C.C.; Andrade, I.B.; Urbano, S.A.; Suassuna, J.M.A.; Barros, L.J.A.; Melo, T.T.B. Carcass characteristics of lambs fed spineless cactus as a replacement for sugarcane. Asian-Australas. J. Anim. Sci. 2018, 31, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Silva, F.V.; Borges, I.; Silva, V.L.; Lana, A.M.Q.; Borges, A.L.C.C.; Reis, S.T.; Araújo, A.R.; Matos, A.M. Performance and carcass characteristics of lambs fed a solution of crude glycerin during feedlot and pre-slaughter lairage. R. Bras. Zootec. 2018, 47, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Alsheikh, S.M.; Hammam, A.H.; Mokhtar, M.M. Prediction of some carcass components of fattened Barki lambs using principal components techniques. Egypt. J. Anim. Product. 2007, 44, 63–70. [Google Scholar]
- Shaker, Y.M.; Hammam, A.A. Using some body measurements and physiological responses as predictors for live body, hot carcass and lung weights and lung volume of male Barki sheep. J Agric. Sci. Mansoura Univ. 2008, 33, 6383–6391. [Google Scholar]
- Pinheiro, R.S.B.; Jorge, A.M. Medidas biométricas obtidas in vivo e na carcaça de ovelhas de descarte em diferentes estágios fisiológicos. R. Bras. Zootec. 2010, 39, 440–445. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.M.; Medeiros, N.A.; Oliveira, R.L.; Gonzaga Neto, S.; Queiroga, R.C.R.E.; Ribeiro, R.D.X.; Leão, A.G.; Silva, L.B. Carcass traits and meat quality of crossbred Boer goats fed peanut cake as a substitute for soybean meal. J. Anim. Sci. 2016, 94, 2992–3002. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.P.O.; Ferreira, M.A.; Freitas, A.P.D.; Urbano, S.A.; Silva, A.E.M. Carcass characteristics in Santa Inês sheep fed with mazoferm as a substitution for soybean meal. Rev. Ciênc. Agron. 2017, 48, 708–715. [Google Scholar] [CrossRef]
- Rashad, A.M.A.; El-Hedainy, D.K.; Mahdy, A.E.; Badran, A.E.; El-Barbary, A.S.A. Utilization of live body weight, measurements, and eye muscle components to predict carcass performance of fattened Egyptian male buffalo calves. Trop. Anim. Health Prod. 2019, 51, 2405–2412. [Google Scholar] [CrossRef] [PubMed]
Variable | Description | n | Mean ± SD | Minimum | Maximum | CV (%) |
---|---|---|---|---|---|---|
SW (kg) | Live weight at slaughter | 56 | 32.13 ± 1.89 | 28.00 | 36.60 | 8.17 |
HCW (kg) | Hot carcass weight | 56 | 12.86 ± 1.37 | 10.50 | 16.14 | 10.65 |
CCW (kg) | Cold carcass weight | 56 | 12.28 ± 1.30 | 9.92 | 15.28 | 10.59 |
Shoulder (kg) | Shoulder weight | 56 | 1.12 ± 0.13 | 0.90 | 1.48 | 11.61 |
Neck (kg) | Neck weight | 56 | 0.71 ± 0.13 | 0.43 | 1.16 | 18.31 |
Loin (kg) | Loin weight | 56 | 0.76 ± 0.13 | 0.54 | 1.12 | 17.11 |
Leg (kg) | Leg weight | 56 | 1.99 ± 0.22 | 1.62 | 2.48 | 11.05 |
Rib (kg) | Rib weight | 56 | 1.53 ± 0.22 | 1.18 | 2.10 | 14.38 |
BL (cm) | Body length | 56 | 60.58 ± 5.21 | 52.00 | 69.00 | 8.60 |
WH (cm) | Withers height | 56 | 66.65 ± 4.38 | 56.00 | 74.00 | 6.57 |
RH (cm) | Rump height | 56 | 70.36 ± 5.11 | 61.00 | 79.00 | 7.26 |
TW (cm) | Thorax width | 56 | 27.27 ± 2.77 | 21.00 | 32.00 | 10.16 |
RW (cm) | Rump width | 56 | 19.59 ± 4.89 | 14.00 | 30.00 | 24.96 |
CW (cm) | Chest width | 56 | 17.52 ± 1.15 | 16.00 | 20.00 | 6.56 |
HG (cm) | Heart girth | 56 | 87.26 ± 8.47 | 71.00 | 97.50 | 9.70 |
TC (cm) | Thigh circumference | 56 | 37.21 ± 4.56 | 30.00 | 51.00 | 12.25 |
RC (cm) | Rump circumference | 56 | 84.70 ± 4.88 | 67.00 | 94.00 | 5.76 |
LL (cm) | Leg length | 56 | 33.79 ± 1.90 | 28.00 | 37.00 | 5.62 |
SW | HCW | CCW | Shoulder | Neck | Loin | Leg | Rib | BL | WH | RH | TW | RW | CW | HG | TC | RC | LL | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SW | 1 | 0.82 * | 0.82 * | 0.62 * | 0.05 | 0.74 * | 0.75 * | 0.67 * | 0.42 * | 0.55 * | 0.4 | 0.23 | 0.23 | 0.48 * | 0.38 | 0.49 * | 0.36 | 0.31 |
HCW | 1 | 0.99 * | 0.85 * | 0.12 | 0.81 * | 0.90 * | 0.75 * | 0.43 * | 0.39 | 0.32 | 0.12 | 0.39 | 0.73 * | 0.32 | 0.45 * | 0.2 | 0.02 | |
CCW | 1 | 0.86 * | 0.17 | 0.81 * | 0.91 * | 0.73 * | 0.43 * | 0.38 | 0.28 | 0.11 | 0.42 * | 0.74 * | 0.29 | 0.46 * | 0.22 | −0.03 | ||
Shoulder | 1 | 0.19 | 0.59 * | 0.82 * | 0.42 * | 0.17 | 0.26 | 0.24 | 0.05 | 0.19 | 0.75 * | 0.1 | 0.45 * | 0.26 | −0.04 | |||
Neck | 1 | −0.04 | 0.24 | −0.07 | 0.25 | −0.02 | 0.24 | 0.06 | 0.16 | 0.2 | −0.16 | 0.1 | −0.03 | −0.36 | ||||
Loin | 1 | 0.63 * | 0.69 * | 0.53 * | 0.40 * | 0.38 | 0.04 | 0.47 * | 0.50 * | 0.45 * | 0.3 | 0.15 | 0.2 | |||||
Leg | 1 | 0.64 * | 0.43 * | 0.35 * | 0.24 | 0.24 | 0.36 | 0.69 * | 0.2 | 0.41 * | 0.24 | −0.01 | ||||||
Rib | 1 | 0.48 * | 0.42 * | 0.40 * | 0.34 | 0.36 | 0.37 | 0.67 * | 0.11 | 0.11 | 0.18 | |||||||
BL | 1 | 0.34 | 0.34 | 0.37 | 0.4 | 0.17 | 0.35 | −0.07 | 0.11 | 0.19 | ||||||||
WH | 1 | 0.71 * | 0.37 | 0.05 | 0.01 | 0.36 | −0.06 | 0.58 * | 0.38 | |||||||||
RH | 1 | 0.13 | 0.05 | 0.02 | 0.26 | −0.13 | 0.38 | 0.60 * | ||||||||||
TW | 1 | 0.13 | −0.11 | 0.61 * | −0.21 | 0.28 | 0.37 | |||||||||||
RW | 1 | 0.27 | 0.13 | 0.29 | 0.02 | −0.05 | ||||||||||||
CW | 1 | −0.17 | 0.76 * | −0.1 | −0.36 | |||||||||||||
HG | 1 | −0.27 | 0.13 | 0.55 * | ||||||||||||||
TC | 1 | 0.01 | −0.28 | |||||||||||||||
RC | 1 | 0.23 | ||||||||||||||||
LL | 1 |
Equation No. | Equation | RMSE | R2 | p-Value |
---|---|---|---|---|
SW | ||||
(1) | SW (kg) = −17.51 (±9.30 *) + 0.49 (±0.12 *) × WH + 0.54 (±0.14 *) × TC | 1.49 | 0.58 | <0.0001 |
(2) | SW (kg) = −21.72 (±8.15 *) + 0.38 (±0.11 *) × WH + 0.10 (±0.03 *) × HG + 0.64 (±0.13 *) × TC | 1.28 | 0.71 | <0.0001 |
(3) | SW (kg) = −101.62 (±27.36 *) + 0.32 (±0.10) × WH + 0.60 (±0.12 *) × TC + 2.14 (±0.94 *) × HG − 0.01 (±0.005 *) × HG2 | 1.17 | 0.76 | <0.0001 |
HCW | ||||
(4) | HCW (kg) = −3.09 (±2.48 *) + 0.51 (±0.08 *) × SW | 0.80 | 0.68 | <0.0001 |
(5) | HCW (kg) = −7.22 (±2.19 *) + 0.38 (±0.07 *) × SW + 0.48 (±0.12 *) × CW | 0.62 | 0.81 | <0.0001 |
(6) | HCW (kg) = −7.52 (±2.05 *) + 0.41 (±0.05 *) × SW + 0.28 (±0.11 *) × RW + 0.77 (±0.12 *) × CW − 0.28 (±0.17 *) × TC | 0.45 | 0.91 | <0.0001 |
(7) | HCW (kg) = −3.58 (±1.48 *) + 0.41 (±0.05 *) × SW + 0.02 (±0.003 *) × CW2 − 0.004 (±0.0009 *) × TC2 + 0.009 (±0.004 *) × RW2 | 0.45 | 0.91 | <0.0001 |
CCW | ||||
(8) | CCW (kg) = −2.36 (±2.31 *) + 0.47 (±0.07 *) × SW | 0.75 | 0.67 | <0.0001 |
(9) | CCW (kg) = −4.04 (±1.72 *) + 0.38 (±0.05 *) × SW + 0.76 (±0.12 *) × CW − 0.24 (±0.07 *) × TC | 0.45 | 0.89 | <0.0001 |
(10) | CCW (kg) = −1.23 (±2.84 *) + 0.48 (±0.05 *) × SW − 0.05 (±0.03 *) × BL + 0.37 (±0.09 *) × RW + 0.68 (±0.01 *) × CW − 0.33 (±0.06 *) × TC − 0.12 (±0.05 *) × LL | 0.32 | 0.95 | <0.0001 |
Equation No. | Equation | RMSE | R2 | p-Value |
---|---|---|---|---|
Shoulder | ||||
(11) | Shoulder (kg) = −0.49 (±0.31 *) + 0.09 (±0.02 *) × CW | 0.10 | 0.56 | <0.0001 |
(12) | Shoulder (kg) = −1.14 (±0.42 ns) + 0.13 (±0.02 *) × CW − 0.03 (±0.01 *) × TC + 0.01 (±0.003 *) × RC | 0.09 | 0.72 | <0.0001 |
(13) | Shoulder (kg) = 0.04 (±0.01 *) × SW − 0.01 (±0.005 *) × BL + 0.12 (±0.02 *) × WH + 0.13 (±0.02 *) × CW − 0.05 (±0.01 *) × TC + 0.009 (±0.004) × RC | 0.08 | 0.99 | <0.0001 |
(14) | Shoulder (kg) = 0.12 (±0.02 *) × CW − 0.03 (±0.01 *) × TC + 0.0006 (±0.0001 *) × SW2 − 0.0001 (±0.00005 *) × BL2 | 0.08 | 0.99 | <0.0001 |
Neck | ||||
(15) | Neck (kg) = 0.54 (±0.33 ns) + 0.02 (±0.005 *) × BL − 0.02 (±0.008 *) × LL | 0.07 | 0.23 | 0.0583 |
(16) | Neck (kg) = 0.014 (±0.0008 *) × SW + 0.02 (±0.004 *) × BL − 0.018 (±0.007 *) × LL | 0.07 | 0.99 | <0.0001 |
Loin | ||||
(17) | Loin (kg) = −0.62 (±0.26 *) + 0.04 (±0.009 *) × SW | 0.09 | 0.55 | <0.0001 |
(18) | Loin (kg) = −1.02 (±0.36 *) + 0.04 (±0.009 *) × SW + 0.01 (±0.006 *) × BL | 0.09 | 0.60 | <0.0001 |
(19) | Loin (kg) = −0.88 (±0.34 *) + 0.02 (±0.009 *) × SW + 0.01 (±0.005 *) × BL − 0.04 (±0.01 *) × TW + 0.04 (±0.01 *) × CW + 0.008 (±0.002 *) × HG | 0.06 | 0.81 | <0.0001 |
Leg | ||||
(20) | Leg (kg) = −0.77 (±0.41ns) + 0.05 (±0.01 *) × SW + 0.07 (±0.02 *) × CW | 0.11 | 0.69 | <0.0001 |
(21) | Leg (kg) = 0.05 (±0.01 *) × SW + 0.12 (±0.02 *) × CW − 0.05 (±0.01 *) × TC | 0.10 | 0.99 | <0.0001 |
(22) | Leg (kg) = 0.05 (±0.006 *) × SW + 0.003 (±0.0007 *) × CW2 − 0.0005 (±0.0002 *) × TC2 | 0.10 | 0.99 | <0.0001 |
Rib | ||||
(23) | Rib (kg) = −1.17 (±0.45 *) + 0.08 (±0.02 *) × CW + 0.02 (±0.003 *) × HG | 0.12 | 0.70 | <0.0001 |
(24) | Rib (kg) = −2.15 (±0.68 *) + 0.02 (±0.009 *) × RH + 0.08 (±0.02 *) × CW + 0.02 (±0.003 *) × HG | 0.11 | 0.74 | <0.0001 |
(25) | Rib (kg) = 0.41 (±0.36 ns) + 0.08 (±0.003 *) × HG + 0.003 (±0.0007 *) × CW2 | 0.14 | 0.58 | <0.0001 |
(26) | Rib (kg) = 0.13 (±0.001 *) × HG + 0.002 (±0.0004 *) × CW2 | 0.10 | 0.99 | <0.0001 |
Variable | Equation (3) SW | Equation (6) HCW | Equation (9) CCW | Equation (13) Shoulder | Equation (16) Neck | Equation (19) Loin | Equation (23) Leg | Equation (26) Rib |
---|---|---|---|---|---|---|---|---|
Mean | 32.73 | 13.68 | 13.07 | 1.15 | 0.73 | 0.84 | 2.07 | 1.65 |
Standard deviation | 1.92 | 1.31 | 1.24 | 0.14 | 0.07 | 0.12 | 0.17 | 0.13 |
Minimum | 28.57 | 11.46 | 10.81 | 0.94 | 0.64 | 0.58 | 1.75 | 1.43 |
Maximum | 35.97 | 16.35 | 15.34 | 1.52 | 0.90 | 1.07 | 2.42 | 1.90 |
CCC | 0.87 | 0.95 | 0.98 | 0.89 | 0.66 | 0.90 | 0.86 | 0.79 |
RMSEP | 3.12 | 2.92 | 2.08 | 5.75 | 8.42 | 6.77 | 4.65 | 6.11 |
R2 | 0.87 | 0.95 | 0.98 | 0.90 | 0.68 | 0.90 | 0.87 | 0.92 |
Regression analysis | ||||||||
Intercept (β0) | −0.00008 | −0.004 | 0.00002 | −0.10 | 0.09 | 0.00006 | −0.04 | −0.30 |
Slope (β1) | 1.00 | 1.00 | 1.00 | 1.01 | 0.88 | 0.99 | 1.02 | 1.18 |
p-value (β0 = 0 and β1 = 1) | 1.00 | 0.99 | 1.00 | 0.99 | 0.84 | 1.00 | 0.98 | 0.56 |
Decomposition of MSEP (%) | ||||||||
Mean bias | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.03 |
Systematic bias | 0.00 | 0.00 | 0.00 | 0.04 | 1.64 | 0.00 | 0.10 | 5.34 |
Random error | 100.00 | 99.99 | 100.00 | 99.96 | 98.35 | 100.00 | 99.90 | 94.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurgel, A.L.C.; Difante, G.d.S.; Emerenciano Neto, J.V.; Fernandes de Araújo, C.G.; Costa, M.G.; Ítavo, L.C.V.; Araujo, I.M.M.d.; Costa, C.M.; Santana, J.C.S.; Ítavo, C.C.B.F.; et al. Prediction of Carcass Traits of Santa Inês Lambs Finished in Tropical Pastures through Biometric Measurements. Animals 2021, 11, 2329. https://doi.org/10.3390/ani11082329
Gurgel ALC, Difante GdS, Emerenciano Neto JV, Fernandes de Araújo CG, Costa MG, Ítavo LCV, Araujo IMMd, Costa CM, Santana JCS, Ítavo CCBF, et al. Prediction of Carcass Traits of Santa Inês Lambs Finished in Tropical Pastures through Biometric Measurements. Animals. 2021; 11(8):2329. https://doi.org/10.3390/ani11082329
Chicago/Turabian StyleGurgel, Antonio Leandro Chaves, Gelson dos Santos Difante, João Virgínio Emerenciano Neto, Cynthia Gabriela Fernandes de Araújo, Marcone Geraldo Costa, Luís Carlos Vinhas Ítavo, Itania Maria Medeiros de Araujo, Carolina Marques Costa, Juliana Caroline Santos Santana, Camila Celeste Brandão Ferreira Ítavo, and et al. 2021. "Prediction of Carcass Traits of Santa Inês Lambs Finished in Tropical Pastures through Biometric Measurements" Animals 11, no. 8: 2329. https://doi.org/10.3390/ani11082329
APA StyleGurgel, A. L. C., Difante, G. d. S., Emerenciano Neto, J. V., Fernandes de Araújo, C. G., Costa, M. G., Ítavo, L. C. V., Araujo, I. M. M. d., Costa, C. M., Santana, J. C. S., Ítavo, C. C. B. F., & Fernandes, P. B. (2021). Prediction of Carcass Traits of Santa Inês Lambs Finished in Tropical Pastures through Biometric Measurements. Animals, 11(8), 2329. https://doi.org/10.3390/ani11082329