Blood Biomarker Profile Alterations in Newborn Canines: Effect of the Mother′s Weight
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Infrastructure
2.2. Study Population
2.3. Clinical History
2.4. Diagnoses of Pregnancy
2.5. Puppies
- (a)
- Liveborn: A total of 225 LP puppies were recorded for the four categories: C1: 63; C2: 71; C3: 54; C4: 37. The neonates, who had a heartbeat and were breathing during the first minute of life, were considered liveborn puppies. The puppies that died once the birth was over, were considered dead during lactation.
- (b)
- Stillbirth: The 47 SB, by the weight categories of their mothers, occurred as follows: C1: 9; C2: 12; C3: 14; C4: 12. The following cases were classified as dead antepartum (i.e., stillbirth Type I): fetuses that died after the birth process began but before the expulsion; those with hemorrhagic and edematous appearance; those with grayish-brown discoloration due to an initial state of mummification; more advanced cases, a clear state of dehydration and fur loss. Those fetuses were excluded. The fetuses classified as dead intrapartum (Type II SB) presented the same appearance as the rest of the litter, except for the absence of breathing and heartbeat.
2.5.1. Blood Physio-Metabolic Profiles
Blood Sampling
2.5.2. Birth Weight
2.6. Statistical Analyses
- Metabolites = pH, pCO2, pO2, glucose, Ca2+, lactate, hematocrit, HCO3−, EB;
- µ = general mean;
- Ti = fixed effect;
- CNi = 1,2,3,4; for the case of SB Type II;
- Pi = birth weight;
- e = error.
2.7. Ethical Note
3. Results
3.1. Weight
3.2. Blood Physiometabolic Profiles
3.2.1. Energy Metabolism
3.2.2. Calcium and Hematocrit
3.2.3. Acid–Base Balance
4. Discussion
4.1. Weight
4.2. Physiometabolic Profiles
Acid–Base Balance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations/Nomenclature
pO2 | partial oxygen saturation |
O2 | oxygen |
EB | excess base |
HCO3− | bicarbonate |
Ca2+ | calcio |
Htc | hematocrit |
References
- Veronesi, M.C. Assessment of canine neonatal viability—The Apgar score. Reprod. Domest. Anim. 2016, 51, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkden, R.D.; Broom, D.M.; Andersen, I.L. Invited review: Piglet mortality: Management solutions. J. Anim. Sci. 2013, 91, 3361–3389. [Google Scholar] [CrossRef] [PubMed]
- Tønnessen, R.; Borge, K.S.; Nødtvedt, A.; Indrebø, A. Canine perinatal mortality: A cohort study of 224 breeds. Theriogenology 2012, 77, 1788–1801. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, M.C.; Panzani, S.; Faustini, M.; Rota, A. An Apgar scoring system for routine assessment of newborn puppy viability and short-term survival prognosis. Theriogenology 2009, 72, 401–407. [Google Scholar] [CrossRef]
- Gill, M.A. Perinatal and late neonatal mortality in the dog. J. Am. Vet. Med. Assoc. 2001, 230, 1463–1464. [Google Scholar]
- Vassalo, F.G.; Simões, C.R.B.; Sudano, M.J.; Prestes, N.C.; Lopes, M.D.; Chiacchio, S.B.; Lourenço, M.L.G. Topics in the routine assessment of newborn puppy viability. Top. Companion Anim. Med. 2015, 30, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Münnich, A.; Küchenmeister, U. Causes, diagnosis and therapy of common diseases in neonatal puppies in the first days of life: Cornerstones of practical approach. Reprod. Domest. Anim. 2014, 49, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.A. Clinically relevant physiology of the neonate. Vet. Clin. N. Am. Small Anim. Pract. 2006, 36, 443–459. [Google Scholar] [CrossRef] [PubMed]
- Manani, M.; Jegatheesan, P.; DeSandre, G.; Song, D.; Showalter, L.; Govindaswami, B. Elimination of admission hypothermia in preterm very low-birth-weight infants by standardization of delivery room management. Perm. J. 2013, 17, 8–13. [Google Scholar] [CrossRef]
- Cavaliere, T.A. From fetus to neonate: A sensational journey. Newborn Infant Nurs. Rev. 2016, 16, 43–47. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Villanueva-García, D.; Hernández, G.R.; Roldan, S.P.; Martínez-Rodríguez, R.; Mora-Medina, P.; Trujillo-Ortega, M.E. Assessment of the vitality of the newborn: An overview. Sci. Res. Essays 2012, 7. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Martinez-Burnes, J.; Villanueva-Garcia, D.; Roldan, P.; Trujillo-Ortega, M.E.; Orozco, H.; Bonilla, H.; Lopez-Mayagoitia, A. Animal welfare in the newborn piglet: A review. Vet. Med. 2012, 57, 338–349. [Google Scholar] [CrossRef] [Green Version]
- Mota-Rojas, D.; Fierro, R.; Roldan, P.; Orozco, H.; González, M.; Martínez-Rodríguez, R.; García-Herrera, R.; Mora-Medina, P.; Flores-Peinado, S.; Sánchez, M.; et al. Outcomes of gestation length in relation to farrowing performance in sows and daily weight gain and metabolic profiles in piglets. Anim. Prod. Sci. 2015. [Google Scholar] [CrossRef]
- Nuñez, A.; Benavente, I.; Blanco, D.; Boix, H.; Cabañas, F.; Chaffanel, M.; Fernández-Colomer, B.; Fernández-Lorenzo, J.R.; Loureiro, B.; Moral, M.T.; et al. Estrés oxidativo en la asfixia perinatal y la encefalopatía hipóxico-isquémica. An. Pediatría 2018. [Google Scholar] [CrossRef]
- Kuttan, K.V.; Joseph, M.; Simon, S.; Ghosh, K.N.A.; Rajan, A. Effect of intrapartum fetal stress associated with obstetrical interventions on viability and survivability of canine neonates. Vet. World 2016, 9, 1485–1488. [Google Scholar] [CrossRef] [Green Version]
- Hillman, N.H.; Kallapur, S.G.; Jobe, A.H. Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 2012, 39, 769–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mila, H.; Grellet, A.; Delebarre, M.; Mariani, C.; Feugier, A.; Chastant-Maillard, S. Monitoring of the newborn dog and prediction of neonatal mortality. Prev. Vet. Med. 2017, 143, 11–20. [Google Scholar] [CrossRef]
- Lezama-García, K.; Mariti, C.; Mota-Rojas, D.; Martínez-Burnes, J.; Barrios-García, H.; Gazzano, A. Maternal behaviour in domestic dogs. Int. J. Vet. Sci. Med. 2019, 7, 20–30. [Google Scholar] [CrossRef]
- Reyes-Sotelo, B.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Hernández-Ávalos, I.; José, N.; Casas-Alvarado, A.; Gómez, J.; Mora-Medina, P. Thermal homeostasis in the newborn puppy: Behavioral and physiological responses. J. Anim. Behav. Biometeorol. 2021, 9. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Orihuela, A.; Strappini, A.; Villanueva-García, D.; Napolitano, F.; Mora-Medina, P.; Barrios-García, H.B.; Herrera, Y.; Lavalle, E.; Martínez-Burnes, J. Consumption of maternal placenta in humans and nonhuman mammals: Beneficial and adverse effects. Animals 2020, 10, 2398. [Google Scholar] [CrossRef]
- Ogi, A.; Mariti, C.; Pirrone, F.; Baragli, P.; Gazzano, A. The influence of oxytocin on maternal care in lactating dogs. Animals 2021, 11, 1130. [Google Scholar] [CrossRef]
- Massip, A. Relationship between pH, plasma, cortisol and glucose concentrations in the calf at birth. Br. Vet. J. 1980, 136, 597–601. [Google Scholar] [CrossRef]
- Wiberg, N.; Källén, K.; Olofsson, P. Physiological development of a mixed metabolic and respiratory umbilical cord blood acidemia with advancing gestational age. Early Hum. Dev. 2006. [Google Scholar] [CrossRef] [Green Version]
- Bleul, U.; Lejeune, B.; Schwantag, S.; Kähn, W. Blood gas and acid-base analysis of arterial blood in 57 newborn calves. Vet. Rec. 2007. [Google Scholar] [CrossRef] [PubMed]
- Andres, R.L.; Saade, G.; Gilstrap, L.C.; Wilkins, I.; Witlin, A.; Zlatnik, F.; Hankins, G.V. Association between umbilical blood gas parameters and neonatal morbidity and death in neonates with pathologic fetal acidemia. Am. J. Obstet. Gynecol. 1999, 181, 867–871. [Google Scholar] [CrossRef]
- Le Cozler, Y.; Guyomarc’h, C.; Pichodo, X.; Quinio, P.Y.; Pellois, H. Factors associated with stillborn and mummified piglets in high-prolific sows. Anim. Res. 2002. [Google Scholar] [CrossRef]
- Lucia, T.; Corrêa, M.N.; Deschamps, J.C.; Bianchi, I.; Donin, M.A.; Machado, A.C.; Meincke, W.; Matheus, J.E.M. Risk factors for stillbirths in two swine farms in the south of Brazil. Prev. Vet. Med. 2002, 53, 285–292. [Google Scholar] [CrossRef]
- Vanderhaeghe, C.; Dewulf, J.; de Kruif, A.; Maes, D. Non-infectious factors associated with stillbirth in pigs: A review. Anim. Reprod. Sci. 2013, 139, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A. Pregnancy management in the bitch. Theriogenology 2008. [Google Scholar] [CrossRef]
- Mila, H.; Grellet, A.; Chanstant-Maillard, S. Pronostic value or birth weight and early weight gain on neonatal and pediatric mortality: A longitudinal study on 870 puppies. In Proceedings of the Program and Presented at the 7th International Symposium on Canine and feline Reproduction 2012, Wistler, BC, Canada, 26–29 July 2012; pp. 163–164. [Google Scholar]
- Crissiuma, A.L.; Juppa, C.J., Jr.; Mendes de Almeida, F.; Gershony, L.C.; Labarthe, N.V. Influence of the order of birth on blood gasometry parameters in the fetal neonatal transitional period of dogs born by elective caesarean parturition. J. Appl. Res. Vet. Med. 2010, 8, 7–15. [Google Scholar]
- Mota-Rojas, D.; Orozco, H.; Alonso-Spilsbury, M.; Villanueva-García, D.; Martinez-Burnes, J.; Lopez-Mayagoitia, A.; Gonzalez, M.; Trujillo, M.E.; Ramirez, R. Asfixia perinatal en el bebe y neonato porcino. In Perinatología Animal: Enfoques Clínicos Experimentales, 2nd ed.; BM Editores: Mexico City, Mexico, 2008; pp. 287–304. ISBN 9789709502411. [Google Scholar]
- Martínez-Rodríguez, R.; Mota-Rojas, D.; Trujillo-Ortega, M.E.; Orozco, H.; Hernández, R.; Mora-Medina, P.; Alonso-Spilsbury, M.; Rosales-Torres, A.; Ramírez-Necoechea, R. Physiological response to hypoxia in piglets of different birth weight. Ital. J. Anim. Sci. 2011, 2011, 250–253. [Google Scholar] [CrossRef] [Green Version]
- Mota-Rojas, D.; López, A.; Martínez-Burnes, J.; Muns, R.; Villanueva-García, D.; Mora-Medina, P.; González-Lozano, M.; Olmos-Hernández, A.; Ramírez-Necoechea, R. Is vitality assessment important in neonatal animals? CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2018, 13. [Google Scholar] [CrossRef]
- Proulx, J. Respiratory monitoring: Arterial blood gas analysis, pulse oximetry, and end-tidal carbon dioxide analysis. Clin. Tech. Small Anim. Pract. 1999, 14, 227–230. [Google Scholar] [CrossRef]
- Trujillo-Ortega, M.E.; Mota-Rojas, D.; Olmos-Hernández, A.; González, M.; Ramírez-Necoechea, R. A study of piglets born by spontaneous parturition under uncontrolled conditions: Could this be a naturalistic model for the study of intrapartum asphyxia? Acta Biomed. 2007, 78, 29–35. [Google Scholar] [PubMed]
- Mota-Rojas, D.; Orozco, H.; Villanueva-García, D.; Hernández-González, R.; Roldan, P.; Trujillo-Ortega, M.E. Foetal and neonatal energy metabolism in pigs and humans: A review. Veterninarni Med. 2011, 56, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Villanueva-García, D.; Mota-Rojas, D.; González, M.; Olmos-Hernández, S.A.; Orozco, H.; Sánchez, P. Importancia de la gasometría en perinatología. In Perinatología Animal: Enfoques Clínicos Experimentales, 2nd ed.; BM Editores: Mexico City, Mexico, 2008; pp. 183–192. ISBN 970-95024-0-9. [Google Scholar]
- Armstrong, L.; Stenson, B.J. In the assessment of the newborn. Arch. Dis. Child. Fetal Neonatal Ed. 2007, 92, 430–434. [Google Scholar] [CrossRef]
- Blickstein, I.; Green, T. Umbilical cord blood gases. Clin. Perinatol. 2007, 34, 451–459. [Google Scholar] [CrossRef]
- Apgar, V. A proposal for a new method of evaluation of the newborn infant. Anesth. Analg. 2015, 120, 1056–1059. [Google Scholar] [CrossRef] [Green Version]
- World Small Animal Veterinary Association Global Nutritional Assesment Guidelines. Available online: http://wsava.org/wp-content/uploads/2020/01/Global-Nutritional-Assesment-Guidelines-Spanish.pdf (accessed on 21 January 2021).
- Federation Cynologique Internationale (FCI). Available online: http://www.fci.be (accessed on 18 May 2021).
- Sherwin, C.M.; Christiansen, S.B.; Duncan, I.J.; Erhard, H.W.; Lay, D.C.; Mench, J.A.; O’Connor, C.E.; Carol Petherick, J. Guidelines for the ethical use of animals in applied ethology studies. Appl. Anim. Behav. Sci. 2003, 81, 291–305. [Google Scholar] [CrossRef]
- Meyer, K.M.; Koch, J.M.; Ramadoss, J.; Kling, P.J.; Magness, R.R. Ovine surgical model of uterine space restriction: Interactive effects of uterine anomalies and multifetal gestations on fetal and placental growth. Biol. Reprod. 2010, 83, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Rydhmer, L.; Lundeheim, N.; Canario, L. Genetic correlations between gestation length, piglet survival and early growth. Livest. Sci. 2008, 115, 287–293. [Google Scholar] [CrossRef]
- Bautista, A.; Rödel, H.G.; Monclús, R.; Juárez-Romero, M.; Cruz-Sánchez, E.; Martínez-Gómez, M.; Hudson, R. Intrauterine position as a predictor of postnatal growth and survival in the rabbit. Physiol. Behav. 2015, 138, 101–106. [Google Scholar] [CrossRef]
- Darby, J.R.T.; Varcoe, T.J.; Orgeig, S.; Morrison, J.L. Cardiorespiratory consequences of intrauterine growth restriction: Influence of timing, severity and duration of hypoxaemia. Theriogenology 2020, 150, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Groppetti, D.; Pecile, A.; Palestrini, C.; Marelli, S.P.; Boracchi, P. A national census of birthweight in purebred dogs in Italy. Animals 2017, 7, 43. [Google Scholar] [CrossRef]
- Tesi, M.; Miragliotta, V.; Scala, L.; Aronica, E.; Lazzarini, G.; Fanelli, D.; Abramo, F.; Rota, A. Theriogenology relationship between placental characteristics and puppies’ birth weight in toy and small sized dog breeds. Theriogenology 2020, 141, 1–8. [Google Scholar] [CrossRef]
- Mugnier, A.; Mila, H.; Guiraud, F.; Brévaux, J.; Lecarpentier, M.; Martinez, C.; Mariani, C.; Adib-Lesaux, A.; Chastant-Maillard, S.; Saegerman, C.; et al. Birth weight as a risk factor for neonatal mortality: Breed-specific approach to identify at-risk puppies. Prev. Vet. Med. 2019, 171. [Google Scholar] [CrossRef]
- Vasudevan, C.; Renfrew, M.; McGuire, W. Fetal and perinatal consequences of maternal obesity. Arch. Dis. Child. Fetal Neonatal Ed. 2011, 96, F378–F382. [Google Scholar] [CrossRef]
- Merton, J.S.; van Wagtendonk-de Leeuw, A.M.; den Dass, J.H. Factors affecting birthweight of IVP calves. Progress. Cattle 2014, 49, 293. [Google Scholar]
- Wu, G.; Bazer, F.W.; Wallace, J.M.; Spencer, T.E. Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. J. Anim. Sci. 2006, 84, 2316–2337. [Google Scholar] [CrossRef] [PubMed]
- Groppetti, D.; Ravasio, G.; Bronzo, V.; Pecile, A. The role of birth weight on litter size and mortality within 24h of life in purebred dogs: What aspects are involved? Anim. Reprod. Sci. 2015. [Google Scholar] [CrossRef] [PubMed]
- Mila, H.; Grellet, A.; Feugier, A.; Chastant-Maillard, S. Differential impact of birth weight and early growth on neonatal mortality in puppies 1, 2. J. Anim. Sci. 2015, 93, 4436–4442. [Google Scholar] [CrossRef]
- Herpin, P.; Damon, M.; Le Dividich, J. Development of thermoregulation and neonatal survival in pigs. Livest. Prod. Sci. 2002. [Google Scholar] [CrossRef]
- Islas-Fabila, P.; Mota-Rojas, D.; Martínez-Burnes, J.; Mora-Medina, P.; González-Lozano, M.; Roldán, P.; Greenwell, V.; González, M.; Vega, X.; Gregorio, H. Physiological and metabolic responses in newborn piglets associated with the birth order. Anim. Reprod. Sci. 2018, 197, 247–256. [Google Scholar] [CrossRef]
- Cornelius, A.J.; Moxon, R.; Russenberger, J.; Havlena, B.; Cheong, S.H. Identifying risk factors for canine dystocia and stillbirths. Theriogenology 2019, 128, 201–206. [Google Scholar] [CrossRef]
- Dolf, G.; Gaillard, C.; Russenberger, J.; Moseley, L.; Schelling, C. Factors contributing to the decision to perform a cesarean section in Labrador retrievers. BMC Vet. Res. 2018, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yli, B.M.; Kjellmer, I. Pathophysiology of foetal oxygenation and cell damage during labour. Best Pract. Res. Clin. Obstet. Gynaecol. 2016, 30, 9–21. [Google Scholar] [CrossRef]
- Lúcio, C.F.; Silva, L.C.G.; Rodrigues, J.A.; Veiga, G.A.L.; Vannucchi, C.I. Acid-base changes in canine neonates following normal birth or dystocia. Reprod. Domest. Anim. 2009, 44, 208–210. [Google Scholar] [CrossRef] [PubMed]
- Vivan, M.C.M. Correlation between Serum Lactate and Neurological and Cardiorrespiratory Status in Neonate Dogs Born by Normal Birth or Cesarean Section under Inhalatory Anesthesia. Ph.D. Dissertation, University of Sao Paulo State, Sao Paulo, Brazil, 2010. [Google Scholar]
- Gregory, N.G. Animal Welfare and Meat Science; CABI: Wallingford, UK, 1998; ISBN 085199296X. [Google Scholar]
- Groppetti, D.; Pecile, A.; Del Carro, A.P.; Copley, K.; Minero, M.; Cremonesi, F. Evaluation of newborn canine viability by means of umbilical vein lactate measurement, apgar score and uterine tocodynamometry. Theriogenology 2010, 74, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Piquard, F.; Schaefer, A.; Dallenbach, P.; Haberey, P. Is fetal acidosis in the human fetus maternogenic during labor? A reanalysis. Am. J. Physiol. 1991, 261, R1294–R1299. [Google Scholar] [CrossRef] [PubMed]
- Singer, D. Neonatal tolerance to hypoxia: A comparative-physiological approach. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 123, 221–234. [Google Scholar] [CrossRef]
- Ishii, T.; Hori, H.; Ishigami, M.; Mizuguchi, H.; Watanabe, D. Background data for hematological and blood chemical examinations in juvenile beagles. Exp. Anim. 2013, 62, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rosset, E.; Rannou, B.; Casseleux, G.; Chalvet-Monfray, K.; Buff, S. Age-related changes in biochemical and hematologic variables in Borzoi and Beagle puppies from birth to 8 weeks. Vet. Clin. Pathol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Poindron, P. From birth to colostrum: Early steps leading to lamb survival. Reprod. Nutr. Dev. 2006, 46, 431–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, A.; Paria, A. Transition from fetus to neonate. Surgery 2019. [Google Scholar] [CrossRef]
- Hoseth, E.; Joergensen, A.; Ebbesen, F.; Moeller, M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch. Dis. Child. Fetal Neonatal Ed. 2000, 83, 117–119. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Ishii, M. Hematological and biochemical profiles in peripartum mares and neonatal foals (Heavy Draft Horse). J. Equine Vet. Sci. 2012, 32, 170–176. [Google Scholar] [CrossRef]
- González-Lozano, M.; Trujillo-Ortega, M.E.; Becerril-Herrera, M.; Alonso-Spilsbury, M.; Rosales-Torres, A.M.; Mota-Rojas, D. Uterine activity and fetal electronic monitoring in parturient sows treated with vetrabutin chlorhydrate. J. Vet. Pharmacol. Ther. 2010. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Martinez-Burnes, J.; Ortega, M.E.T.; López, A.; Rosales, A.M.; Ramirez, R.; Alonso-Spilsbury, M. Uterine and fetal asphyxia monitoring in parturient sows treated with oxytocin. Anim. Reprod. Sci. Sci. 2005, 86, 131–141. [Google Scholar] [CrossRef]
- Herpin, P.; Le Dividich, J.; Hulin, J.C.; Fillaut, M.; De Marco, F.; Bertin, R. Effects of the level of asphyxia during delivery on viability at birth and early postnatal vitality of newborn pigs. J. Anim. Sci. 1996, 74, 2067–2075. [Google Scholar] [CrossRef] [Green Version]
- Marchant, J.N.; Rudd, A.R.; Mendl, M.T.; Broom, D.M.; Meredith, M.J.; Corning, S.; Simmins, P.H. Timing and causes of piglet mortality in alternative and conventional farrowing systems. Vet. Rec. 2000, 147, 209–214. [Google Scholar] [CrossRef]
- Lawler, D.F. Neonatal and pediatric care of the puppy and kitten. Theriogenology 2008. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Rosales, A.M.; Trujillo, M.E.; Orozco, H.; Ramírez, R.; Alonso-Spilsbury, M. The effects of vetrabutin chlorhydrate and oxytocin on stillbirth rate and asphyxia in swine. Theriogenology 2005, 64, 1889–1897. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Nava-Ocampo, A.A.; Trujillo, M.E.; Velázquez-Armenta, Y.; Ramírez-Necoechea, R.; Martínez-Burnes, J.; Alonso-Spilsbury, M. Dose minimization study of oxytocin in early labor in sows: Uterine activity and fetal outcome. Reprod. Toxicol. 2005, 20, 255–259. [Google Scholar] [CrossRef]
- MacDonald, H.M.; Mulligan, J.C.; Allen, A.C.; Taylor, P.M. Neonatal asphyxia. I. Relationship of obstetric and neonatal complications to neonatal mortality in 38,405 consecutive deliveries. J. Pediatr. 1980, 96, 898–902. [Google Scholar] [CrossRef]
- Vaala, W.E. Peripartum asphyxia syndrome in foals. AAEP Proc. 1999, 45, 247–253. [Google Scholar]
- González-Lozano, M.; Mota-Rojas, D.; Orihuela, A.; Martínez-Burnes, J.; Di Francia, A.; Braghieri, A.; Berdugo-Gutiérrez, J.; Mora-Medina, P.; Ramírez-Necoechea, R.; Napolitano, F. Review: Behavioral, physiological, and reproductive performance of buffalo cows during eutocic and dystocic parturitions. Appl. Anim. Sci. 2020, 36, 407–422. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Martínez-Burnes, J.; Napolitano, F.; Domínguez-Muñoz, M.; Guerrero-Legarreta, I.; Mora-Medina, I.; Ramírez-Necoechea, R.; Lezama-García, K.; González-Lozano, M. Dystocia: Factors affecting parturition in domestic animals. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2020, 15. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; De Rosa, G.; Mora-Medina, P.; Braghieri, A.; Guerrero-Legarreta, I.; Napolitano, F. Dairy buffalo behaviour and welfare from calving to milking. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019. [Google Scholar] [CrossRef]
- Zamora-Moran, E. Metabolic blood gas disorders. In Acid-Base and Electrolyte Handbook for Veterinary Technicians 2017; John Wiley and Sons: Chichester, UK, 2017; pp. 121–135. [Google Scholar]
- Ross, M.G.; Gala, R. Use of umbilical artery base excess: Algorithm for the timing of hypoxic injury. Am. J. Obstet. Gynecol. 2002, 187, 1–9. [Google Scholar] [CrossRef]
- Siristatidis, C.; Salamalekis, E.; Kassanos, D.; Loghis, C.; Creatsas, G. Evaluation of fetal intrapartum hypoxia by middle cerebral and umbilical artery Doppler velocimetry with simultaneous cardiotocography and pulse oximetry. Arch. Gynecol. Obstet. 2004, 270, 265–270. [Google Scholar] [CrossRef]
- Manning, M. Electrolyte disorders. Vet. Clin. N. Am. Small Anim. Pract. 2001, 17, 8–13. [Google Scholar] [CrossRef]
- Best, P.R. Anaesthesia during pregnancy and reproductive surgery. Anesthesiology 1988, 69, 475–510. [Google Scholar]
- Mota-Rojas, D.; Orihuela, A.; Strappini-Asteggiano, A.; Cajiao, P.M.N.; Aguera-Buendia, E.; Mora-Medina, P.; Ghezzi, M.; Alonso-Spilsbury, M. Teaching animal welfare in veterinary schools in Latin America. Int. J. Vet. Sci. Med. 2018, 6, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-García, D.; Mota-Rojas, D.; Martínez-Burnes, J.; Olmos-Hernández, A.; Mora-Medina, P.; Salmerón, C.; Gómez, J.; Boscato, L.; Gutiérrez-Pérez, O.; Cruz, V.; et al. Hypothermia in newly born piglets: Mechanisms of thermoregulation and pathophysiology of death. J. Anim. Behav. Biometeorol. 2021, 9, 2102. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Titto, C.G.; Orihuela, A.; Martínez-Burnes, J.; Gómez-Prado, J.; Torres-Bernal, F.; Flores-Padilla, K.; Carvajal-de la Fuente, V.; Wang, D. Physiological and behavioral mechanisms of thermoregulation in mammals. Animals 2021, 11, 1733. [Google Scholar] [CrossRef] [PubMed]
- Orihuela, A.; Mota-Rojas, D.; Strappini, A.; Serrapica, F.; Braghieri, A.; Mora-Medina, P.; Napolitano, F. Neurophysiological mechanisms of mother–young bonding in buffalo and other farm animals. Animals 2021, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rojas, D.; Pereira, A.; Wang, D.; Martínez-Burnes, J.; Ghezzi, M.; Lendez, P.; Bertoni, A.; Geraldo, A.M. Clinical applications and factors involved in validating thermal windows used in infrared thermography to assess health and productivity. Animals 2021, 11, 2247. [Google Scholar] [CrossRef]
Category | LP n° | Mean Weight (g) ± SEM | SB Type II n° | Mean Weight (g) ± SEM |
---|---|---|---|---|
C1 | 63 | 189.85 ± 2.07 a | 9 | 219.11 ± 7.68 a |
C2 | 71 | 266.84 ± 1.92 b | 12 | 297.08 ± 5.08 b |
C3 | 54 | 374.57 ± 6.55 c | 14 | 419.86 ± 3.62 c |
C4 | 37 | 381.02 ± 3.32 c | 12 | 433.75 ± 3.74 c |
Metabolites | C1 LP = 63 (Mean ± SEM) | C2 LP = 71 (Mean ± SEM) | C3 LP = 54 (Mean ± SEM) | C4 LP = 37 (Mean ± SEM) | |
---|---|---|---|---|---|
Energy metabolism | Lactate (mg/dL) | 4.80 ± 0.23 a | 6.28 ± 0.17 b | 7.05 ± 0.27 b,c | 7.27 ± 0.30 c |
Glucose (mg/dL) | 94.92 ± 1.76 a | 101.29 ± 2.11 a | 100.27 ± 3.05 a | 103.91 ± 3.69 a | |
Calcium and hematocrit | Ca2+ (mmol/L) | 1.43 ± 0.01 c | 1.55 ± 0.01 b | 1.62 ± 0.01 a | 1.59 ± 0.02 a,b |
Hematocrit (%) | 44.84 ± 0.55 c | 48.65 ± 0.41 b | 50.43 ± 0.39 a | 49.82 ± 0.55 a,b | |
Acid-base balance | pH | 7.38 ± 0.01 a | 7.33 ± 0.01 a,b | 7.29 ± 0.01 b | 7.31 ± 0.02 a,b |
pO2 (mmHg) | 17.09 ±0.44 a | 15.47 ± 0.36 b | 14.48 ± 0.40 b | 15.18 ± 0.47 b | |
pCO2 (mmHg) | 47.69 ± 1.01 b | 54.42 ± 1.35 a | 55.98 ± 1.63 a | 54.78 ± 1.87 a | |
HCO3− (mmol/L) | 21.94 ± 0.26 a | 20.44 ± 0.17 b | 19.96 ± 0.18 b | 19.86 ± 0.21 b | |
EB (mEq/L) | −4.77 ± 0.38 a | −5.96 ± 0.36 a | −7.03 ± 0.45 a,b | −8.82 ± 0.43 c |
Metabolites |
C1
Type II SB = 9 (Mean ± SEM) | C2 Type II SB = 12 (Mean ± SEM) | C3 Type II SB = 14 (Mean ± SEM) | C4 Type II SB = 12 (Mean ± SEM) | |
---|---|---|---|---|---|
Energy metabolism |
Lactate (mg/dL) | 11.44 ± 0.52 b | 12.58 ± 0.31 a,b | 12.5 ± 0.22 a,b | 13.08 ± 0.41 a |
Glucose (mg/dL) | 51.11 ± 3.18 a | 42.58 ± 2.19 a,b | 38.78 ± 3.97 b | 41.91 ± 2.09 a,b | |
Calcium and hematocrit |
Ca2+ (mmol/L) | 1.85 ± 0.02 a | 1.89 ± 0.01 a | 1.89 ± 0.02 a | 1.85 ± 0.02 a |
Hematocrit (%) | 59.48 ± 0.52 a | 58.97 ± 0.77 a | 58.33 ± 0.90 a | 58.01 ± 1.15 a | |
Acid-base balance | pH | 6.79 ± 0.06 a | 6.80 ± 0.04 a | 6.83 ± 0.03 a,b | 6.88 ± 0.02 a |
pO2 (mmHg) | 9 ± 0.91 a | 6.66 ± 0.63 a,b | 6.21 ± 0.48 a,b | 5.75 ± 0.89 b | |
pCO2 (mmHg) | 81.66 ± 2.08 b | 93.08 ± 2.42 a | 91.78 ± 2.28 a | 94.66 ± 1.98 a | |
HCO3− (mmol/L) | 17.63 ± 0.25 a | 18.80 ± 0.57 a | 18.37 ± 0.44 a | 18.45 ± 0.46 a | |
EB (mEq/L) | −14.42 ± 0.72 a | −15.33 ± 0.48 a | −14.26 ± 0.39 a | −14.38 ± 0.86 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Sotelo, B.; Mota-Rojas, D.; Mora-Medina, P.; Ogi, A.; Mariti, C.; Olmos-Hernández, A.; Martínez-Burnes, J.; Hernández-Ávalos, I.; Sánchez-Millán, J.; Gazzano, A. Blood Biomarker Profile Alterations in Newborn Canines: Effect of the Mother′s Weight. Animals 2021, 11, 2307. https://doi.org/10.3390/ani11082307
Reyes-Sotelo B, Mota-Rojas D, Mora-Medina P, Ogi A, Mariti C, Olmos-Hernández A, Martínez-Burnes J, Hernández-Ávalos I, Sánchez-Millán J, Gazzano A. Blood Biomarker Profile Alterations in Newborn Canines: Effect of the Mother′s Weight. Animals. 2021; 11(8):2307. https://doi.org/10.3390/ani11082307
Chicago/Turabian StyleReyes-Sotelo, Brenda, Daniel Mota-Rojas, Patricia Mora-Medina, Asahi Ogi, Chiara Mariti, Adriana Olmos-Hernández, Julio Martínez-Burnes, Ismael Hernández-Ávalos, Jose Sánchez-Millán, and Angelo Gazzano. 2021. "Blood Biomarker Profile Alterations in Newborn Canines: Effect of the Mother′s Weight" Animals 11, no. 8: 2307. https://doi.org/10.3390/ani11082307
APA StyleReyes-Sotelo, B., Mota-Rojas, D., Mora-Medina, P., Ogi, A., Mariti, C., Olmos-Hernández, A., Martínez-Burnes, J., Hernández-Ávalos, I., Sánchez-Millán, J., & Gazzano, A. (2021). Blood Biomarker Profile Alterations in Newborn Canines: Effect of the Mother′s Weight. Animals, 11(8), 2307. https://doi.org/10.3390/ani11082307