The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Shammari, K.I.A.; Batkowska, J.; Zamil, S.J. Role of pomegranate peels and black pepper powder and their mixture in alleviating the oxidative stress in broiler chickens. Int. J. Poult. Sci. 2019, 18, 122–128. [Google Scholar] [CrossRef][Green Version]
- Al-Shammari, K.I.A.; Zamil, S.J.; Mohammed, E.M. Influence of dietary epigallocatechin-3 gallate and l-arginine and its combination on early laying performance and status of stressed Japanese quails. J. Phys. Conf. Ser. 2019, 1294, 092014. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef] [PubMed]
- Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Sci. 2016, 1, 8. [Google Scholar] [CrossRef]
- Abbas, R.Z.; Munawar, S.H.; Manzoor, Z.; Iqbal, Z.; Khan, M.N.; Saleemi, M.K.; Zia, M.A.; Yousaf, A. Anticoccidial effects of acetic acid on performance and pathogenic parameters in broiler chickens challenged with Eimeria tenella. Pesqui. Vet. Bras. 2011, 31, 99–103. [Google Scholar] [CrossRef]
- Saleem, G.; Ramzaan, R.; Khattak, F.M.; Akhtar, R. Effects of acetic acid supplementation in broiler chickens orally challenged with Salmonella pullorum. Turk. J. Vet. Anim. Sci. 2016, 40, 434–443. [Google Scholar] [CrossRef]
- Rehman, Z.; Haq, A.; Naasra, A.; El-Hack, M.E.A.; Saeed, M.; Rehman, S.; Meng, C.; Alagawany, M.; Maryam, S.; Dhama, K.; et al. Growth performance, intestinal histomorphology, blood hematology and serum metabolites of broilers chickens fed diet supplemented with graded levels of acetic acid. Int. J. Pharmacol. 2016, 12, 874–883. [Google Scholar] [CrossRef]
- Fouad, W.; Farag, M.E.; Abou-Shehema, B.M.; Abd El-Halim, H.A.H. Effect of acetic acid and date residues on some physiological characteristics, productive and reproductive parameters of quail during summer season. Egypt. J. Nutr. Feed. 2018, 21, 793–805. [Google Scholar] [CrossRef]
- Zarghi, H. Use of natural organic acid “Apple Vinegar” as a method of biological health control. J. Food Drug. Res. 2018, 1, 19–20. [Google Scholar]
- Kim, J.W.; Kim, J.H.; Kil, D.Y. Dietary organic acids for broiler chickens: A review. Rev. Colomb. Cienc. Pecu. 2015, 28, 109–123. [Google Scholar] [CrossRef]
- Ndelekwute, E.K.; Unah, U.L.; Udoh, U.H. Effect of dietary organic acids on nutrient digestibility, faecal moisture, digesta pH and viscosity of broiler chickens. MOJ Anat. Physiol. 2019, 6, 40–43. [Google Scholar] [CrossRef]
- Watarai, S.; Tana, S. Eliminating the carriage of Salmonella enterica serovar Enteritidis in domestic fowls by feeding activated charcoal from bark containing wood vinegar liquid (Nekka-rich). Poult. Sci. 2005, 84, 515–521. [Google Scholar] [CrossRef]
- Dittoe, D.K.; Ricke, S.C.; Kiess, A.S. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front. Vet. Sci. 2018, 5, 216. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Ishii, G. Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Erucasativa Mill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin. Soil Sci. Plant Nutr. 2006, 52, 394–400. [Google Scholar] [CrossRef]
- Tassi, É.M.M.; Duarte, R.M.T.; Amaya-Farfan, J. Partial nutrient characterization of arugula (rocket-Eruca sativa L.) and the effect of heat treatment on its lipoxidase activity. Braz. J. Food Technol. 2018, 21, e2017024. [Google Scholar] [CrossRef]
- Ashraf, M.; Noor, R. Growth and pattern of ion uptake in Eruca sativa Mill. under salt stress. Angew. Bot. 1992, 67, 17–21. [Google Scholar]
- Villamil, J.M.P.; Perez-Garcia, F.; Martinez-Laborde, J.B. Time of seed collection and germination in rocket, Eruca vesicaria (L.) Cav. (Brassicaceae). Genet. Resour. Crop Evol. 2002, 49, 47–51. [Google Scholar] [CrossRef]
- Martínez-Ballesta, M.C.; López-Pérez, L.; Hernández, M.; López-Berenguer, C.; Fernández-García, N.; Carvajal, M. Agricultural practices for enhanced human health. Phytochem. Rev. 2008, 7, 251–260. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry: 1994, 9th ed.; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Mehrotra, V.; Saxena, V.L.; Saxena, A.K. Impact of different doses of lead on internal organs of quails. J. Environ. Biol. 2008, 29, 147–149. [Google Scholar]
- Al-Shammari, K.I.A. Efficiency of dietary zinc and lycopene to counteract oxidative stress of Japanese quail. Iraqi Poult. Sci. J. 2017, 11, 44–58. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Zare, K.; Nazemyeh, H.; Lotfipour, F.; Farabi, S.; Ghiamirad, M.; Barzegari, A. Antibacterial activity and total phenolic content of the Onopordon acanthium L. seeds. Pharm. Sci. 2014, 20, 6–11. [Google Scholar]
- Babaa, S.A.; Malikba, S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah Univ. Sci. 2015, 9, 449–454. [Google Scholar] [CrossRef]
- Kaur, G.J.; Arora, D.S. Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complement. Altern. Med. 2009, 9, 1–10. [Google Scholar] [CrossRef]
- Anhawange, A.A.; Ajibola, V.O.; Oniye, S.J. Chemical studies of the seeds Moringa oleifera (Lam) Detarium mirocarpum (Guill. and Perr.). J. Biol. Sci. 2004, 4, 711–715. [Google Scholar] [CrossRef]
- Abdelkader, M.; Ahcen, B.; Rachid, D.; Hakim, H. Phytochemical study and biological activity of sage (Salvia officinalis L.). Int. J. Bioeng. Life Sci. 2014, 8, 1253–1257. [Google Scholar]
- Ajanal, M.; Gundkalle, M.B.; Nayak, S.U. Estimation of total alkaloid in Chitrakadivati by UV-Spectrophotometer. Anc. Sci. Life 2012, 31, 198–201. [Google Scholar] [CrossRef]
- Lemme, A.; Frackenpohl, U.; Petri, A.; Meyer, H. Response of male BUT big 6 turkeys to varying amino acid feeding programs. Poult. Sci. 2006, 85, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.A.; Ruiz, R.; Peinado, M.J.; Echavárri, A. Morphology and enzymatic activity of the small intestinal mucosa of Iberian pigs as compared with a lean pig strain. J. Anim. Sci. 2010, 88, 3590–3597. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef]
- Södergren, E.; Nourooz-Zadeh, J.; Berglund, L.; Vessby, B. Re-evaluation of the ferrous oxidation in xylenol orange assay for the measurement of plasma lipid hydroperoxides. J. Biochem. Biophys. Methods 1998, 37, 137–146. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power the FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple range test and multiple F. test. Biometrics 1995, 11, 1–42. [Google Scholar] [CrossRef]
- Statistical Analysis System (SAS). User’s Guide. Statistical, version 9.1; SAS Institute Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Rattanawut, J. Effects of dietary bamboo charcoal powder including bamboo vinegar liquid supplementation on growth performance, fecal microflora population and intestinal morphology in betong chickens. J. Poult. Sci. 2014, 51, 165–171. [Google Scholar] [CrossRef]
- Hayajneh, F.M.F. Natural feed additives for broiler chickens. S. Afr. J. Anim. Sci. 2019, 49, 867–873. [Google Scholar] [CrossRef]
- Osman, M.; Amber, K.H.; Mahmoud, M.A. Response of broiler chicks performance to partial dietary inclusion of radish, rocket and parsley cakes. Egypt. Poult. Sci. J. 2004, 24, 429–446. [Google Scholar]
- Kim, S.J.; Jin, S.; Ishii, G. Isolation and structural elucidation of 4-(β-D-Glucopyranosyldisulfanyl) butylglucosinolate from leaves of rocket salad (Eruca sativa L.) and its antioxidative activity. Biosci. Biotechnol. Biochem. 2004, 68, 2444–2450. [Google Scholar] [CrossRef]
- Abdullach, F.A.; Abdul-Majeed, A.F.; Taha, S.H. Effect of crushed Eruca sativa seeds supplementation to quail ration on lipid profile before and after sexual maturity. Mesop. J. Agric. 2019, 47, 25–35. [Google Scholar]
- Razooqi, R.H.; Shkeer, H.K.; Alwan, Y.O.; Hayder, M.I. Effect of Eruca sativa oil (ESO) on broiler performance and some blood traits. Int. J. Adv. Biol. Res. 2014, 4, 479–482. [Google Scholar]
- Shani, E.H.; Al-Bazi, W.; Kadhim, K.S. Effects of Eruca sativa seeds powder on performance and immunity of broilers. Indian J. Public Health Res. Dev. 2019, 10, 909–913. [Google Scholar] [CrossRef]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2015, 44, 359–369. [Google Scholar] [CrossRef]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Ragab Farag, M.; Dhama, K.; Gopi, M. Role of acidifiers in livestock nutrition and health: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef]
- Budak, N.H.; Aykin, E.; Seydim, A.C.; Greene, A.K.; Guzel-Seydim, Z.B. Functional properties of vinegar. J. Food Sci. 2014, 79, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Diógenes, G.V.; Teixeira, E.N.M.; Pimenta, A.S.; Souza, J.G.; Moreira, J.A.; Marinho, A.L.; Veras, A.; Chemane, I.A. Wood vinegar from eucalyptus as an additive in broiler quail feed. Int. J. Plant Anim. Environ. Sci. 2019, 9, 164–181. [Google Scholar] [CrossRef]
- Saleh, H.; Golian, A.; Kermanshahi, H.; Mirakzehi, M.T. Antioxidant status and thigh meat quality of broiler chickens fed diet supplemented with α-tocopherolacetate, pomegranate pomace and pomegranate pomace extract. Ital. J. Anim. Sci. 2018, 17, 386–395. [Google Scholar] [CrossRef]
- El-Badawy, M.; Youssef, H.; Hafez, Y.; El-Sanafawy, H.; El-Maghraby, M. Effect of rocket oil addition on productive and reproductive performance of growing ram lambs under hot climate condition. J. Anim. Poult. Prod. 2018, 9, 9–15. [Google Scholar] [CrossRef]
- Ibrahim, R.E.; El-Houseinya, W.; Behairyb, A.; Abo-Elmaatyc, A.; Al-Sagheerd, A.A. The palliative role of Eruca sativa leaves dietary supplementation against oxidative stress, immunosuppression, and growth retardation in temperature-stressed Oreochromis niloticus. J. Therm. Biol. 2019, 84, 26–35. [Google Scholar] [CrossRef] [PubMed]
- El-Missiry, M.A.; El Gindy, A.M. Amelioration of alloxan induced diabetes mellitus and oxidative stress in rats by oil of Eruca sativa seeds. Ann. Nutr. Metab. 2000, 44, 97–100. [Google Scholar] [CrossRef]
- ELSadek, M.F. Chemical constituents of Eruca sativa and treatment activity against paracetamol inducing hepatic injury in experimental rats. Egypt. J. Nutr. Health 2014, 9, 1–12. [Google Scholar] [CrossRef][Green Version]
Feed Stuffs | Starter (1 Day–3 Weeks) | Finisher (4 Weeks–6 Weeks) |
---|---|---|
Yellow corn | 43.5 | 44.3 |
Wheat | 18.0 | 18.0 |
Soybean | 25.8 | 23.6 |
Protein concentrate | 10.0 | 10.0 |
Salt | 0.30 | 0.30 |
Limestone | 0.40 | 0.40 |
Vegetable oil | 2.00 | 3.40 |
Total | 100 | 100 |
Calculated chemical composition | ||
Crude protein | 22.11 | 21.20 |
Metabolizable energy (kcal/kg) | 3105.6 | 3005.5 |
Calcium (%) | 146.5 | 136.0 |
Lysine (%) | 1.13 | 1.02 |
Methionine + Cystein (%) | 0.79 | 0.65 |
Available phosphorus (%) | 1.01 | 1.03 |
Crude fiber (%) | 0.42 | 0.47 |
Ether extract (%) | 3.461 | 3.600 |
Component | (%) |
---|---|
Dry matter | 95.22 |
Crude protein | 28.21 |
Crude fiber | 15.73 |
Ether extract | 30.10 |
Nitrogen ether extract | 17.24 |
Crude ash | 7.91 |
Bioactive Compound | (%) |
---|---|
Total phenols | 26.97 |
Flavonoids | 24.43 |
Glycosides | 2.76 |
Saponins | 6.20 |
Tannins | 4.15 |
Alkaloids | 11.27 |
Variables | Age of Birds (Weeks) | Groups | SEM | p-Value (F Test) | |||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
body weight (g) | 1–3 | 813.5 | 699.5 | 732.5 | 818.00 | 775.01 | 807.5 ± 0 | 9.217 | 0.068 |
1–6 | 2675.5 b | 1774.5 c | 2738 ab | 2830.5 a | 2819.5 a | 2749 a | 14.478 | 0.036 | |
total weight gain (g) | 1–3 | 771.15 a | 657.45 b | 690.17 b | 775.96 a | 731.87 ab | 766.59 a | 11.136 | 0.012 |
1–6 | 2633.42 ab | 1732.45 c | 2696.67 ab | 2788.46 a | 2776.37 | 2707.09 a | 17.640 | 0.011 | |
feed intake (g/day) | 1–3 | 931.0 | 894.5 | 851.5 | 883.0 | 894.5 | 861.0 | 14.729 | 0.071 |
1–6 | 3908.5 a | 3000.5 b | 3999.0 a | 3957.0 a | 3779.5 a | 3911 a | 18.262 | 0.041 | |
feed conversion ratio (kg/kg of body weight gain) | 1–3 | 1.20 b | 1.36 a | 1.23 b | 1.13 c | 1.22 b | 1.12 c | 0.027 | |
1–6 | 1.55 b | 1.75 a | 1.48 c | 1.41 c | 1.36 c | 1.44 c | 0.028 | 0.000 | |
water intake (mL/day) | 1–3 | 612.0 | 450 | 540.5 | 527.0 | 558.0 | 526.5 | 13.479 | 0.061 |
1–6 | 1210.0 a | 990 b | 1242.5 a | 1253.5 a | 1305.5a | 1234.5 a | 22.134 | 0.058 | |
survivability (%) | 1–6 | 100.0 a | 87.5 c | 97.5 b | 97.5 b | 100.0 a | 100.0 a | 4.079 | 0.043 |
Variables | Groups | SEM | p-Value (F Test) | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
PEF | 410.97 a | 210.80 b | 427.95 a | 462.90 a | 490.67 a | 452.16 a | 18.58 | 0.000 | |
carcass yield (%) | 75.87 a | 72.17 b | 76.34 a | 75.65 a | 73.32 b | 74.76 a | 4.08 | 0.039 | |
carcass cuts (%) | breast muscles | 27.25 a | 24.55 b | 28.63 a | 27.35 a | 27.25 a | 27.64 a | 0.82 | 0.014 |
thighs | 18.76 ab | 17.66 b | 19.54 a | 19.84 a | 19.76 a | 18.86 ab | 0.85 | 0.043 | |
drumsticks | 16.87 ab | 15.87 b | 17.26 a | 17.58 a | 16.77 a | 16.86 a | 1.87 | 0.036 | |
wings | 11.76 b | 13.76 a | 11.52 b | 11.46 b | 11.72 b | 11.96 b | 1.69 | 0.012 | |
back | 17.87 b | 19.67 a | 17.23 b | 17.47 b | 17.82 b | 17.73 b | 0.84 | 0.041 | |
neck | 6.98 b | 7.98 a | 6.42 b | 6.29 b | 6.78 b | 6.93 b | 0.62 | 0.017 | |
abdominal fat (%) | 0.34 b | 1.85 a | 0.12 b | 0.48 b | 0.39 b | 0.43 b | 0.01 | 0.000 |
Variables | Groups | SEM | p-Value (F Test) | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
small intestine | Length (%) | 8.01 a | 6.01 b | 8.11 a | 8.35 a | 8.25 a | 8.87 a | 0.674 | 0.003 |
weight (%) | 5.18 a | 3.15 b | 4.26 ab | 5.53 a | 5.84 a | 5.42 a | 0.330 | 0.016 | |
large intestine | length (%) | 2.26 a | 1.06 b | 2.35 a | 2.42 a | 2.18 a | 2.58 a | 0.140 | 0.001 |
weight (%) | 0.84 | 0.73 | 0.79 | 0.81 | 0.80 | 0.89 | 0.003 | 0.074 | |
whole gut weight (%) | 9.27 ab | 8.13 b | 9.38 ab | 9.19 ab | 9.32 ab | 9.52 a | 0.385 | 0.045 | |
giblets weight | liver (%) | 2.89 a | 1.98 b | 2.98 a | 2.83 a | 2.76 a | 2.99 a | 0.053 | 0.021 |
gizzard (%) | 2.43 a | 1.65 b | 2.15 a | 2.23 a | 2.18 a | 2.12 a | 0.089 | 0.017 | |
heart (%) | 1.18 | 1.02 | 1.36 | 1.19 | 1.18 | 1.29 | 0.095 | 0.800 | |
lungs weight (%) | 0.74 | 0.61 | 0.72 | 0.77 | 0.75 | 0.66 | 0.008 | 0.680 | |
kidneys weight (%) | 0.51 | 0.47 | 0.53 | 0.49 | 0.48 | 0.54 | 0.008 | 0.712 | |
adrenals weight (%) | 0.02 | 0.01 | 0.03 | 0.02 | 0.03 | 0.03 | 0.001 | 0.590 | |
pancreas weight (%) | 0.23 | 0.20 | 0.24 | 0.22 | 0.25 | 0.26 | 0.003 | 0.808 | |
spleen weight (%) | 0.21 | 0.19 | 0.22 | 0.22 | 0.23 | 0.21 | 0.003 | 0.921 | |
bursa of Fabricius weight (%) | 0.16 | 0.13 | 0.15 | 0.16 | 0.15 | 0.14 | 0.005 | 0.195 | |
thymus gland weight (%) | 0.12 | 0.11 | 0.12 | 0.11 | 0.12 | 0.11 | 0.000 | 0.950 |
Variables | Groups | SEM | p-Value (F Test) | ||||||
---|---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | ||||
villus | height (μm) | 1320.0 a | 920.0 c | 1110.0 bc | 1365.0 a | 1254.0 ab | 1325.0 a | 43.61 | 0.000 |
width (μm) | 184.0 a | 128.0 b | 178.0 a | 182.0 a | 177.0 a | 183.0 a | 11.68 | 0.001 | |
surface area (×103 μm2) | 762.13 a | 368.75 c | 621.61 ab | 781.66 a | 695.40 ab | 761.14 a | 21.36 | 0.000 | |
crypt depth (μm) | 183.11 | 170.14 | 177.31 | 176.25 | 189.21 | 186.42 | 18.03 | 0.874 | |
villus height/crypt depth | 7.31 a | 5.31 b | 6.47 ab | 7.85 a | 6.73 a | 7.42 a | 0.89 | 0.011 | |
muscular layer thickness (μm) | 276.12 a | 199.23 b | 269.43 a | 279.52 a | 253.32 a | 265.32 a | 15.57 | 0.007 |
Variables | Groups | SEM | p-Value (F Test) | |||||
---|---|---|---|---|---|---|---|---|
NC | PC | Vi1 | Vi2 | Ro1 | Ro2 | |||
hydroperoxide (LOOH, μmol/L) | 12.53 c | 18.42 a | 15.97 b | 12.31 c | 13.23 c | 12.52 c | 1.54 | 0.011 |
malondialdehyde (MDA, μmol/L) | 10.31 c | 17.27 a | 11.32 c | 13.32 b | 10.35 c | 11.35 c | 1.78 | 0.000 |
superoxide dismutase (SOD, U/mL) | 123.9 a | 95.34 c | 109.8 b | 124.9 a | 116.9 b | 124.3 a | 7.36 | 0.000 |
catalase (CAT, U/mL) | 6.41 a | 4.63 b | 6.45 a | 7.44 a | 6.71 a | 5.67 ab | 0.72 | 0.003 |
glutathione peroxidase (GPx, U/L) | 1.82 a | 1.23 b | 1.68 a | 1.92 a | 1.81 a | 1.76 a | 0.10 | 0.023 |
ferric-reducing ability of plasma (FRAP, μmol/L) | 725.2 ab | 659.3 c | 852.2 a | 732.7 ab | 802.1 a | 721.2 ab | 12.19 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shammari, K.I.A.; Batkowska, J. The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens. Animals 2021, 11, 2277. https://doi.org/10.3390/ani11082277
Al-Shammari KIA, Batkowska J. The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens. Animals. 2021; 11(8):2277. https://doi.org/10.3390/ani11082277
Chicago/Turabian StyleAl-Shammari, Karrar Imad Abdulsahib, and Justyna Batkowska. 2021. "The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens" Animals 11, no. 8: 2277. https://doi.org/10.3390/ani11082277
APA StyleAl-Shammari, K. I. A., & Batkowska, J. (2021). The Antioxidative Impact of Dietary Vinegar and Rocket Salad on the Productivity, Serum Oxidation System, and Duodenal Histology of Chickens. Animals, 11(8), 2277. https://doi.org/10.3390/ani11082277