Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Source of Probiotic
2.2. Experimental Design, Animals, and Diets
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility and Blood Profile
3.3. Fecal Microbiota and Noxious Gas Emission
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Thu, T.V.; Loh, T.C.; Foo, H.L.; Yaakub, H.; Bejo, M.H. Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets. Trop. Anim. Health Prod. 2011, 43, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Torrallardona, D. Spray dried animal plasma as an alternative to antibiotics in weanling pigs-a review. Australas. J. Anim. Sci. 2009, 23, 131–148. [Google Scholar] [CrossRef]
- Mingmongkolchai, S.; Panbangred, W. Bacillus probiotics: An alternative to antibiotics for livestock production. J. Appl. Microbiol. 2018, 124, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Global Agricultural Information Network. Global Agricultural Information Network: Korea Phases Out Antibiotic Usage in Compound Feed. 2011. Available online: http://gain.fas.usda.gov/Recent%20GAIN%20Publications/Korea%20Phases%20Out%20Antibiotic%20Usage%20in%20Compound%20Feed_Seoul_Korea%20-%20Republic%20of_7-13-2011.pdf (accessed on 15 September 2014).
- Sun, Y.; Duarte, M.E.; Kim, S.W. Dietary inclusion of multispecies probiotics to reduce the severity of post-weaning diarrhea caused by Escherichia coli F18+ in pigs. Anim. Nutr. 2021, 7, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Radzikowski, D.; Milczarek, A. Selected feed additives used in pig nutrition. J. Cent. Eur. Agric. 2021, 22, 54–65. [Google Scholar] [CrossRef]
- Torres-Pitarch, A.; Manzanilla, E.G.; Gardiner, G.E.; O’Doherty, J.V.; Lawlor, P.G. Systematic review and meta-analysis of the effect of feed enzymes on growth and nutrient digestibility in grow-finisher pigs: Effect of enzyme type and cereal source. Anim. Feed Sci. Technol. 2019, 251, 153–165. [Google Scholar] [CrossRef]
- Wei, X.; Bottoms, K.A.; Stein, H.H.; Blavi, L.; Bradley, C.L.; Bergstrom, J.; Knapp, J.; Story, R.; Maxwell, C.; Tsai, T. Dietary Organic Acids Modulate Gut Microbiota and Improve Growth Performance of Nursery Pigs. Microorganisms 2021, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Azad, M.; Kalam, A.; Sarker, M.; Li, T.; Yin, J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int. 2018, 2018, 9478630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, H. Feeding the pigs’ immune system and alternatives to antibiotics. In Proceedings of the London Swine Conference, London, UK, 3–4 April 2007; pp. 65–82. [Google Scholar]
- FAO/WHO. Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation. In FAO Food and Nutrition Paper 85; FAO: Roma, Italy, 2006. [Google Scholar]
- Wang, X.; Tsai, T.; Wei, X.; Zuo, B.; Davis, E.; Rehberger, T.; Hernandez, S.; Jochems, E.J.; Maxwell, C.V.; Zhao, J. Effect of Lactylate and Bacillus subtilis on growth performance, peripheral blood cell profile, and gut microbiota of nursery pigs. Microorganisms 2021, 9, 803. [Google Scholar] [CrossRef]
- Hu, J.; Kim, Y.H.; Kim, I.H. Effects of two Bacillus strains probiotic supplement on reproduction performance, nutrient digestibility, blood profile, fecal score, excreta odor contents and fecal microflora in lactation sows, and growth performance in sucking piglets. Livest. Sci. 2021, 244, 104293. [Google Scholar] [CrossRef]
- Zhaxi, Y.; Meng, X.; Wang, W.; Wang, L.; He, Z.; Zhang, X.; Pu, W. Duan-nai-An, A Yeast probiotic, improves intestinal Mucosa integrity and immune function in Weaned piglets. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.H.; Nyachoti, C.M.; Kim, I.H. Evaluation of effect of probiotics mixture supplementation on growth performance, nutrient digestibility, faecal bacterial enumeration, and noxious gas emission in weaning pigs. Ital. J. Anim. Sci. 2019, 18, 466–473. [Google Scholar] [CrossRef] [Green Version]
- McCoy, S.; Gilliland, S.E. Isolation and characterization of Lactobacillus species having potential for use as probiotic cultures for dogs. J. Food Sci. 2007, 72, M94–M97. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Sabo, S.; Vitolo, M.; González, J.M.D.; de Souza Oliveira, R.P. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 2014, 64, 527–536. [Google Scholar] [CrossRef] [PubMed]
- De Vries, M.C.; Vaughan, E.E.; Kleerebezem, M.; de Vos, W.M. Lactobacillus plantarum—Survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 2006, 16, 1018–1028. [Google Scholar] [CrossRef]
- Gewaily, M.S.; Shukry, M.; Abdel-Kader, M.F.; Alkafafy, M.; Farrag, F.A.; Moustafa, E.M.; Van Doan, H.; Abd-Elghany, M.F.; Abdelhamid, A.F.; Eltanahy, A.; et al. Dietary Lactobacillus plantarum Relieves Nile Tilapia (Oreochromis niloticus) Juvenile from Oxidative Stress, Immunosuppression, and Inflammation Induced by Deltamethrin and Aeromonas hydrophila. Front. Mar. Sci. 2021. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Wei, Z.; Yin, B.; Man, C.; Jiang, Y. Enhancement of functional characteristics of blueberry juice fermented by Lactobacillus plantarum. LWT 2021, 139, 110590. [Google Scholar] [CrossRef]
- Lin, X.; Xia, Y.; Yang, Y.; Wang, G.; Zhou, W.; Ai, L. Probiotic characteristics of Lactobacillus plantarum AR113 and its molecular mechanism of antioxidant. LWT 2020, 126, 109278. [Google Scholar] [CrossRef]
- Geng, T.; Su, S.; Sun, K.; Zhao, L.; Zhao, Y.; Bao, N.; Pan, L.; Sun, H. Effects of feeding a Lactobacillus plantarum JL01 diet on caecal bacteria and metabolites of weaned piglets. Lett. Appl. Microbiol. 2021, 72, 24–35. [Google Scholar] [CrossRef]
- Betancur, C.; Martínez, Y.; Merino-Guzman, R.; Hernandez-Velasco, X.; Castillo, R.; Rodríguez, R.; Tellez-Isaias, G. Evaluation of oral administration of Lactobacillus plantarum CAM6 strain as an alternative to antibiotics in weaned pigs. Animals 2020, 10, 1218. [Google Scholar] [CrossRef]
- Cui, K.; Wang, Q.; Wang, S.; Diao, Q.; Zhang, N. The facilitating effect of tartary buckwheat flavonoids and Lactobacillus plantarum on the growth performance, nutrient digestibility, antioxidant capacity, and fecal microbiota of weaned piglets. Animals 2019, 9, 986. [Google Scholar] [CrossRef] [Green Version]
- Suo, C.; Yin, Y.; Wang, X.; Lou, X.; Song, D.; Wang, X.; Gu, Q. Effects of lactobacillus plantarumZJ316 on pig growth and pork quality. BMC Vet. Res. 2012, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.-M.; Kang, K.-G.; Kwon, D.-H.; Park, J.-B.; Yang, B.-K.; Ha, S.-J. Isolation of Lactobacillus plantarum BG0001 Producing Bacteriocin and Evaluation of Antimicrobial Activity. Korean Society of Biological Engineering Spring Conference and International Symposium, Busan, Korea, 20–22 June 2019; p. 544. [Google Scholar]
- Hahn, T.W.; Lohakare, J.D.; Lee, S.L.; Moon, W.K.; Chae, B.J. Effects of supplementation of β-glucans on growth performance, nutrient digestibility, and immunity in weanling pigs. J. Anim. Sci. 2006, 84, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Research Council Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC—Association of Official Analytical Chemists. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Sampath, V.; Heon Baek, D.; Shanmugam, S.; Kim, I.H. Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs. Animals 2021, 11, 759. [Google Scholar] [CrossRef] [PubMed]
- Thanh, N.T.; Loh, T.C.; Foo, H.L.; Hair-Bejo, M.; Azhar, B.K. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers. Br. Poult. Sci. 2009, 50, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.H.; Aguilar, Y.M.; Yu, L.; Wang, Y.; Liu, H.B.; Liu, G.; Yin, Y.L. Effects of dietary supplementation of Lactobacillus plantarum on growth performance and serum concentration of amino acids in weaned piglets. Anim. Nutr. Feed Technol. 2014, 14, 411–420. [Google Scholar] [CrossRef]
- Kaushik, J.K.; Kumar, A.; Duary, R.K.; Mohanty, A.K.; Grover, S.; Batish, V.K. Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE 2009, 4, e8099. [Google Scholar] [CrossRef] [Green Version]
- Foo, H.L.; Loh, T.C.; Law, F.L.; Lim, Y.Z.; Kufli, C.N.; Rusul, G. Effects of feeding Lactobacillus plantarum I-UL4 isolated from Malaysian Tempeh on growth performance, faecal flora and lactic acid bacteria and plasma cholesterol concentrations in postweaning rats. Food Sci. Biotechnol. 2003, 12, 403–408. [Google Scholar]
- Jones, A.M.; Woodworth, J.C.; DeRouchey, J.M.; Dritz, S.S.; Tokach, M.D.; Goodband, R.D. Effect of feeding varying levels of Lactobacillus Plantarum on nursery pig performance. J. Anim. Sci. 2017, 95, 83. [Google Scholar] [CrossRef]
- O’Shea, C.J.; Sweeney, T.; Bahar, B.; Ryan, M.T.; Thornton, K.; O’Doherty, J.V. Indices of gastrointestinal fermentation and manure emissions of growing-finishing pigs as influenced through singular or combined consumption of Lactobacillus plantarum and inulin. J. Anim. Sci. 2012, 90, 3848–3857. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Kim, S.H.; Kim, I.H. Effects of the combination of multistrain probiotics and Castanea crenata shell extract on growth performance, nutrient digestibility, fecal microbial shedding, meat quality, noxious gas emissions, and blood parameters in finishing pigs. Livest. Sci. 2020, 240, 104185. [Google Scholar] [CrossRef]
- Wang, H.; Kim, K.P.; Kim, I.H. Influence of Bacillus subtilis GCB-13-001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1919–1925. [Google Scholar] [CrossRef]
- Tufarelli, V.; Crovace, A.M.; Rossi, G.; Laudadio, V. Effect of a dietary probiotic blend on performance, blood characteristics, meat quality and faecal microbial shedding in growing-finishing pigs. S. Afr. J. Anim. Sci. 2017, 47, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.C.; Hart, A.L.; Kamm, M.A.; Stagg, A.J.; Knight, S.C. Mechanisms of action of probiotics: Recent advances. Inflamm. Bowel Dis. 2009, 15, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Pieper, R.; Janczyk, P.; Urubschurov, V.; Hou, Z.; Korn, U.; Pieper, B.; Souffrant, W.B. Effect of Lactobacillus plantarum on intestinal microbial community composition and response to enterotoxigenic Escherichia coli challenge in weaning piglets. Livest. Sci. 2010, 133, 98–100. [Google Scholar] [CrossRef]
- Pupa, P.; Apiwatsiri, P.; Sirichokchatchawan, W.; Pirarat, N.; Maison, T.; Koontanatechanon, A.; Prapasarakul, N. Use of Lactobacillus plantarum (strains 22F and 25F) and Pediococcus acidilactici (strain 72N) as replacements for antibiotic-growth promotants in pigs. Sci. Rep. 2021, 11, 1–12. [Google Scholar]
- Betancur, C.; Martínez, Y.; Tellez-Isaias, G.; Castillo, R.; Ding, X. Effect of Oral Administration with Lactobacillus plantarum CAM6 Strain on Sows during Gestation-Lactation and the Derived Impact on Their Progeny Performance. Mediat. Inflamm. 2021, 2021, 6615960. [Google Scholar] [CrossRef]
- Nemcová, R.; Bomba, A.; Gancarčíková, S.; Reiffová, K.; Guba, P.; Koščová, J.; Jonecova, Z.; Scirankova, L.; Bugarský, A. Effects of the administration of lactobacilli, maltodextrins and fructooligosaccharides upon the adhesion of E. coli O8: K88 to the intestinal mucosa and organic acid levels in the gut contents of piglets. Vet. Res. Commun. 2007, 31, 791–800. [Google Scholar] [CrossRef]
- Wang, J.; Ji, H.; Wang, S.; Liu, H.; Zhang, W.; Zhang, D.; Wang, Y. Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front. Microbiol. 2018, 9, 1953. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.; Zhao, H.; Zhang, C.; Yu, J.; Lu, Z. Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables. J. Agric. Food Chem. 2013, 61, 11676–11682. [Google Scholar] [CrossRef] [PubMed]
- Suma, K.; Misra, M.C.; Varadaraj, M.C. Plantaricin LP84, a broad spectrum heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int. J. Food Microbiol. 1998, 40, 17–25. [Google Scholar] [CrossRef]
- Ferket, P.R.; Van Heugten, E.; Van Kempen, T.A.T.G.; Angel, R. Nutritional strategies to reduce environmental emissions from nonruminants. J. Anim. Sci. 2002, 80, E168–E182. [Google Scholar] [CrossRef]
- Yan, L.; Meng, Q.W.; Kim, I.H. The effect of an herb extract mixture on growth performance, nutrient digestibility, blood characteristics and fecal noxious gas content in growing pigs. Livest. Sci. 2011, 141, 143–147. [Google Scholar] [CrossRef]
- Cho, J.H.; Chen, Y.J.; Min, B.J.; Yoo, J.S.; Wang, Y.; Kim, I.H. Effects of reducing dietary crude protein on growth performance, odor gas emission from manure and blood urea nitrogen and IGF-1 concentrations of serum in nursery pigs. Anim. Sci. J. 2008, 79, 453–459. [Google Scholar] [CrossRef]
Items | Phase 1 | Phase 2 | Phase 3 |
---|---|---|---|
Ingredients, % | |||
Extruded corn | 37.29 | 47.80 | 55.83 |
Soybean meal (dehulled) | 12.00 | 18.00 | 24.00 |
Fermented soybean meal | 10.00 | 8.00 | 5.00 |
LT-fish meal | 7.60 | 2.70 | - |
Soy oil | 3.13 | 3.20 | 3.25 |
Dicalcium phosphate | 1.24 | 1.34 | 1.63 |
Limestone | 0.60 | 0.74 | 0.82 |
Sugar | 3.00 | 2.00 | 2.00 |
Whey protein | 11.00 | 8.00 | 3.00 |
Lactose | 12.80 | 6.70 | 3.00 |
L-lysine–HCL | 0.35 | 0.46 | 0.48 |
DL-methionine | 0.18 | 0.17 | 0.19 |
Threonine | 0.21 | 0.29 | 0.20 |
Choline chloride 50% | 0.10 | 0.10 | 0.10 |
Salt | 0.10 | 0.10 | 0.10 |
Premix 1 | 0.40 | 0.40 | 0.40 |
Nutrients, % 2 | |||
Crude protein | 20.0 | 19.0 | 18.5 |
Crude fat | 5.40 | 4.80 | 4.20 |
Calcium | 0.80 | 0.75 | 0.75 |
Phosphorus | 0.70 | 0.65 | 0.65 |
Digestible energy, kcal/kg | 4000 | 3900 | 3800 |
Lysine | 1.60 | 1.50 | 1.40 |
Methionine | 0.48 | 0.45 | 0.42 |
Lactose | 20.0 | 12.0 | 5.0 |
Items | NC | PC | NC1 | NC2 | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|---|---|
NC vs. PC | PC vs. NC1, 2 | NC vs. NC1, 2 | ||||||
BW, kg | ||||||||
Initial | 6.67 | 6.67 | 6.67 | 6.66 | 0.002 | 0.623 | 0.259 | 0.131 |
D 42 | 23.39 | 24.65 | 24.19 | 24.27 | 0.40 | 0.002 | 0.181 | 0.017 |
D 0–7 | ||||||||
ADG, g | 217 | 246 | 228 | 230 | 3.69 | <0.001 | 0.001 | 0.011 |
ADFI, g | 244 | 272 | 252 | 257 | 3.75 | <0.001 | 0.001 | 0.033 |
G:F | 0.891 | 0.904 | 0.905 | 0.895 | 0.007 | 0.165 | 0.872 | 0.150 |
D 8–21 | ||||||||
ADG, g | 377 | 394 | 391 | 392 | 4.43 | 0.007 | 0.654 | 0.008 |
ADFI, g | 485 | 500 | 492 | 494 | 9.54 | 0.272 | 0.571 | 0.480 |
G:F | 0.780 | 0.788 | 0.798 | 0.795 | 0.008 | 0.233 | 0.670 | 0.075 |
D 22–42 | ||||||||
ADG, g | 472 | 511 | 494 | 500 | 10.43 | 0.011 | 0.278 | 0.051 |
ADFI, g | 713 | 758 | 735 | 741 | 14.81 | 0.038 | 0.283 | 0.176 |
G:F | 0.662 | 0.674 | 0.673 | 0.675 | 0.005 | 0.080 | 0.926 | 0.054 |
D 0–42 | ||||||||
ADG, g | 478 | 514 | 499 | 503 | 7.65 | 0.002 | 0.183 | 0.016 |
ADFI, g | 559 | 586 | 573 | 576 | 9.63 | 0.053 | 0.325 | 0.201 |
G:F | 0.855 | 0.876 | 0.871 | 0.873 | 0.004 | 0.001 | 0.489 | 0.002 |
Items, % | NC | PC | NC1 | NC2 | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|---|---|
NC vs. PC | PC vs. NC1, 2 | NC vs. NC1, 2 | ||||||
D 21 | ||||||||
DM | 83.72 | 84.55 | 83.85 | 83.99 | 0.58 | 0.319 | 0.383 | 0.777 |
N | 81.68 | 82.50 | 81.82 | 81.89 | 0.56 | 0.315 | 0.359 | 0.804 |
GE | 82.81 | 83.42 | 82.76 | 82.91 | 0.58 | 0.470 | 0.422 | 0.976 |
D 42 | ||||||||
DM | 80.20 | 82.05 | 81.07 | 81.43 | 0.81 | 0.123 | 0.429 | 0.305 |
N | 79.25 | 80.53 | 79.98 | 80.47 | 0.68 | 0.197 | 0.712 | 0.257 |
GE | 80.08 | 81.07 | 80.64 | 80.84 | 0.76 | 0.369 | 0.724 | 0.491 |
Items, % | NC | PC | NC1 | NC2 | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|---|---|
NC vs. PC | PC vs. NC1, 2 | NC vs. NC1, 2 | ||||||
D 21 | ||||||||
WBC, 103/μL | 18.31 | 16.04 | 17.94 | 17.01 | 0.86 | 0.094 | 0.204 | 0.449 |
RBC, 106/μL | 5.88 | 5.70 | 6.10 | 6.22 | 0.46 | 0.779 | 0.430 | 0.634 |
Lymphocyte, % | 50.00 | 50.50 | 51.60 | 53.40 | 4.25 | 0.939 | 0.701 | 0.638 |
D 42 | ||||||||
WBC, 103/μL | 19.11 | 19.36 | 20.09 | 19.63 | 0.78 | 0.123 | 0.429 | 0.305 |
RBC, 106/μL | 5.89 | 6.10 | 6.09 | 6.05 | 0.37 | 0.197 | 0.712 | 0.257 |
Lymphocyte, % | 54.40 | 52.80 | 56.80 | 56.50 | 1.70 | 0.369 | 0.724 | 0.491 |
Items | NC | PC | NC1 | NC2 | SEM 2 | p-Value | ||
---|---|---|---|---|---|---|---|---|
NC vs. PC | PC vs. NC1, 2 | NC vs. NC1, 2 | ||||||
Fecal microbiota (log10 CFU/g) | ||||||||
D 21 | ||||||||
Lactobacillus | 6.91 | 6.92 | 6.99 | 6.98 | 0.03 | 0.788 | 0.087 | 0.045 |
E. coli | 6.45 | 6.25 | 6.33 | 6.32 | 0.05 | 0.009 | 0.268 | 0.049 |
D 42 | ||||||||
Lactobacillus | 7.16 | 7.13 | 7.22 | 7.20 | 0.06 | 0.747 | 0.283 | 0.479 |
E. coli | 6.10 | 5.95 | 6.00 | 6.05 | 0.09 | 0.255 | 0.513 | 0.502 |
Fecal noxious gas emission | ||||||||
D 21 | ||||||||
NH3 | 2.2 | 2.0 | 2.9 | 2.8 | 0.5 | 0.718 | 0.172 | 0.320 |
H2S | 3.7 | 3.4 | 2.6 | 2.9 | 0.4 | 0.601 | 0.166 | 0.062 |
R.SH | 2.0 | 1.3 | 2.0 | 1.7 | 0.4 | 0.272 | 0.332 | 0.752 |
AC | 3.2 | 2.1 | 2.9 | 2.6 | 0.4 | 0.180 | 0.246 | 0.328 |
D 42 | ||||||||
NH3 | 2.9 | 3.3 | 3.6 | 3.6 | 1.1 | 0.797 | 0.834 | 0.614 |
H2S | 5.4 | 4.1 | 4.2 | 4.7 | 0.5 | 0.107 | 0.584 | 0.168 |
R.SH | 3.0 | 4.7 | 4.1 | 3.2 | 1.1 | 0.312 | 0.475 | 0.635 |
AC | 3.5 | 3.4 | 3.3 | 3.0 | 0.2 | 0.748 | 0.464 | 0.281 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Kim, I.-H. Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs. Animals 2021, 11, 2232. https://doi.org/10.3390/ani11082232
Wang H, Kim I-H. Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs. Animals. 2021; 11(8):2232. https://doi.org/10.3390/ani11082232
Chicago/Turabian StyleWang, Huan, and In-Ho Kim. 2021. "Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs" Animals 11, no. 8: 2232. https://doi.org/10.3390/ani11082232
APA StyleWang, H., & Kim, I.-H. (2021). Evaluation of Dietary Probiotic (Lactobacillus plantarum BG0001) Supplementation on the Growth Performance, Nutrient Digestibility, Blood Profile, Fecal Gas Emission, and Fecal Microbiota in Weaning Pigs. Animals, 11(8), 2232. https://doi.org/10.3390/ani11082232