Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Spray-Dried Plasma
2.3. Animals and Diets
2.4. Experimental Design
2.5. Serum Fluorescein Isothiocyanate-Dextran Determination
2.6. Bone Parameters
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed]
- Roth, M.S.; Deheyn, D.D. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci. Rep. 2013, 3, 1421. [Google Scholar] [CrossRef]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Abu-Dieyeh, Z.H.M. Effect of chronic heat stress and long-term feed restriction on broiler performance. Int. J. Poult. Sci. 2006, 5, 185–190. [Google Scholar] [CrossRef]
- Prieto, M.T.; Campo, J.L. Effect of heat and several additives related to stress levels on fluctuating asymmetry, heterophil: Lymphocyte ratio, and tonic immobility duration in White Leghorn chicks. Poult. Sci. 2010, 89, 2071–2077. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries1. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; González-Esquerra, R.; Polo, J. Impact of spray-dried plasma on intestinal health and broiler performance. Microorganisms 2019, 7, 219. [Google Scholar] [CrossRef]
- Frank, J.; Carroll, J.; Allee, G.; Zannelli, M. The effects of thermal environment and spray-dried plasma on the acute-phase response of pigs challenged with lipopolysaccharide. J. Anim. Sci. 2003, 81, 1166–1176. [Google Scholar] [CrossRef]
- Garriga, C.; Pérez-Bosque, A.; Amat, C.; Campbell, J.M.; Russell, L.; Polo, J.; Planas, J.M.; Moretó, M. Spray-dried porcine plasma reduces the effects of staphylococcal enterotoxin B on glucose transport in rat intestine. J. Nutr. 2005, 135, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Torrallardona, D. Spray-dried animal plasma as an alternative to antibiotics in weanling pigs-a review. Asian-Aust. J. Anim. Sci. 2010, 23, 131–148. [Google Scholar] [CrossRef]
- Becki, S.S.M.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef]
- Jared, R.; Barros, T.L.; Tellez, G., Jr.; Blankenship, J.; Lester, H.; Graham, B.D.; Selby, C.A.; Vuong, C.N.; Dridi, S.; Greene, E.S.; et al. Research Note: Evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult. Sci. 2020, 99, 1687–1692. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Guo, L.-Y.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Liu, Y.; Hu, K.; Jiang, J.; Li, S.-H.; Tang, L.; et al. Soybean beta-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE 2013, 8, e58115. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Vicuña, E.A.; Latorre, J.D.; Wolfenden, A.D.; Téllez, G.I.; Hargis, B.M.; Bielke, L.R. Evaluation of gastrointestinal leakage in multiple enteric inflammation models in chickens. Front. Vet. Sci. 2015, 2, 66. [Google Scholar] [CrossRef]
- Cobb-Vantress Inc. Broiler Performance and Nutrition Supplement. Available online: http://www.cobb-vantress.com/docs/default-source/cobb-500guides/Cobb500_Broiler_Performance_And_Nutrition_Supplement.pdf (accessed on 17 September 2019).
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottle, W.C.; Dridi, S. Effect of Morinda citrifolia (Noni)-enriched diet on hepatic heat shock protein and lipid metabolism-related genes in heat-stressed broiler chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef]
- Baxter, M.F.A.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, K.D.; Graham, L.E.; Wolfenden, A.D.; Hernandez-Velasco, X.; Bielke, L.R.; et al. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Influence of dietary calcium concentrations and the calcium-to-non-phytate phosphorus ratio on growth performance, bone characteristics, and digestibility in broilers. Poult. Sci. 2017, 96, 2795–2803. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/Share: 9.4 User’s Guide, 2nd ed.; SAS Documentation: Cary, NC, USA, 2002. [Google Scholar]
- Giloh, M.; Shinder, D.; Yahav, S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult. Sci. 2012, 91, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.-J.; Wang, D.-Q.; Li, G.-Q.; Wang, G.-L.; Lu, L.-Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- Huang, C.; Jiao, H.; Song, H.; Zhao, J.; Wang, X.; Lin, H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J. Anim. Sci. 2015, 93, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G., Jr.; Tellez-Isaias, G.; Dridi, S. Heat stress and gut health in broilers: Role of tight junction proteins. Adv. Food Technol. Nutr. Sci. Open J. 2017, 3, e1–e4. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.; Wang, J.; Luo, J.; Huang, Z.; Cheng, G.; et al. Dietary spray-dried chicken plasma improves intestinal barrier function and modulates immune status in weaning piglets. J. Anim. Sci. 2016, 94, 173–184. [Google Scholar] [CrossRef][Green Version]
- Dos Santos Cerqueira, L.G.; Schinckel, A.P.; Silveira, H.; Kuribayashi, T.H.; Moreira, R.H.R.; de Lisboa, I.O.; de Cantarelli, V.S.; Pospissil Garbossa, C.A. Spray-dried porcine plasma improves feed intake of weaned piglets subjected to heat stress. J. Anim. Physiol. Anim. Nutr. 2019, 103, 836–845. [Google Scholar] [CrossRef]
- Peace, R.M.; Campbell, J.; Polo, J.; Crenshaw, J.; Russell, L.; Moeser, A. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs. J. Nutr. 2011, 141, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Droke, E.A.; Hager, K.A.; Lerner, M.R.; Lightfoot, S.A.; Stoecker, B.J.; Brackett, J.D.; Smith, B.J. Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J. Inflamm. 2007, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Puleo, D. Infection, inflammation, and bone regeneration: A paradoxical relationship. J. Dent. Res. 2011, 90, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-L.; Yeh, J.K.; Samathanam, C.; Cao, J.J.; Stoecker, B.J.; Dagda, R.Y.; Chyu, M.-C.; Dunn, D.M.; Wang, J.-S. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos. Int. 2011, 22, 327–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.W.; Yu, B.; He, J.; Yu, J.; Mao, X.B.; Wang, J.X.; Luo, J.Q.; Huang, Z.Q.; Cheng, G.X.; et al. Spray-dried chicken plasma improves intestinal digestive function and regulates intestinal selected microflora in weaning piglets. J. Anim. Sci. 2015, 93, 2967–2976. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Miró, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; Moretó, M. Dietary plasma proteins modulate the immune response of diffuse gut-associated lymphoid tissue in rats challenged with Staphylococcus aureus enterotoxin B. J. Nutr. 2008, 138, 533–537. [Google Scholar] [CrossRef]
- Boyer, P.E.; D’Costa, S.; Edwards, L.L.; Milloway, M.; Cusick, E.; Borst, L.B.; Thakur, S.; Campbell, J.M.; Crenshaw, J.D.; Polo, J.; et al. Early-life dietary spray-dried plasma influences immunological and intestinal injury responses to later-life Salmonella typhimurium challenge. Br. J. Nutr. 2015, 113, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Bosi, P.; Casini, L.; Finamore, A.; Cremokolini, C.; Merialdi, G.; Trevisi, P.; Nobili, F.; Mengheri, E. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 2004, 82, 1764–1772. [Google Scholar] [CrossRef]
- Jamroz, D.; Wiliczkiewicz, A.; Orda, J.; Kuryszko, J.; Stefaniak, T. Use of spray-dried porcine blood by-products in diets for young chickens. J. Anim. Physiol. Anim. Nutr. 2012, 96, 319–333. [Google Scholar] [CrossRef]
- Hedegaard, C.J.; Strube, M.L.; Hansen, M.B.; Lindved, B.K.; Lihme, A.; Boye, M.; Heegaard, P.M.H. Natural pig plasma immunoglobulins have anti-bacterial effects: Potential for use as feed supplement for treatment of intestinal infections in pigs. PLoS ONE 2016, 11, e0147373. [Google Scholar] [CrossRef]
- Touchette, K.J.; Carroll, J.A.; Allee, G.L.; Matteri, R.L.; Dyer, C.J.; Beausang, L.A.; Zannelli, M.E. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J. Anim. Sci. 2002, 80, 494–501. [Google Scholar] [CrossRef]
- Becki, S.S.M.; Swick, R.A.; Iji, P.A. Effect of dietary inclusion of spray-dried porcine plasma on performance, some physiological and immunological response of broiler chickens challenged with Salmonella Sofia. J. Anim. Physiol. Anim. Nutr. 2016, 100, 957–966. [Google Scholar] [CrossRef]
- Walters, H.G.; Jasek, A.; Campbell, J.M.; Coufal, C.; Lee, J.T. Evaluation of spray-dried plasma in broiler diets with or without bacitracin methylene disalicylate. J. Appl. Poult. Res. 2019, 28, 364–373. [Google Scholar] [CrossRef]
- Campbell, J.M.; Russell, L.; Crenshaw, J.; Koehnk, H. Effect of spray-dried plasma form and duration of feeding on broiler performance during natural necrotic enteritis exposure. J. Appl. Poult. Res. 2006, 15, 584–591. [Google Scholar] [CrossRef] [PubMed]
Item | Spray-Dried Plasma 1 |
---|---|
Dry matter, % | 92 |
ME, kcal/kg | 3532 |
Ash, % | 10 |
Ca, % | 0.15 |
P, % | 1.30 |
Na, % | 2.20 |
Cl, % | 1.10 |
K, % | 0.30 |
CP and AA | |
CP, % | 77.0 |
Arg, % | 4.60 |
Cys, % | 2.40 |
His, % | 2.70 |
Ile, % | 2.80 |
Leu, % | 7.60 |
Lys, % | 6.60 |
Met, % | 0.60 |
Phe, % | 4.50 |
Thr, % | 4.20 |
Trp, % | 1.40 |
Tyr, % | 3.50 |
Val, % | 5.20 |
Item | Starter Control Diet | Starter SDP Diet | Grower Control Diet | Grower SDP Diet | Finisher Control Diet | Finisher SDP Diet |
---|---|---|---|---|---|---|
Ingredients (%) | ||||||
Corn 9-14-18 | 51.80 | 54.38 | 57.81 | 60.39 | 59.64 | 60.93 |
SBM (45.16%) | 37.66 | 33.96 | 31.62 | 27.92 | 27.23 | 25.38 |
DDGS 8.1% EE | 4.00 | 4.00 | 4.00 | 4.00 | 6.00 | 6.00 |
Poultry fat | 3.24 | 2.55 | 3.44 | 2.76 | 4.38 | 4.04 |
SDP | - | 2.00 | - | 2.00 | - | 1.00 |
Limestone | 1.08 | 1.18 | 1.06 | 1.15 | 1.03 | 1.08 |
Phosphate of dicalcium | 1.01 | 0.89 | 0.88 | 0.76 | 0.64 | 0.58 |
Sodium chloride | 0.35 | 0.27 | 0.35 | 0.23 | 0.31 | 0.24 |
DL-Methionine | 0.29 | 0.23 | 0.25 | 0.22 | 0.22 | 0.21 |
L-Lysine Hydrochloride | 0.12 | 0.10 | 0.13 | 0.10 | 0.12 | 0.10 |
Waldroup TM Mix | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Tyson 2x Broiler Vit | 0.10 | 0.08 | 0.10 | 0.09 | 0.10 | 0.10 |
L-threonine | 0.08 | 0.08 | 0.09 | 0.08 | 0.09 | 0.07 |
Choline chloride (60%) | 0.06 | 0.07 | 0.06 | 0.06 | 0.05 | 0.06 |
Sodium bicarbonate | 0.04 | 0.06 | 0.05 | 0.06 | 0.03 | 0.04 |
OptiPhos2000 (0.5 lb/ton) | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 |
Se Premix (0.06%) | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 |
Santoquin | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 |
Calculated analysis | ||||||
ME (kcal/kg) | 3015.00 | 3015.00 | 3090.00 | 3090.00 | 3175.00 | 3175.00 |
Ether extract (%) | 5.88 | 5.25 | 6.20 | 5.57 | 7.28 | 6.96 |
Crude protein (%) | 22.30 | 22.30 | 20.00 | 20.00 | 18.70 | 18.70 |
Lysine (%) | 1.18 | 1.18 | 1.05 | 1.05 | 0.95 | 0.95 |
Methionine (%) | 0.59 | 0.56 | 0.53 | 0.50 | 0.48 | 0.46 |
Threonine (%) | 0.77 | 0.77 | 0.69 | 0.69 | 0.65 | 0.65 |
Tryptophan (%) | 0.25 | 0.25 | 0.22 | 0.22 | 0.20 | 0.20 |
Total calcium (%) | 0.90 | 0.90 | 0.84 | 0.84 | 0.76 | 0.76 |
Total phosphorous (%) | 0.63 | 0.59 | 0.58 | 0.54 | 0.53 | 0.51 |
Available phosphorus (%) | 0.45 | 0.45 | 0.42 | 0.42 | 0.38 | 0.38 |
Sodium (%) | 0.20 | 0.20 | 0.20 | 0.20 | 0.18 | 0.18 |
Potassium (%) | 1.06 | 0.99 | 0.94 | 0.87 | 0.87 | 0.83 |
Chloride (%) | 0.27 | 0.21 | 0.28 | 0.21 | 0.25 | 0.22 |
Magnesium (%) | 0.19 | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 |
Copper (%) | 19.20 | 18.71 | 18.46 | 17.98 | 18.85 | 18.61 |
Selenium (%) | 0.28 | 0.27 | 0.27 | 0.26 | 0.26 | 0.26 |
Linoleic acid (%) | 1.01 | 1.06 | 1.13 | 1.18 | 1.16 | 1.19 |
Days | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Body weight | ||||
0 d | 41.14 | 41.45 | 41.40 | 0.26 |
11 d | 224.96 b | 219.42 b | 244.07 a | 3.68 |
22 d | 880.05 | 873.80 | 895.02 | 11.86 |
28 d | 1510.20 a | 1260.18 c | 1334.92 b | 17.92 |
35 d | 2283.00 a | 1515.53 c | 1624.99 b | 30.50 |
42 d | 2913.48 a | 1714.69 c | 1850.46 b | 50.64 |
Body weight gain | ||||
0–11 d | 183.63 b | 178.09 b | 202.74 a | 3.68 |
0–22 d | 838.69 | 832.44 | 853.66 | 11.86 |
0–28 d | 1468.94 a | 1218.92 c | 1293.65 b | 17.92 |
0–35 d | 2241.82 a | 1474.35 c | 1583.81 b | 30.50 |
0–42 d | 2872.32 a | 1673.53 c | 1809.30 b | 50.64 |
Days | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Feed intake | ||||
0–11 d | 141.44 | 135.08 | 136.02 | 9.64 |
0–22 d | 1058.90 | 1029.18 | 1070.50 | 32.48 |
0–28 d | 1876.88 b | 1668.99 c | 1778.73 ab | 54.26 |
0–35 d | 3101.35 a | 2566.45 b | 2713.42 b | 63.41 |
0–42 d | 4239.76 a | 3157.23 b | 3332.08 b | 92.49 |
Feed conversion | ||||
0–11 d | 0.774 | 0.779 | 0.672 | 0.067 |
0–22 d | 1.264 | 1.233 | 1.253 | 0.023 |
0–28 d | 1.280 b | 1.368 a | 1.375 a | 0.023 |
0–35 d | 1.383 b | 1.730 a | 1.735 a | 0.052 |
0–42 d | 1.475 b | 1.881 a | 1.878 a | 0.054 |
Serum FITC-d (ng/mL) | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Day 21 | 231.37 A | 157.08 C | 192.10 B | 12.02 |
Day 28 | 240.74 | 247.67 | 251.13 | 10.84 |
Day 35 | 177.65 b | 235.79 a | 248.41 a | 13.49 |
Day 42 | 218.55 C | 312.60 A | 276.64 B | 15.00 |
Days | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Tibia strength (kg) | ||||
Day 21 | 17.93 | 18.79 | 16.86 | 0.99 |
Day 42 | 37.71 A | 24.37 C | 29.74 B | 2.01 |
Total ash from the tibia (%) | ||||
Day 21 | 54.07 | 54.57 | 53.23 | 0.52 |
Day 42 | 54.78 b | 56.33 a | 56.89 a | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruff, J.; Barros, T.L.; Campbell, J.; González-Esquerra, R.; Vuong, C.N.; Dridi, S.; Greene, E.S.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez-Isaias, G. Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals 2021, 11, 2213. https://doi.org/10.3390/ani11082213
Ruff J, Barros TL, Campbell J, González-Esquerra R, Vuong CN, Dridi S, Greene ES, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals. 2021; 11(8):2213. https://doi.org/10.3390/ani11082213
Chicago/Turabian StyleRuff, Jared, Thaina L. Barros, Joy Campbell, Ricardo González-Esquerra, Christine N. Vuong, Sami Dridi, Elizabeth S. Greene, Xochitl Hernandez-Velasco, Billy M. Hargis, and Guillermo Tellez-Isaias. 2021. "Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions" Animals 11, no. 8: 2213. https://doi.org/10.3390/ani11082213
APA StyleRuff, J., Barros, T. L., Campbell, J., González-Esquerra, R., Vuong, C. N., Dridi, S., Greene, E. S., Hernandez-Velasco, X., Hargis, B. M., & Tellez-Isaias, G. (2021). Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals, 11(8), 2213. https://doi.org/10.3390/ani11082213