Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Spray-Dried Plasma
2.3. Animals and Diets
2.4. Experimental Design
2.5. Serum Fluorescein Isothiocyanate-Dextran Determination
2.6. Bone Parameters
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karl, T.R.; Trenberth, K.E. Modern global climate change. Science 2003, 302, 1719–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.S.; Deheyn, D.D. Effects of cold stress and heat stress on coral fluorescence in reef-building corals. Sci. Rep. 2013, 3, 1421. [Google Scholar] [CrossRef] [Green Version]
- Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L. Global climate change and terrestrial net primary production. Nature 1993, 363, 234–240. [Google Scholar] [CrossRef]
- Abu-Dieyeh, Z.H.M. Effect of chronic heat stress and long-term feed restriction on broiler performance. Int. J. Poult. Sci. 2006, 5, 185–190. [Google Scholar] [CrossRef]
- Prieto, M.T.; Campo, J.L. Effect of heat and several additives related to stress levels on fluctuating asymmetry, heterophil: Lymphocyte ratio, and tonic immobility duration in White Leghorn chicks. Poult. Sci. 2010, 89, 2071–2077. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries1. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.M.; Crenshaw, J.D.; González-Esquerra, R.; Polo, J. Impact of spray-dried plasma on intestinal health and broiler performance. Microorganisms 2019, 7, 219. [Google Scholar] [CrossRef] [Green Version]
- Frank, J.; Carroll, J.; Allee, G.; Zannelli, M. The effects of thermal environment and spray-dried plasma on the acute-phase response of pigs challenged with lipopolysaccharide. J. Anim. Sci. 2003, 81, 1166–1176. [Google Scholar] [CrossRef]
- Garriga, C.; Pérez-Bosque, A.; Amat, C.; Campbell, J.M.; Russell, L.; Polo, J.; Planas, J.M.; Moretó, M. Spray-dried porcine plasma reduces the effects of staphylococcal enterotoxin B on glucose transport in rat intestine. J. Nutr. 2005, 135, 1653–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrallardona, D. Spray-dried animal plasma as an alternative to antibiotics in weanling pigs-a review. Asian-Aust. J. Anim. Sci. 2010, 23, 131–148. [Google Scholar] [CrossRef]
- Becki, S.S.M.; Swick, R.A.; Iji, P.A. Specialized protein products in broiler chicken nutrition: A review. Anim. Nutr. 2015, 1, 47–53. [Google Scholar] [CrossRef]
- Jared, R.; Barros, T.L.; Tellez, G., Jr.; Blankenship, J.; Lester, H.; Graham, B.D.; Selby, C.A.; Vuong, C.N.; Dridi, S.; Greene, E.S.; et al. Research Note: Evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult. Sci. 2020, 99, 1687–1692. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Guo, L.-Y.; Feng, L.; Jiang, W.-D.; Kuang, S.-Y.; Liu, Y.; Hu, K.; Jiang, J.; Li, S.-H.; Tang, L.; et al. Soybean beta-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE 2013, 8, e58115. [Google Scholar] [CrossRef] [Green Version]
- Kuttappan, V.A.; Vicuña, E.A.; Latorre, J.D.; Wolfenden, A.D.; Téllez, G.I.; Hargis, B.M.; Bielke, L.R. Evaluation of gastrointestinal leakage in multiple enteric inflammation models in chickens. Front. Vet. Sci. 2015, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Cobb-Vantress Inc. Broiler Performance and Nutrition Supplement. Available online: http://www.cobb-vantress.com/docs/default-source/cobb-500guides/Cobb500_Broiler_Performance_And_Nutrition_Supplement.pdf (accessed on 17 September 2019).
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottle, W.C.; Dridi, S. Effect of Morinda citrifolia (Noni)-enriched diet on hepatic heat shock protein and lipid metabolism-related genes in heat-stressed broiler chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef] [Green Version]
- Baxter, M.F.A.; Merino-Guzman, R.; Latorre, J.D.; Mahaffey, B.D.; Yang, Y.; Teague, K.D.; Graham, L.E.; Wolfenden, A.D.; Hernandez-Velasco, X.; Bielke, L.R.; et al. Optimizing fluorescein isothiocyanate dextran measurement as a biomarker in a 24-h feed restriction model to induce gut permeability in broiler chickens. Front. Vet. Sci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Gautier, A.E.; Walk, C.L.; Dilger, R.N. Influence of dietary calcium concentrations and the calcium-to-non-phytate phosphorus ratio on growth performance, bone characteristics, and digestibility in broilers. Poult. Sci. 2017, 96, 2795–2803. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/Share: 9.4 User’s Guide, 2nd ed.; SAS Documentation: Cary, NC, USA, 2002. [Google Scholar]
- Giloh, M.; Shinder, D.; Yahav, S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status. Poult. Sci. 2012, 91, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef]
- Zeng, T.; Li, J.-J.; Wang, D.-Q.; Li, G.-Q.; Wang, G.-L.; Lu, L.-Z. Effects of heat stress on antioxidant defense system, inflammatory injury, and heat shock proteins of Muscovy and Pekin ducks: Evidence for differential thermal sensitivities. Cell Stress Chaperones 2014, 19, 895–901. [Google Scholar] [CrossRef]
- Huang, C.; Jiao, H.; Song, H.; Zhao, J.; Wang, X.; Lin, H. Heat stress impairs mitochondria functions and induces oxidative injury in broiler chickens. J. Anim. Sci. 2015, 93, 2144–2153. [Google Scholar] [CrossRef] [PubMed]
- Tellez, G., Jr.; Tellez-Isaias, G.; Dridi, S. Heat stress and gut health in broilers: Role of tight junction proteins. Adv. Food Technol. Nutr. Sci. Open J. 2017, 3, e1–e4. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, P.; Yu, B.; He, J.; Yu, J.; Mao, X.; Wang, J.; Luo, J.; Huang, Z.; Cheng, G.; et al. Dietary spray-dried chicken plasma improves intestinal barrier function and modulates immune status in weaning piglets. J. Anim. Sci. 2016, 94, 173–184. [Google Scholar] [CrossRef]
- Dos Santos Cerqueira, L.G.; Schinckel, A.P.; Silveira, H.; Kuribayashi, T.H.; Moreira, R.H.R.; de Lisboa, I.O.; de Cantarelli, V.S.; Pospissil Garbossa, C.A. Spray-dried porcine plasma improves feed intake of weaned piglets subjected to heat stress. J. Anim. Physiol. Anim. Nutr. 2019, 103, 836–845. [Google Scholar] [CrossRef]
- Peace, R.M.; Campbell, J.; Polo, J.; Crenshaw, J.; Russell, L.; Moeser, A. Spray-dried porcine plasma influences intestinal barrier function, inflammation, and diarrhea in weaned pigs. J. Nutr. 2011, 141, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Droke, E.A.; Hager, K.A.; Lerner, M.R.; Lightfoot, S.A.; Stoecker, B.J.; Brackett, J.D.; Smith, B.J. Soy isoflavones avert chronic inflammation-induced bone loss and vascular disease. J. Inflamm. 2007, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.; Puleo, D. Infection, inflammation, and bone regeneration: A paradoxical relationship. J. Dent. Res. 2011, 90, 1052–1061. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-L.; Yeh, J.K.; Samathanam, C.; Cao, J.J.; Stoecker, B.J.; Dagda, R.Y.; Chyu, M.-C.; Dunn, D.M.; Wang, J.-S. Green tea polyphenols attenuate deterioration of bone microarchitecture in female rats with systemic chronic inflammation. Osteoporos. Int. 2011, 22, 327–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, D.W.; Yu, B.; He, J.; Yu, J.; Mao, X.B.; Wang, J.X.; Luo, J.Q.; Huang, Z.Q.; Cheng, G.X.; et al. Spray-dried chicken plasma improves intestinal digestive function and regulates intestinal selected microflora in weaning piglets. J. Anim. Sci. 2015, 93, 2967–2976. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Miró, L.; Polo, J.; Russell, L.; Campbell, J.; Weaver, E.; Crenshaw, J.; Moretó, M. Dietary plasma proteins modulate the immune response of diffuse gut-associated lymphoid tissue in rats challenged with Staphylococcus aureus enterotoxin B. J. Nutr. 2008, 138, 533–537. [Google Scholar] [CrossRef]
- Boyer, P.E.; D’Costa, S.; Edwards, L.L.; Milloway, M.; Cusick, E.; Borst, L.B.; Thakur, S.; Campbell, J.M.; Crenshaw, J.D.; Polo, J.; et al. Early-life dietary spray-dried plasma influences immunological and intestinal injury responses to later-life Salmonella typhimurium challenge. Br. J. Nutr. 2015, 113, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosi, P.; Casini, L.; Finamore, A.; Cremokolini, C.; Merialdi, G.; Trevisi, P.; Nobili, F.; Mengheri, E. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 2004, 82, 1764–1772. [Google Scholar] [CrossRef]
- Jamroz, D.; Wiliczkiewicz, A.; Orda, J.; Kuryszko, J.; Stefaniak, T. Use of spray-dried porcine blood by-products in diets for young chickens. J. Anim. Physiol. Anim. Nutr. 2012, 96, 319–333. [Google Scholar] [CrossRef]
- Hedegaard, C.J.; Strube, M.L.; Hansen, M.B.; Lindved, B.K.; Lihme, A.; Boye, M.; Heegaard, P.M.H. Natural pig plasma immunoglobulins have anti-bacterial effects: Potential for use as feed supplement for treatment of intestinal infections in pigs. PLoS ONE 2016, 11, e0147373. [Google Scholar] [CrossRef] [Green Version]
- Touchette, K.J.; Carroll, J.A.; Allee, G.L.; Matteri, R.L.; Dyer, C.J.; Beausang, L.A.; Zannelli, M.E. Effect of spray-dried plasma and lipopolysaccharide exposure on weaned pigs: I. Effects on the immune axis of weaned pigs. J. Anim. Sci. 2002, 80, 494–501. [Google Scholar] [CrossRef]
- Becki, S.S.M.; Swick, R.A.; Iji, P.A. Effect of dietary inclusion of spray-dried porcine plasma on performance, some physiological and immunological response of broiler chickens challenged with Salmonella Sofia. J. Anim. Physiol. Anim. Nutr. 2016, 100, 957–966. [Google Scholar] [CrossRef]
- Walters, H.G.; Jasek, A.; Campbell, J.M.; Coufal, C.; Lee, J.T. Evaluation of spray-dried plasma in broiler diets with or without bacitracin methylene disalicylate. J. Appl. Poult. Res. 2019, 28, 364–373. [Google Scholar] [CrossRef]
- Campbell, J.M.; Russell, L.; Crenshaw, J.; Koehnk, H. Effect of spray-dried plasma form and duration of feeding on broiler performance during natural necrotic enteritis exposure. J. Appl. Poult. Res. 2006, 15, 584–591. [Google Scholar] [CrossRef] [PubMed]
Item | Spray-Dried Plasma 1 |
---|---|
Dry matter, % | 92 |
ME, kcal/kg | 3532 |
Ash, % | 10 |
Ca, % | 0.15 |
P, % | 1.30 |
Na, % | 2.20 |
Cl, % | 1.10 |
K, % | 0.30 |
CP and AA | |
CP, % | 77.0 |
Arg, % | 4.60 |
Cys, % | 2.40 |
His, % | 2.70 |
Ile, % | 2.80 |
Leu, % | 7.60 |
Lys, % | 6.60 |
Met, % | 0.60 |
Phe, % | 4.50 |
Thr, % | 4.20 |
Trp, % | 1.40 |
Tyr, % | 3.50 |
Val, % | 5.20 |
Item | Starter Control Diet | Starter SDP Diet | Grower Control Diet | Grower SDP Diet | Finisher Control Diet | Finisher SDP Diet |
---|---|---|---|---|---|---|
Ingredients (%) | ||||||
Corn 9-14-18 | 51.80 | 54.38 | 57.81 | 60.39 | 59.64 | 60.93 |
SBM (45.16%) | 37.66 | 33.96 | 31.62 | 27.92 | 27.23 | 25.38 |
DDGS 8.1% EE | 4.00 | 4.00 | 4.00 | 4.00 | 6.00 | 6.00 |
Poultry fat | 3.24 | 2.55 | 3.44 | 2.76 | 4.38 | 4.04 |
SDP | - | 2.00 | - | 2.00 | - | 1.00 |
Limestone | 1.08 | 1.18 | 1.06 | 1.15 | 1.03 | 1.08 |
Phosphate of dicalcium | 1.01 | 0.89 | 0.88 | 0.76 | 0.64 | 0.58 |
Sodium chloride | 0.35 | 0.27 | 0.35 | 0.23 | 0.31 | 0.24 |
DL-Methionine | 0.29 | 0.23 | 0.25 | 0.22 | 0.22 | 0.21 |
L-Lysine Hydrochloride | 0.12 | 0.10 | 0.13 | 0.10 | 0.12 | 0.10 |
Waldroup TM Mix | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Tyson 2x Broiler Vit | 0.10 | 0.08 | 0.10 | 0.09 | 0.10 | 0.10 |
L-threonine | 0.08 | 0.08 | 0.09 | 0.08 | 0.09 | 0.07 |
Choline chloride (60%) | 0.06 | 0.07 | 0.06 | 0.06 | 0.05 | 0.06 |
Sodium bicarbonate | 0.04 | 0.06 | 0.05 | 0.06 | 0.03 | 0.04 |
OptiPhos2000 (0.5 lb/ton) | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 | 0.025 |
Se Premix (0.06%) | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 | 0.020 |
Santoquin | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 | 0.019 |
Calculated analysis | ||||||
ME (kcal/kg) | 3015.00 | 3015.00 | 3090.00 | 3090.00 | 3175.00 | 3175.00 |
Ether extract (%) | 5.88 | 5.25 | 6.20 | 5.57 | 7.28 | 6.96 |
Crude protein (%) | 22.30 | 22.30 | 20.00 | 20.00 | 18.70 | 18.70 |
Lysine (%) | 1.18 | 1.18 | 1.05 | 1.05 | 0.95 | 0.95 |
Methionine (%) | 0.59 | 0.56 | 0.53 | 0.50 | 0.48 | 0.46 |
Threonine (%) | 0.77 | 0.77 | 0.69 | 0.69 | 0.65 | 0.65 |
Tryptophan (%) | 0.25 | 0.25 | 0.22 | 0.22 | 0.20 | 0.20 |
Total calcium (%) | 0.90 | 0.90 | 0.84 | 0.84 | 0.76 | 0.76 |
Total phosphorous (%) | 0.63 | 0.59 | 0.58 | 0.54 | 0.53 | 0.51 |
Available phosphorus (%) | 0.45 | 0.45 | 0.42 | 0.42 | 0.38 | 0.38 |
Sodium (%) | 0.20 | 0.20 | 0.20 | 0.20 | 0.18 | 0.18 |
Potassium (%) | 1.06 | 0.99 | 0.94 | 0.87 | 0.87 | 0.83 |
Chloride (%) | 0.27 | 0.21 | 0.28 | 0.21 | 0.25 | 0.22 |
Magnesium (%) | 0.19 | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 |
Copper (%) | 19.20 | 18.71 | 18.46 | 17.98 | 18.85 | 18.61 |
Selenium (%) | 0.28 | 0.27 | 0.27 | 0.26 | 0.26 | 0.26 |
Linoleic acid (%) | 1.01 | 1.06 | 1.13 | 1.18 | 1.16 | 1.19 |
Days | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Body weight | ||||
0 d | 41.14 | 41.45 | 41.40 | 0.26 |
11 d | 224.96 b | 219.42 b | 244.07 a | 3.68 |
22 d | 880.05 | 873.80 | 895.02 | 11.86 |
28 d | 1510.20 a | 1260.18 c | 1334.92 b | 17.92 |
35 d | 2283.00 a | 1515.53 c | 1624.99 b | 30.50 |
42 d | 2913.48 a | 1714.69 c | 1850.46 b | 50.64 |
Body weight gain | ||||
0–11 d | 183.63 b | 178.09 b | 202.74 a | 3.68 |
0–22 d | 838.69 | 832.44 | 853.66 | 11.86 |
0–28 d | 1468.94 a | 1218.92 c | 1293.65 b | 17.92 |
0–35 d | 2241.82 a | 1474.35 c | 1583.81 b | 30.50 |
0–42 d | 2872.32 a | 1673.53 c | 1809.30 b | 50.64 |
Days | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Feed intake | ||||
0–11 d | 141.44 | 135.08 | 136.02 | 9.64 |
0–22 d | 1058.90 | 1029.18 | 1070.50 | 32.48 |
0–28 d | 1876.88 b | 1668.99 c | 1778.73 ab | 54.26 |
0–35 d | 3101.35 a | 2566.45 b | 2713.42 b | 63.41 |
0–42 d | 4239.76 a | 3157.23 b | 3332.08 b | 92.49 |
Feed conversion | ||||
0–11 d | 0.774 | 0.779 | 0.672 | 0.067 |
0–22 d | 1.264 | 1.233 | 1.253 | 0.023 |
0–28 d | 1.280 b | 1.368 a | 1.375 a | 0.023 |
0–35 d | 1.383 b | 1.730 a | 1.735 a | 0.052 |
0–42 d | 1.475 b | 1.881 a | 1.878 a | 0.054 |
Serum FITC-d (ng/mL) | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Day 21 | 231.37 A | 157.08 C | 192.10 B | 12.02 |
Day 28 | 240.74 | 247.67 | 251.13 | 10.84 |
Day 35 | 177.65 b | 235.79 a | 248.41 a | 13.49 |
Day 42 | 218.55 C | 312.60 A | 276.64 B | 15.00 |
Days | Control Thermoneutral | Control HS | SDP-HS | SEM |
---|---|---|---|---|
Tibia strength (kg) | ||||
Day 21 | 17.93 | 18.79 | 16.86 | 0.99 |
Day 42 | 37.71 A | 24.37 C | 29.74 B | 2.01 |
Total ash from the tibia (%) | ||||
Day 21 | 54.07 | 54.57 | 53.23 | 0.52 |
Day 42 | 54.78 b | 56.33 a | 56.89 a | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruff, J.; Barros, T.L.; Campbell, J.; González-Esquerra, R.; Vuong, C.N.; Dridi, S.; Greene, E.S.; Hernandez-Velasco, X.; Hargis, B.M.; Tellez-Isaias, G. Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals 2021, 11, 2213. https://doi.org/10.3390/ani11082213
Ruff J, Barros TL, Campbell J, González-Esquerra R, Vuong CN, Dridi S, Greene ES, Hernandez-Velasco X, Hargis BM, Tellez-Isaias G. Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals. 2021; 11(8):2213. https://doi.org/10.3390/ani11082213
Chicago/Turabian StyleRuff, Jared, Thaina L. Barros, Joy Campbell, Ricardo González-Esquerra, Christine N. Vuong, Sami Dridi, Elizabeth S. Greene, Xochitl Hernandez-Velasco, Billy M. Hargis, and Guillermo Tellez-Isaias. 2021. "Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions" Animals 11, no. 8: 2213. https://doi.org/10.3390/ani11082213
APA StyleRuff, J., Barros, T. L., Campbell, J., González-Esquerra, R., Vuong, C. N., Dridi, S., Greene, E. S., Hernandez-Velasco, X., Hargis, B. M., & Tellez-Isaias, G. (2021). Spray-Dried Plasma Improves Body Weight, Intestinal Barrier Function, and Tibia Strength during Experimental Constant Heat Stress Conditions. Animals, 11(8), 2213. https://doi.org/10.3390/ani11082213