Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diet, and Management
2.2. Probiotics Feeding Experimental Design
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Rumen Fermentation Parameters of Heat-Stressed Goats with Probiotic Supplements
3.2. Growth Performance of Heat-Stressed Goats with Probiotic Supplements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Tajima, K.I.; Nonaka, K.; Higuchi, N.; Takusari, M.; Kurihara, A.; Takenak, M.; Mitsumori, H.; Kajikawa, R.I.; Aminov, R.I. Influence of high temperature and humidity on rumen bacterial diversity in Holstein heifers. Anaerobe 2007, 2, 57–64. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, D.H.; Oh, Y.K.; Sung, S.L.; Hyun, J.L.; Dong, W.K.; Yong, J.S.; Nobuhiro, K. Productivity and energy partition of late lactation dairy cows during heat exposure. Anim. Sci. 2010, 1, 58–62. [Google Scholar] [CrossRef]
- Uyeno, Y.; Sekiguchi, Y.; Tajima, K.; Takenaka, A.; Kurihar, M.; Kamagata, Y. An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe 2010, 1, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Hamzaoui, S.; Salama, A.A.K.; Caja, G.; Albanel, E.; Such, X. Supplementation with soybean oil increase milk fat and improves milk fatty acid profile in heat stressed dairy goats. J. Dairy Sci. 2013, 96, 124–127. [Google Scholar]
- Cai, L.Y.; Yu, J.K.; Hartanto, R.; Zhang, J.C.; Yang, A.; Qi, D.S. Effects of heat challenge on growth performance, ruminal, blood and physiological parameters of Chinese crossbred goats. Small Rumin. Res. 2019, 174, 125–130. [Google Scholar] [CrossRef]
- He, Y.Q.; LI, Y.Q.; Yang, Y.K.; Liu, X.Y.; Liu, G.B.; Sun, B.L.; Liu, D.W. Research Advances on Heat Stress in Goats. China Anim. Husb. Vet. Med. 2018, 45, 1120–1126. [Google Scholar]
- Desnoyers, M.; Giger-Reverdin, S.; Bertin, G.; Duvaux-Pouter, C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and mile productuin of ruminant. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Chaucheyras-Durand, F.; Fonty, G. Influence of a probiotic yeast (Saccharomyces cerevisiae CNCM I-1077) on microbial colonization and fermentations in the rumen of newborn lambs. Microb. Eco. Health Dis. 2002, 1, 30–36. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Walker, N.D.; Bach, A. Effects of active dry yeasts on the rumen microbial ecosystem: Past, present and future. Anim. Feed. Sci. Technol. 2008, 1, 5–26. [Google Scholar] [CrossRef]
- Miller-Webster, T.; Hoover, W.H.; Holt, M.; Nocek, J.E. Influence of yeast culture on ruminal microbial metabolism in continuous culture. J. Dairy Sci. 2002, 85, 2009–2014. [Google Scholar] [CrossRef]
- Dai, J.J.; Li, L. Effects of active dry yeast in diet on ruminants. Feed. Res. 2009, 3, 29. [Google Scholar]
- Schingoethe, D.J.; Linke, K.N.; Kalscheur, K.F.; Hippen, A.R.; Rennich, D.R.; Yoon, I. Feed efciency of mid-lactation dairy cows fed yeast culture during summer. J. Dairy Sci. 2004, 87, 4178–4181. [Google Scholar] [CrossRef]
- Wang, R.Z.; Sun, Y.J.; Chen, W.; Huang, Y.Q.; Jiang, Z.H.; Yang, Q.F.; Meng, G.M.; Chen, X.P. Effects of clostridium butyricum on performance of breed ducks. J. Henan Agric. Sci. 2009, 10, 143–145. [Google Scholar]
- Du, Y.P.; Zhou, Q.F.; Lai, W.Y.; Liang, J.L.; Li, Y.Z. Effect of Clostridium butyricum supplementation on production performance of breeder chickens. Feed. China 2010, 1, 25–26. [Google Scholar]
- Wei, W.Q. Study of Solid-State Cultivation and Beneficial Effect to Healthy of Clostridium Butyricum and it’s Application. Master’s Thesis, Library of Nanchang University, Nan Chang, China, 2011. [Google Scholar]
- EFSA (European Food Safety Authority). Scientific opinion on miya-golds (Clostridium butyricum) as a feed additive for weaned piglets, minor weaned porcine species and minor avian species. Eur. Food Saf. Auth. 2011, 9, 1951. [Google Scholar]
- Du, Y.P.; Zhou, Q.F.; Zheng, Z.M.; Su, H.Y.; Ling, S.Q.; Bi, Y.Z. Effects of Clostridium acid on performance of Broilers. Feed China 2009, 22, 34–35. [Google Scholar]
- Zhang, R.; Zhou, M.; Tu, Y.; Zhang, N.F.; Deng, K.D.; Ma, T.; Diao, Q.Y. Effect of oral administration of probiotics on growth performance, apparent nutrient digestibility and stress-related indicators in Holstein calves. J. Anim. Physiol. Anim. Nutr. 2016, 100, 33–38. [Google Scholar] [CrossRef]
- Vatta, A.F.; Abbot, M.A.; Villiers, J.F.; Gumede, S.A.; Harrison, L.J.; Krecek, R.C.; Letty, B.A.; Mapeyi, N.; Pearson, R.A. Goat Keepers’ Animal Health Care Manual, 2nd ed.; Onderstepoort Veterinary Institute: Onderstepoort, Republic of South Africa, 2007; pp. 10–36. [Google Scholar]
- Maitisaiyidi, T.; Yibureyimu, A.; Ayishayila; Yang, K.L. Determination of ammonia-nitrogen in ruminal fluid treated with m ethanol by alkaline hypochlorite-phenol speetrophotometry. Xinjiang Agric. Sci. 2012, 3, 565–570. [Google Scholar]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of grain processing, forage to concentrate ratio, and forage particle size on ruminal pH and digestion by dairy cows. J. Dairy Sci. 2001, 2, 203–216. [Google Scholar]
- Wang, S.P.; Wang, W.J. Determination of enzyme activity related to fiber degradation in rumen. China Feed 2006, 11, 31–32. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Zhang, L.Y. Feed Analysis and Feed Quality Testing Technology; China Agricultural University Press: Beijing, China, 2007; pp. 270–274. [Google Scholar]
- Bach, A.; Iglesias, C.; Devant, M. Daily ruminal pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Anim. Feed Sci. Technol. 2007, 1, 146–153. [Google Scholar] [CrossRef]
- Thrune, M.; Bach, A.; Ruiz-Moreno, M.; Stern, M.D.; Linn, J.G. Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livest. Sci. 2009, 124, 261–265. [Google Scholar] [CrossRef]
- Moallem, U.; Lehrer, H.; Livshitz, L.M.; Zachut, S.; Yakoby, S. The effects of live yeast supplementation to dairy cows during the hot season on production, feed efficiency, and digestibility. J. Dairy Sci. 2009, 92, 343–351. [Google Scholar] [CrossRef]
- Oeztuerk. Effects of live and autoclaved yeast cultures on ruminal fermentation in vitro. J. Anim. Feed Sci. 2009, 18, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Lascano, G.J.; Zanton, G.I.; Heinrichs, A.J. Concentrate levels and Saccharomyces cerevisiae affect rumen fluid-associated bacteria numbers in dairy heifers. Livest. Sci. 2009, 126, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.A.; Parnerkar, S.; Haque, N.; Gupta, R.S.; Kumar, D.; Tyagi, A.K. Influence of dietary supplementation of live yeast (Saccharomyces cerevisiae) on nutrient utilization, ruminal and biochemical profiles of Kankrej calves. Int. J. Appl. Anim. Sci. 2012, 1, 30–38. [Google Scholar]
- Qadis, A.Q.; Goya, S.; Ikuta, K.; Yatsu, M.; Kimura, A.; Nakanishi, S.; Sato, S. Effects of a bacteria-based probiotic on ruminal ph, volatile fatty acids and bacterial flora of holstein calves. J. Vet. Med. Sci. 2004, 76, 877–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galip, N. Effect of supplemental yeast culture and sodium bicarbonate on ruminal fermentation and blood variables in rams. J. Anim. Physiol. Anim. Nutr. 2006, 90, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Newbold, C.J.; Wallace, R.J. The effect of yeast and distillery by-products on the fermentation in the rumen simulation technique (Rusitec). Proc. Br. Soc. Anim. Prod. 1992, 54, 504. [Google Scholar] [CrossRef]
- Křižova, L.; Richter, M.; Třinacty, J.; Řiha, J.; Kumprechtová, D. The effect of feeding live yeast cultures on ruminal pH and redox potential in dry cows as continuously measured by a new wireless device. Czech J. Anim. Sci. 2011, 56, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Kiran, R.R.; Kumar, D.S. Influence of yeast culture supplementation on rumen fermentation of bulls fed complete rations. Int. J. Agric. Sci. Vet. Med. 2013, 1, 8–15. [Google Scholar]
- El-Waziry, A.M.; Ibrahim, H.R. Effect of Saccharomyces cerevisiae on cell wall constituents digestion in sheep fed berseem (Trifolium alexandrinum) hay and cellulase activity. In Proceedings of the International Conference on the Arabian Oryx in the Arabian Peninsula, Riyadh, Saudi Arabia, 21–23 April 2007; p. 142. [Google Scholar]
- Ondarza, M.B.; Sniffen, C.J.; Dussert, L.; Chevaux, E.; Sullivan, J.; Walker, N. CASE STUDY: Multiple-study analysis of the effect of live yeast on milk yield, milk component content and yield, and feed efficiency. Prof. Anim. Sci. 2010, 26, 661–666. [Google Scholar] [CrossRef]
- Patra, A.K. The use of live yeast products as microbial feed additives in ruminant nutrition. Asian J. Anim.Vet. Adv. 2012, 5, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Lila, Z.A.; Mohammed, N.; Yasui, T.; Kurokawa, Y.; Kanda, S.; Itabashi, H. Effects of a twin strain of Sacchatromyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 2004, 82, 1847–1854. [Google Scholar] [CrossRef]
- Uyeno, Y.; Akiyama, K.; Hasunuma, T.; Yamamoto, H.; Yokokawa, H.; Yamaguchi, T.; Kawashima, K.; Itoh, M.; Kushibiki, S.; Hirako, M. Effects of supplementing an active dry yeast product on rumen microbial community composition and on subsequent rumen fermentation of lactating cows in the midâ toâ late lactation period. Anim. Sci. J. 2017, 88, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Fadel Elseed, A.M.A.; Rania Abusamra, M.A. Effect of supplemental yeast (Saccharomyces cerevisiae) culture on NDF digestibility and rumen fermentation of forage sorghum hay in Nubian goat’s kids. Res. J. Agric. Biol. Sci. 2007, 3, 133–137. [Google Scholar]
- Yang, C.M.; Cao, G.T.; Ferket, R.R.; Liu, T.T.; Zhou, L.; Zhang, L.; Xiao, Y.P.; Chen, A.G. Effects of probiotic, Clostridium Butyricum on growth performance, immune function, and cecal microflora in broiler chickens. Poult. Sci. 2012, 91, 2121–2129. [Google Scholar] [CrossRef]
- Chen, Y.Q. Application of yeast in dairy feed. Feed Res. 2011, 2, 22–24. [Google Scholar]
- Yi, Z.H. Advances in research and application of probiotic Clostridium butyrate. Feed Res. 2012, 2, 4–17. [Google Scholar]
- Stella, A.V.; Paratte, R.; Valnegri, L.; Cigalino, G.; Soncini, G.; Chevaux, E.; Dell’Orto, V.; Savoni, G. Effect of administration of live saccharomyces cerevisiae on milk production, milk composition, blood metabolites, and faecal flora in early lactating dairy goats. Small Rumin. Res. 2007, 67, 7–13. [Google Scholar] [CrossRef]
- Lesmeister, K.E.; Heinrichs, A.J. Effects of corn processing on growth characteristics, rumen development and rumen parameters in neonatal dairy calves. J. Dairy Sci. 2004, 87, 3439–3450. [Google Scholar] [CrossRef] [Green Version]
- Haddad, G.; Goussous, S.N. Effect of yeast culture supplementation on nutrient intake, digestibility and growth performance of Awassi lambs. Anim. Feed Sci. Technol. 2005, 118, 342–348. [Google Scholar] [CrossRef]
- Kawas, J.R.; Castillo, R.C.; Cazares, F.G.; Durazo, H.F.; Saenz, E.O.; Vidal, G.H.; Lu, C.D. Effects of sodium bicarbonate and yeast on productive performance and carcass characteristics of light-weight lambs fed finishing diets. Small Rumin. Res. 2007, 67, 157–163. [Google Scholar] [CrossRef]
- Soren, N.M.; Tripathi, M.K.; Bhatt, R.S.; Karim, S.A. Effect of yeast supplementation on the growth performance of Malpura lambs. Trop. Anim. Health Pro. 2013, 45, 547–554. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Content |
---|---|
Alfalfa | 562 |
Ground corn | 264 |
Soybean meal | 84 |
Wheat barn | 73 |
Ca2HPO4 | 7 |
Premix * | 10 |
Nutrition Level | |
Dry matter | 951 |
Organic matter | 854 |
Crude protein | 173 |
Neutral detergent fibre | 434 |
Acid detergent fibre | 257 |
Ca | 5.9 |
P | 3.2 |
Groups | P1 | P2 | P3 |
---|---|---|---|
T0 | basal diet | basal diet + SC | basal diet + CB |
T1 | basal diet + SC | basal diet | basal diet + combination |
T2 | basal diet + CB | basal diet + combination | basal diet + SC |
T3 | basal diet + combination | basal diet + CB | basal diet |
Parameters | Treatment | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
CG | SC | CB | COM | SC | CB | SC × CB | ||
pH | 6.58 a | 6.72 b | 6.70 b | 6.73 b | 0.04 | <0.001 | <0.001 | <0.001 |
ORP (mV) | −161.3 a | −171.0 b | −183.4 b | −177.1 b | 7.13 | 0.045 | <0.001 | 0.01 |
NH3-N (mg 100 mL−1) | 9.20 a | 10.87 ab | 12.12 b | 9.81 a | 0.57 | 0.25 | 0.01 | 0.04 |
Acetic acid (mmol L−1) | 19.38 a | 28.12 b | 30.77 b | 21.59 a | 2.78 | 0.007 | <0.001 | <0.001 |
Propionic acid (mmol L−1) | 14.08 a | 18.2 b | 20.27 b | 13.72 a | 1.64 | 0.002 | 0.02 | <0.001 |
Butyric acid (mmol L−1) | 12.38 | 12.80 | 14.67 | 11.69 | 1.66 | 0.061 | 0.400 | 0.056 |
A/P ratio | 1.38 a | 2.13 b | 1.57 b | 1.52 a | 0.81 | 0.008 | 0.05 | 0.223 |
Avicelase (IU mL−1) | 1.31 a | 1.55 b | 1.82 b | 1.61 b | 0.02 | 0.050 | <0.001 | <0.001 |
CMCaes (IU mL−1) | 1.36 a | 2.58 b | 3.11 c | 2.57 b | 0.01 | <0.001 | <0.001 | <0.001 |
Cellobiase (IU mL−1) | 2.44 a | 4.46 b | 4.71 b | 4.53 b | 0.05 | <0.001 | <0.001 | <0.001 |
Xylanase (IU mL−1) | 4.54 a | 6.40 b | 7.31 c | 5.62 b | 0.10 | <0.001 | <0.021 | 0.043 |
Parameters | Treatment | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
CG | SC | CB | COM | SC | CB | SC × CB | ||
DMI (kg) | 0.79 a | 0.84 b | 0.87 c | 0.84 b | 0.04 | 0.005 | < 0.001 | <0.001 |
ADG (kg) | 0.08 a | 0.19 b | 0.12 b | 0.12 b | 0.01 | 0.040 | < 0.001 | 0.004 |
Digestibilities of | ||||||||
DM (%) | 50.58 a | 60.84 b | 66.46 c | 65.44 b | 3.63 | 0.001 | <0.001 | <0.001 |
NDF (%) | 38.32 a | 51.04 b | 54.13 b | 52.20 b | 3.59 | <0.001 | <0.001 | <0.01 |
ADF (%) | 37.82 a | 50.03 b | 50.06 b | 49.29 b | 3.00 | <0.001 | <0.001 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, L.; Yu, J.; Hartanto, R.; Qi, D. Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals 2021, 11, 2116. https://doi.org/10.3390/ani11072116
Cai L, Yu J, Hartanto R, Qi D. Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals. 2021; 11(7):2116. https://doi.org/10.3390/ani11072116
Chicago/Turabian StyleCai, Liyuan, Jiangkun Yu, Rudy Hartanto, and Desheng Qi. 2021. "Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats" Animals 11, no. 7: 2116. https://doi.org/10.3390/ani11072116
APA StyleCai, L., Yu, J., Hartanto, R., & Qi, D. (2021). Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals, 11(7), 2116. https://doi.org/10.3390/ani11072116