Increasing Dietary Potassium Chloride Promotes Urine Dilution and Decreases Calcium Oxalate Relative Supersaturation in Healthy Dogs and Cats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Study Design and Procedures
2.2.1. Diets
2.2.2. RSS Testing
2.2.3. Urine Analysis
2.2.4. Statistical Analyses
3. Results
3.1. Cat Results
3.2. Dog Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Osborne, C.A.; Lulich, J.P.; Kruger, J.M.; Ulrich, L.K.; Koehler, L.A. Analysis of 451,891 Canine Uroliths, Feline Uroliths, and Feline Urethral Plugs from 1981 to 2007: Perspectives from the Minnesota Urolith Center. Vet. Clin. N. Am. Small Anim. Practice 2009, 39, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Sævik, B.K.; Trangerud, C.; Ottesen, N.; Sørum, H.; Eggertsdóttir, A.V. Causes of lower urinary tract disease in Norwegian cats. J. Feline Med. Surg. 2011, 13, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Dorsch, C.; Remer, C.; Sauter-Louis, C.; Hartmann, K. Feline lower urinary tract disease in a German cat population. Tierärztliche Praxis Ausgabe K: Kleintiere / Heimtiere 2014, 42, 231–239. [Google Scholar] [CrossRef]
- Lekcharoensuk, C.; Osborne, C.A.; Lulich, J.P. Epidemiologic study of risk factors for lower urinary tract diseases in cats. J. Am. Vet. Med Assoc. 2001, 218, 1429–1435. [Google Scholar] [CrossRef]
- Lulich, J.P.; Osborne, C.A.; Bartges, J.W.; Lekcharoensuk, C. Canine lower urinary tract diseases. In Textbook of Veterinary Internal Medicine: Diseases of the Dog and Cat, 5th ed.; Ettinger, S.J., Feldman, E.C., Eds.; W.B. Saunders Co.: Philadelphia, PA, USA, 2000; pp. 1747–1781. [Google Scholar]
- Robertson, W.G.; Jones, J.S.; Heaton, M.A.; Stevenson, A.E.; Markwell, P.J. Predicting the Crystallization Potential of Urine from Cats and Dogs with Respect to Calcium Oxalate and Magnesium Ammonium Phosphate (Struvite). J. Nutr. 2002, 132, 1637S–1641S. [Google Scholar] [CrossRef] [Green Version]
- Queau, Y. Nutritional Management of Urolithiasis. Vet. Clin. N. Am. Small Anim. Practice 2019, 49, 175–186. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guideline: Potassium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Paßlack, N.; Brenten, T.; Neumann, K.; Zentek, J. Effects of potassium chloride and potassium bicarbonate in the diet on urinary pH and mineral excretion of adult cats. Br. J. Nutr. 2014, 111, 785–797. [Google Scholar] [CrossRef] [Green Version]
- Fitzsimons, J.T. Salt-induced drinking. In The Physiology of Thirst and Sodium Appetite; Cambridge University Press: Cambridge, UK, 1979; pp. 130–132. [Google Scholar]
- Fitzsimons, J.T. Drinking by nephrectomized rats injected with various substances. J. Physiol. 1961, 155, 563–579. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.O.; Teeter, R.G. Effects of potassium chloride supplementation on growth of heat-distressed broilers. J. Appl. Poult. Res. 1992, 1, 321–324. [Google Scholar] [CrossRef]
- Suzuki, H.; Kondo, K.; Saruta, T. Effect of potassium chloride on the blood pressure in two-kidney, one clip goldblatt hyper-tensive rats. Hypertension 1981, 3, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Lemann, J., Jr. Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: A review. Nephron 1999, 81, 18–25. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- International Organization for Standardization. ISO 16634–1:2008 Food Products—Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle and Calculation of the Crude Protein Content—Part 1: Oilseeds and Animal Feeding Stuffs; ISO: Geneva, Switzerland, 2008. [Google Scholar]
- The European Commission. Commission Regulation (EC) No 152/2009 of 27 January 2009 laying down the methods of sampling and analysis for the official control of feed. Off. J. Eur. Union 2009, 6, 1–130. [Google Scholar]
- AOAC International. AOAC official method 985.29, total dietary fiber in foods, enzymatic-gravimetric method. Off. Methods Anal. AOAC Int. 1995, 78, 1440–1444. [Google Scholar]
- Markwell, P.J.; Smith, B.H.E.; McCarthy, K.P. A non-invasive method for assessing the effect of diet on urinary calcium oxalate and struvite supersaturation in the cat. Anim. Technol. J. Inst. Anim. Tech. 1999, 50, 61–67. [Google Scholar]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Buckley, C.M.F.; Hawthorne, A.; Colyer, A.; Stevenson, A.E. Effect of dietary water intake on urinary output, specific gravity and relative supersaturation for calcium oxalate and struvite in the cat. Br. J. Nutr. 2011, 106, S128–S130. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, A.; Hynds, W.; Markwell, P. Effect of dietary moisture and sodium content on urine composition and calcium oxalate relative supersaturation in healthy miniature schnauzers and labrador retrievers. Res. Vet. Sci. 2003, 74, 145–151. [Google Scholar] [CrossRef]
- Treasure, J.; Ploth, D. Role of dietary potassium in the treatment of hypertension. Hypertension 1983, 5, 864–872. [Google Scholar] [CrossRef] [Green Version]
- Young, D.B.; McCaa, R.E.; Pan, Y.J.; Guyton, A.C. The natriuretic and hypotensive effects of potassium. Circ. Res. 1976, 38, 84–89. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Mandel, E.I.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Dietary Protein and Potassium, Diet–Dependent Net Acid Load, and Risk of Incident Kidney Stones. Clin. J. Am. Soc. Nephrol. 2016, 11, 1834–1844. [Google Scholar] [CrossRef]
- Riley, J.M.; Kim, H.; Averch, T.D.; Kim, H.J. Effect of magnesium on calcium and oxalate ion binding. J. Endourol. 2013, 27, 1487–1492. [Google Scholar] [CrossRef] [Green Version]
- Sakhaee, K.; Pak, C.Y.C. Contrasting Effects of Various Potassium Salts on Acid-Base Status, Urinary Citrate Excretion, and Renal Citrate Clearance. In Urolithiasis; Springer: Boston, MA, USA, 1989; pp. 523–525. [Google Scholar]
- Tosukhowong, P.; Borvonpadungkitti, S.; Prasongwatana, V.; Tungsanga, K.; Jutuporn, S.; Dissayabutr, T.; Reungjui, S.; Sriboonlue, P. Urinary citrate excretion in patients with renal stone: Roles of leucocyte ATP citrate lyase activity and potassium salts therapy. Clin. Chim. Acta 2002, 325, 71–78. [Google Scholar] [CrossRef]
- Domrongkitchaiporn, S.; Stitchantrakul, W.; Kochakarn, W. Causes of Hypocitraturia in Recurrent Calcium Stone Formers: Focusing on Urinary Potassium Excretion. Am. J. Kidney Dis. 2006, 48, 546–554. [Google Scholar] [CrossRef]
- Ryall, R.L. The Possible Roles of Inhibitors, Promoters, and Macromolecules in the Formation of Calcium Kidney Stones. In Urinary Tract Stone Disease; Springer Science and Business Media LLC: London, UK, 2010; pp. 31–60. [Google Scholar]
- Tarttelin, M.F. Feline struvite urolithiasis: Factors affecting urine pH may be more important than magnesium levels in food. Vet. Rec. 1987, 121, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Buffington, C.A.; Rogers, Q.R.; Morris, J.G. Feline struvite urolithiasis: Magnesium effect depends on urinary pH. Feline Pract. 1985, 15, 29–33. [Google Scholar]
- Lekcharoensuk, C.; Lulich, J.P.; Osborne, C.A.; Pusoonthornthum, R.; Allen, T.A.; Koehler, L.A.; Urlich, L.K.; Carpenter, K.A.; Swanson, L.L. Patient and environmental factors associated with calcium oxalate urolithiasis in dogs. J. Am. Vet. Med. Assoc. 2000, 217, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Low, W.W.; Uhl, J.M.; Kass, P.H.; Ruby, A.L.; Westropp, J.L. Evaluation of trends in urolith composition and characteristics of dogs with urolithiasis: 25,499 cases (1985–2006). J. Am. Vet. Med. Assoc. 2010, 236, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Furrow, E.; Patterson, E.; Armstrong, P.; Osborne, C.; Lulich, J. Fasting Urinary Calcium-to-Creatinine and Oxalate-to-Creatinine Ratios in Dogs with Calcium Oxalate Urolithiasis and Breed-Matched Controls. J. Vet. Intern. Med. 2015, 29, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lulich, J.P.; Osborne, C.A.; Albasan, H.; Koehler, L.A.; Ulrich, L.M.; Lekcharoensuk, C. Recent shifts in the global proportions of canine uroliths. Vet. Record. 2013, 172, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Dijcker, J.C.; Kummeling, A.; Hagen-Plantinga, E.A.; Hendriks, W.H. Urinary oxalate and calcium excretion by dogs and cats diagnosed with calcium oxalate urolithiasis. Vet. Rec. 2012, 171, 646. [Google Scholar] [CrossRef]
- Stevenson, A.E.; Robertson, W.G.; Markwell, P. Risk factor analysis and relative supersaturation as tools for identifying calcium oxalate stone-forming dogs. J. Small Anim. Pract. 2003, 44, 491–496. [Google Scholar] [CrossRef] [PubMed]
Analyzed Nutrient | Diet A KCl 0.6% | Diet B KCl 2.5% |
---|---|---|
Moisture | 7.97 | 7.70 |
Crude protein | 19.6 | 20.1 |
Crude fat | 6.9 | 7.1 |
Total dietary fiber | 6.3 | 5.8 |
Ash | 3.2 | 4.2 |
Calcium | 0.42 | 0.40 |
Phosphorus | 0.39 | 0.40 |
Magnesium | 0.05 | 0.05 |
Potassium | 0.44 | 1.03 |
Sodium | 0.24 | 0.23 |
Chloride | 0.54 | 0.83 |
Metabolizable energy a | 15.4 | 15.4 |
Variable | Diet A KCl 0.6% | Diet B KCl 2.5% | SE | p-Value for Diet | p-Value for Panel | p-Value for Panel × Diet |
---|---|---|---|---|---|---|
Caloric intake (kcal/BW0.711) | 94.9 | 94.4 | 4.7 | 0.892 | - | - |
Water intake (mL/kg/24 h) | 28.5 | 33.8 | 1.6 | <0.0001 | - | - |
Urine volume (mL/kg/24 h) | 11.2 | 16.2 | 0.9 | <0.0001 | - | - |
Urine specific gravity | 1.069 | 1.058 | 0.002 | <0.0001 | - | - |
Urine pH | 5.93 | 5.93 | 0.06 | 0.877 | - | - |
CaOx RSS | 3.24 | 2.59 | 0.37 | 0.034 | - | - |
MAP RSS | 0.29 | 0.17 | - | 0.112 | - | - |
Urinary concentrations (mmol/L) | - | |||||
Calcium | 0.9 | 0.7 | 0.1 | 0.046 | - | - |
Magnesium | 5.6 | 5.2 | 0.4 | <0.0001 | - | - |
Sodium | 175.5 | 127.3 | 6.5 | <0.0001 | - | - |
Potassium | 203.3 | 350.5 | 11.8 | <0.0001 | - | - |
Ammonium | 298.99 | 217.77 | 10.57 | <0.0001 | 0.997 | 0.036 |
Phosphate | 78.1 | 58.0 | 3.1 | <0.0001 | - | - |
Sulfate | 164.7 | 112.3 | 5.2 | <0.0001 | - | - |
Oxalate | 1.83 | 1.46 | 0.10 | <0.0001 | 0.58 | 0.037 |
Citrate | 2.5 | 2.3 | 0.4 | 0.40 | - | - |
Uric acid | 0.8 | 0.6 | 0.1 | <0.0001 | - | - |
Urinary excretions (µmol/kg/24 h) | - | |||||
Calcium | 9.8 | 9.5 | - | 0.075 | - | - |
Magnesium | 62.2 | 82.5 | 6.0 | 0.0002 | - | - |
Sodium | 1942 | 2027 | 130 | 0.548 | - | - |
Potassium | 2181 | 5895 | - | <0.0001 | - | - |
Ammonium | 3174 | 3428 | - | 0.294 | - | - |
Phosphate | 852 | 910 | 46 | 0.205 | - | - |
Sulfate | 1804 | 1769 | 94 | 0.714 | - | - |
Oxalate | 20.1 | 21.6 | 1.1 | 0.323 | - | - |
Citrate | 21.7 | 29.6 | - | 0.024 | - | - |
Uric acid | 9.0 | 7.7 | - | 0.605 | - | - |
Variable | Diet A KCl 0.6% | Diet B KCl 2.5% | SE | p-Value for Diet | p-Value for Panel | p-Value for Panel × Diet |
---|---|---|---|---|---|---|
Caloric intake (kcal/BW0.75) | 108.1 | 106.9 | 3.4 | 0.71 | - | - |
Water intake (mL/kg/24 h) | 43.9 | 50.3 | 1.4 | <0.001 | <0.001 | <0.05 |
Urine volume (mL/kg/24 h) | 19.7 | 27.3 | 1.2 | <0.001 | - | - |
Urine specific gravity | 1.049 | 1.041 | 0.002 | 0.0002 | - | - |
Urine pH | 5.92 | 6.06 | 0.07 | 0.025 | - | - |
CaOx RSS | 15.0 | 11.0 | n.a. | 0.041 | - | - |
MAP RSS | 0.20 | 0.15 | n.a. | 0.23 | - | - |
Urinary concentrations (mmol/L) | - | |||||
Calcium | 4.12 | 2.53 | n.a. | 0.0023 | - | - |
Magnesium | 6.03 | 4.41 | 0.42 | <0.0001 | - | - |
Sodium | 136.3 | 94.0 | 6.1 | <0.0001 | - | - |
Potassium | 138.02 | 226.55 | n.a. | <0.0001 | - | - |
Ammonium | 215.4 | 159.1 | 9.2 | <0.0001 | - | - |
Phosphate | 49.6 | 37.0 | 3.0 | 0.0005 | - | - |
Sulfate | 126.8 | 89.9 | 5.5 | <0.0001 | - | - |
Oxalate | 1.24 | 1.04 | n.a. | <0.0001 | - | - |
Citrate | 0.07 | 0.08 | n.a. | 0.09 | 0.08 | <0.0001 |
Uric acid | 1.08 | 0.81 | n.a. | <0.0001 | - | - |
Urinary excretions (µmol/kg/24 h) | - | |||||
Calcium | 71.35 | 69.15 | n.a. | 0.60 | 0.03 | 0.02 |
Magnesium | 109.7 | 114.7 | 7.5 | 0.34 | - | - |
Sodium | 2557.4 | 2513.6 | 130.1 | 0.79 | - | - |
Potassium | 2515.82 | 5793.43 | n.a. | <0.0001 | - | - |
Ammonium | 4072.3 | 4172.6 | 182.2 | 0.67 | - | - |
Phosphate | 920.3 | 951.9 | 52.8 | 0.70 | - | - |
Sulfate | 2378.5 | 2354.6 | 91.4 | 0.84 | - | - |
Oxalate | 25.42 | 30.15 | n.a. | 0.0004 | - | - |
Citrate | 1.39 | 2.04 | n.a. | <0.0001 | 0.001 | <0.0001 |
Uric acid | 22.6 | 23.3 | 1.6 | 0.47 | 0.0005 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bijsmans, E.; Quéau, Y.; Biourge, V. Increasing Dietary Potassium Chloride Promotes Urine Dilution and Decreases Calcium Oxalate Relative Supersaturation in Healthy Dogs and Cats. Animals 2021, 11, 1809. https://doi.org/10.3390/ani11061809
Bijsmans E, Quéau Y, Biourge V. Increasing Dietary Potassium Chloride Promotes Urine Dilution and Decreases Calcium Oxalate Relative Supersaturation in Healthy Dogs and Cats. Animals. 2021; 11(6):1809. https://doi.org/10.3390/ani11061809
Chicago/Turabian StyleBijsmans, Esther, Yann Quéau, and Vincent Biourge. 2021. "Increasing Dietary Potassium Chloride Promotes Urine Dilution and Decreases Calcium Oxalate Relative Supersaturation in Healthy Dogs and Cats" Animals 11, no. 6: 1809. https://doi.org/10.3390/ani11061809