Evaluation of a Product Derived from Porcine Plasma Protein and a Yeast Product with Similar Biological Activity in Diets of Growing Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Standards
2.2. Animals and Experimental Design
2.3. Growth Performance
2.4. Carcass Characteristics
2.5. Intestinal Health
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics
3.3. Intestinal Health
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wijtten, P.; Langhout, D.; Verstegen, M. Small intestine development in chicks after hatch and in pigs around the time of weaning and its relation with nutrition: A review. Acta Agric. Scand. Sect. A Anim. Sci. 2012, 62, 1–12. [Google Scholar] [CrossRef]
- Panda, A.; Bhanja, S.; Shyam Sunder, G. Early post hatch nutrition on immune system development and function in broiler chickens. World’s Poult. Sci. J. 2015, 71, 285–296. [Google Scholar] [CrossRef]
- Uni, Z.; Ferket, R. Methods for early nutrition and their potential. World’s Poult. Sci. J. 2004, 60, 101–111. [Google Scholar] [CrossRef]
- Jha, R.; Singh, A.K.; Yadav, S.; Berrocoso, J.F.D.; Mishra, B. Early Nutrition Programming (in ovo and Post-hatch Feeding) as a Strategy to Modulate Gut Health of Poultry. Front. Vet. Sci. 2019, 6, 82. [Google Scholar] [CrossRef] [PubMed]
- Koutsos, E.A. General principles of nutrition for the newly hatched chick. Vet. Clin. N. Am. Exot. Anim. Pract. 2012, 15, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Meloche, K.; Fancher, B.; Emmerson, D.; Bilgili, S.; Dozier III, W. Effects of reduced dietary energy and amino acid density on Pectoralis major myopathies in broiler chickens at 36 and 49 days of age1. Poult. Sci. 2018, 97, 1794–1807. [Google Scholar] [CrossRef] [PubMed]
- Trocino, A.; Piccirillo, A.; Birolo, M.; Radaelli, G.; Bertotto, D.; Filiou, E.; Petracci, M.; Xiccato, G. Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens. Poult. Sci. 2015, 94, 2996–3004. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M.; Soglia, F.; Madruga, M.; Carvalho, L.; Ida, E.; Estévez, M. Wooden-breast, white striping, and spaghetti meat: Causes, consequences and consumer perception of emerging broiler meat abnormalities. Compr. Rev. Food Sci. Food Saf. 2019, 18, 565–583. [Google Scholar] [CrossRef] [Green Version]
- Velleman, S.G.; Nestor, K.; Coy, C.; Harford, I.; Anthony, N. Effect of posthatch feed restriction on broiler breast muscle development and muscle transcriptional regulatory factor gene and heparan sulfate proteoglycan expression. Int. J. Poult. Sci. 2010, 9, 417–425. [Google Scholar] [CrossRef] [Green Version]
- Velleman, S.G.; Coy, C.S.; Emmerson, D.A. Effect of the timing of posthatch feed restrictions on the deposition of fat during broiler breast muscle development. Poult. Sci. 2014, 93, 2622–2627. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.V.; Campbell, R.G.; Chapman, T.; Brouwers, H.; Pierzynowski, S.G.; Weström, B.R.; Gabor, L.; Choct, M. Spray-dried porcine plasma and yeast derived protein meal influence the adaption to weaning of primiparous and multiparous sow progeny in different ways. Anim. Prod. Sci. 2013, 53, 75–86. [Google Scholar] [CrossRef]
- Crenshaw, J.; Campbell, J.; Polo, J.; Stein, H. Effects of specialty proteins as alternatives to bovine or porcine spray-dried plasma in non-medicated diets fed to weaned pigs housed in an unsanitary environment. Transl. Anim. Sci. 2017, 1, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Torrallardona, D. Spray Dried Anim. Plasma as an Alternative to Antibiotics in Weanling Pigs—A Review. Asian Australas. J. Anim. Sci. 2010, 23, 131–148. [Google Scholar] [CrossRef]
- Kats, L.J.; Nelssen, J.L.; Tokach, M.D.; Goodband, R.D.; Hansen, J.A.; Laurin, J.L. The Effect of Spray-Dried Porcine Plasma on Growth-Performance in the Early-Weaned Pig. J. Anim. Sci. 1994, 72, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- Everts, H.; Nabuurs, M.J.A.; Margry, R.; van Dijk, A.J.; Beynen, A.C. Growth performance of weanling pigs fed spray-dried animal plasma: A review. Livest. Prod. Sci. 2001, 68, 263–274. [Google Scholar]
- Jamroz, D.; Wiliczkiewicz, A.; Orda, J.; Kuryszko, J.; Stefaniak, T. Use of spray-dried porcine blood by-products in diets for young chickens. J. Anim. Physiol. Anim. Nutr. 2012, 96, 319–333. [Google Scholar] [CrossRef]
- Pérez-Bosque, A.; Polo, J.; Torrallardona, D. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety. Porc. Health Manag. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.; Quigley Iii, J.; Russell, L.; Kidd, M. Effect of spray-dried bovine serum on intake, health, and growth of broilers housed in different environments. J. Anim. Sci. 2003, 81, 2776–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bregendahl, K.; Ahn, D.U.; Trampel, D.W.; Campbell, J.M. Effects of dietary spray-dried bovine plasma protein on broiler growth performance and breast-meat yield. J. Appl. Poult. Res. 2005, 14, 560–568. [Google Scholar] [CrossRef]
- Henn, J.; Bockor, L.; Vieira, M.; Ribeiro, A.; Kessler, A.; Albino, L.; Rostagno, H.; Crenshaw, J.; Campbell, J.; Rangel, L. Inclusion of porcine spray-dried plasma in broiler diets. J. Appl. Poult. Res. 2013, 22, 229–237. [Google Scholar] [CrossRef]
- King, M.; Ravindran, V.; Morel, P.; Thomas, D.; Birtles, M.; Pluske, J. Effects of spray-dried colostrum and plasmas on the performance and gut morphology of broiler chickens. Aust. J. Agric. Res. 2005, 56, 811–817. [Google Scholar] [CrossRef]
- Beski, S.; Swick, R.; Iji, P. Subsequent growth performance and digestive physiology of broilers fed on starter diets containing spray-dried porcine plasma as a substitute for meat meal. Br. Poult. Sci. 2015, 56, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Beski, S.; Swick, R.; Iji, P. The effect of the concentration and feeding duration of spray-dried plasma protein on growth performance, digestive enzyme activities, nutrient digestibility and intestinal mucosal development of broiler chickens. Anim. Prod. Sci. 2016, 56, 1820–1827. [Google Scholar] [CrossRef]
- Vaughn, M.; Phelps, K.; Gonzalez, J. In vitro supplementation with the porcine plasma product, betaGRO®, stimulates activity of porcine fetal myoblasts and neonatal satellite cells in a divergent manner. Anim. An Int. J. Anim. Biosci. 2017, 12, 1912–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughn, M.A.; Rahe, M.; Loughmiller, J.; Murtaugh, M. Targeting immune cell energetics to produce healthy pigs. Natl. Hog Farmer 2018. Available online: https://www.nationalhogfarmer.com/animal-health/targeting-immune-cell-energetics-produce-healthy-pigs (accessed on 31 May 2021).
- FASS. Guide for the Care and Use of Agricultural Animals in Research and Teaching; FASS: Champaign, IL, USA, 2010. [Google Scholar]
- Leary, S.L.; Underwood, W.; Anthony, R.; Cartner, S.; Corey, D.; Grandin, T.; Greenacre, C.; Gwaltney-Brant, S.; McCrackin, M.; Meyer, R. AVMA Guidelines for the Euthanasia of Animals, 2013th ed.; AVMA: Schaumburg, IL, USA, 2013. [Google Scholar]
- Johnson, J.; Reid, W.M. Anticoccidial drugs: Lesion scoring techniques in battery and floor-pen experiments with chickens. Exp. Parasitol. 1970, 28, 30–36. [Google Scholar] [CrossRef]
Ingredient | Starter | Grower | Finisher |
---|---|---|---|
0–14 d | 14–28 d | 28–42 d | |
Yellow corn | 45.7 | 51.4 | 55.4 |
Soybean meal 47% | 38.3 | 34.5 | 30.7 |
Soybean oil | 8.69 | 8.04 | 8.26 |
Blended animal protein 1 | 2.00 | 2.00 | 2.00 |
DL Methionine | 0.439 | 0.260 | 0.190 |
Salt | 0.599 | 0.549 | 0.499 |
L-Lysine HCl | 0.088 | 0.034 | 0.042 |
Limestone | 1.46 | 1.27 | 1.20 |
Dicalcium phosphate | 2.33 | 1.60 | 1.47 |
Choline CL 60% | 0.112 | 0.067 | 0.026 |
Vitamin-Trace minerals 2 | 0.100 | 0.100 | 0.100 |
Phytase | 0.100 | 0.100 | 0.100 |
Crude protein% | 23.0 | 21.5 | 20.0 |
ME kcal/lb | 1425 | 1450 | 1475 |
Lysine% | 1.40 | 1.25 | 1.15 |
TSAA% 3 | 1.15 | 0.950 | 0.850 |
Methionine% | 0.788 | 0.599 | 0.513 |
Calcium% | 1.10 | 0.900 | 0.840 |
Available P% | 0.600 | 0.450 | 0.420 |
Total P% | 0.904 | 0.734 | 0.692 |
Sodium% | 0.260 | 0.240 | 0.220 |
Measurement | Treatment 1 | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Low Stress Environment | High Stress Environment | |||||||||
CON | BG | CT | CON | BG | CT | ENV × DIET | ENV | DIET | ||
Average body weight (g) | ||||||||||
Day 1 | 56.0 b | 59.8 a | 59.8 a | 56.1 b | 60.2 a | 59.3 a | 0.26 | 0.227 | 0.988 | <0.001 |
Day 7 | 168.3 | 189.9 | 190.2 | 169.7 | 191.0 | 191.1 | 1.19 | 0.947 | 0.082 | <0.001 |
Day 14 | 451.0 | 525.7 | 529.7 | 414.9 | 492.0 | 486.9 | 4.85 | 0.366 | <0.001 | <0.001 |
Day 28 | 1276.6 | 1472.0 | 1470.4 | 1186.4 | 1372.6 | 1363.2 | 11.29 | 0.511 | <0.001 | <0.001 |
Day 42 | 2447.1 c | 2656.5 a | 2639.8 a | 2273.1 d | 2551.5 b | 2549.4 b | 19.76 | 0.004 | <0.001 | <0.001 |
Feed Consumption, (g) | ||||||||||
Days 1–7 | 14.90 | 16.27 | 16.39 | 14.74 | 16.44 | 16.71 | 0.26 | 0.355 | 0.408 | <0.001 |
Days 1–14 | 31.50 | 35.43 | 35.45 | 29.98 | 33.17 | 32.83 | 0.62 | 0.380 | <0.001 | <0.001 |
Days 1–28 | 63.08 | 70.05 | 69.63 | 62.11 | 67.55 | 67.69 | 1.07 | 0.528 | 0.002 | <0.001 |
Days 1–42 | 106.76 | 111.60 | 110.31 | 106.78 | 109.84 | 110.54 | 1.84 | 0.660 | 0.601 | 0.261 |
Average feed Conversion | ||||||||||
Days 1–7 | 0.94 | 0.87 | 0.87 | 0.92 | 0.87 | 0.88 | 0.011 | 0.127 | 0.663 | 0.001 |
Days 1–14 | 1.12 | 1.06 | 1.05 | 1.16 | 1.07 | 1.07 | 0.011 | 0.114 | 0.008 | <0.001 |
Days 1–28 | 1.41 | 1.35 | 1.35 | 1.48 | 1.40 | 1.41 | 0.019 | 0.500 | <0.001 | 0.015 |
Days 1–42 | 1.85 | 1.78 | 1.78 | 1.95 | 1.81 | 1.82 | 0.026 | 0.071 | <0.001 | 0.005 |
Mortality, % | ||||||||||
Days 1–7 | 1.42 | 0.01 | 0.02 | 1.36 | 0.03 | 0.05 | 0.36 | 0.977 | 0.955 | 0.013 |
Days 1–14 | 1.93 | 0.14 | 0.17 | 4.76 | 1.61 | 2.12 | 0.65 | 0.259 | <0.001 | 0.020 |
Days 1–28 | 1.86 | 0.63 | 0.81 | 6.69 | 3.51 | 3.68 | 0.79 | 0.090 | <0.001 | 0.104 |
Days 1–42 | 2.10 a | 1.22 a | 0.87 a | 8.33 c | 4.69 b | 4.69 b | 0.92 | 0.014 | <0.001 | 0.050 |
Uniformity, %CV | ||||||||||
Day 7 | 14.65 | 10.07 | 10.21 | 14.89 | 10.18 | 10.38 | 0.29 | 0.946 | 0.277 | <0.001 |
Day 14 | 18.15 | 12.07 | 12.61 | 20.50 | 14.00 | 13.62 | 0.49 | 0.105 | <0.001 | <0.001 |
Day 28 | 15.81 c | 9.65 a | 9.69 a | 18.79 d | 11.03 b | 10.88 b | 0.50 | 0.013 | <0.001 | <0.001 |
Day 42 | 12.27 b | 10.54 a | 10.12 a | 17.18 c | 10.94 ab | 10.87 ab | 0.58 | <0.001 | <0.001 | <0.001 |
European Production Efficiency Factor | ||||||||||
Days 1–7 | 249.61 | 312.93 | 311.94 | 257.61 | 314.19 | 309.45 | 4.93 | 0.256 | 0.384 | <0.001 |
Days 1–14 | 280.77 | 353.18 | 358.68 | 237.70 | 322.29 | 316.73 | 5.38 | 0.160 | <0.001 | <0.001 |
Days 1–28 | 307.69 | 375.14 | 375.86 | 254.36 | 326.93 | 321.20 | 6.17 | 0.697 | <0.001 | <0.001 |
Days 1–42 | 304.09 b | 346.17 a | 347.67 a | 242.96 c | 313.02 b | 310.00 b | 6.08 | 0.001 | <0.001 | <0.001 |
Measurement | Treatment 1 | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Low Stress Environment | High Stress Environment | |||||||||
CON | BG | CT | CON | BG | CT | ENV × DIET | ENV | DIET | ||
Carcass Yield (% post chill) | 75.63 a | 76.50 a | 75.53 a | 72.74 b | 76.18 a | 76.30 a | 0.61 | <0.001 | 0.013 | 0.038 |
Pectoralis Major (% post chill) | 19.83 c | 20.60 b | 20.92 a | 18.59 d | 20.34 bc | 20.34 b | 0.18 | <0.001 | <0.001 | <0.001 |
Pectoralis Major, g | 385.33 c | 436.67 a | 436.27 a | 323.78 d | 411.42 b | 413.84 a | 4.73 | <0.001 | <0.001 | <0.001 |
Pectoralis Minor (% post chill) | 4.99 b | 5.76 a | 5.81 a | 4.68 c | 5.03 b | 5.13 b | 0.07 | <0.001 | <0.001 | <0.001 |
Pectoralis Minor, g | 96.91 c | 122.11 a | 121.11 a | 81.67 d | 101.78 b | 104.26 b | 1.49 | 0.030 | <0.001 | <0.001 |
Whole Breast (% post chill) | 24.82 | 26.36 | 26.73 | 23.27 | 25.37 | 25.46 | 0.23 | 0.167 | <0.001 | <0.001 |
Whole Breast, g | 482.24 c | 558.78 a | 557.38 a | 405.45 d | 513.21 b | 518.10 b | 5.91 | <0.001 | <0.001 | <0.001 |
Thigh Yield (% post chill) | 14.00 | 13.85 | 13.64 | 14.43 | 13.72 | 13.55 | 0.33 | 0.353 | 0.689 | 0.224 |
Wing Yield (% post chill) | 10.38 | 9.67 | 10.12 | 10.57 | 9.60 | 9.72 | 0.29 | 0.289 | 0.530 | 0.091 |
Leg Yield (% post chill) | 12.49 | 12.37 | 13.01 | 12.80 | 12.66 | 12.52 | 0.28 | 0.054 | 0.819 | 0.405 |
Abdominal Fat (% post chill) | 1.31 | 1.33 | 1.34 | 1.37 | 1.32 | 1.30 | 0.03 | 0.090 | 0.833 | 0.913 |
Measurement | Treatment 1 | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Low Stress Environment | High Stress Environment | |||||||||
CON | BG | CT | CON | BG | CT | ENV × DIET | ENV | DIET | ||
Lesion Score, 14 d | 0.44 a | 0.08 a | 0.21 a | 1.85 c | 0.87 b | 0.87 b | 0.15 | <0.001 | <0.001 | 0.004 |
Lesion Score, 42 d | 0.33 a | 0.24 a | 0.22 a | 1.64 c | 0.67 b | 0.59 b | 0.06 | <0.001 | <0.001 | <0.001 |
Villi Height (µm) 14 d | 1011.29 | 1022.89 | 1012.19 | 950.95 | 996.04 | 975.88 | 26.19 | 0.590 | 0.004 | 0.602 |
Crypt Depth (µm) 14 d | 434.02 a | 468.45 a | 468.56 a | 377.01 b | 481.39 a | 450.35 a | 20.78 | 0.037 | 0.060 | 0.054 |
Villi Height: Crypt Depth Ratio | 2.45 | 2.26 | 2.22 | 2.71 | 2.14 | 2.26 | 0.15 | 0.150 | 0.441 | 0.178 |
E. coli (log10) 14 d | 4.54 a | 5.13 b | 5.29 b | 6.44 d | 6.32 cd | 6.13 c | 0.19 | <0.001 | <0.001 | 0.636 |
E. coli (log10) 42 d | 4.79 a | 5.19 b | 5.18 b | 6.56 d | 6.26 cd | 6.08 c | 0.13 | <0.001 | <0.001 | 0.521 |
APC (log10) 14 d | 8.23 | 8.06 | 8.10 | 8.47 | 7.84 | 7.96 | 0.37 | 0.601 | 0.851 | 0.728 |
APC (log10) 42 d | 8.38 | 8.05 | 8.00 | 8.39 | 8.19 | 8.01 | 0.20 | 0.835 | 0.621 | 0.238 |
Clostridium perfringens (log10) 14 d | 3.08 abc | 2.84 ab | 2.67 a | 4.54 d | 3.25 c | 3.10 bc | 0.21 | <0.001 | <0.001 | 0.001 |
Clostridium perfringens (log10) 42 d | 2.95 a | 2.82 a | 2.76 a | 4.28 c | 3.30 b | 3.38 b | 0.11 | <0.001 | <0.001 | <0.001 |
Salmonella Incidence, % 14 d | 20.24 a | 25.30 a | 23.21 a | 80.70 c | 52.47 b | 62.67 b | 7.76 | 0.005 | <0.001 | 0.514 |
Salmonella Incidence, % 42 d | 9.68 a | 16.47 a | 13.01 a | 70.07 c | 48.17 b | 48.44 b | 5.74 | <0.001 | <0.001 | 0.408 |
Oocysts/g feces 14 d | 6.24 | 5.97 | 6.07 | 6.36 | 5.72 | 5.98 | 0.21 | 0.399 | 0.515 | 0.237 |
Oocysts/g feces, 42 d | 6.34 | 6.07 | 6.16 | 6.25 | 5.87 | 6.08 | 0.16 | 0.313 | 0.139 | 0.428 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waldroup, P.; Vaughn, M.; McNaughton, J. Evaluation of a Product Derived from Porcine Plasma Protein and a Yeast Product with Similar Biological Activity in Diets of Growing Broilers. Animals 2021, 11, 1751. https://doi.org/10.3390/ani11061751
Waldroup P, Vaughn M, McNaughton J. Evaluation of a Product Derived from Porcine Plasma Protein and a Yeast Product with Similar Biological Activity in Diets of Growing Broilers. Animals. 2021; 11(6):1751. https://doi.org/10.3390/ani11061751
Chicago/Turabian StyleWaldroup, Park, Mathew Vaughn, and James McNaughton. 2021. "Evaluation of a Product Derived from Porcine Plasma Protein and a Yeast Product with Similar Biological Activity in Diets of Growing Broilers" Animals 11, no. 6: 1751. https://doi.org/10.3390/ani11061751
APA StyleWaldroup, P., Vaughn, M., & McNaughton, J. (2021). Evaluation of a Product Derived from Porcine Plasma Protein and a Yeast Product with Similar Biological Activity in Diets of Growing Broilers. Animals, 11(6), 1751. https://doi.org/10.3390/ani11061751