Effect of the Spatial Distribution of the Temperature and Humidity Index in a New Zealand White Rabbit House on Respiratory Frequency and Ear Surface Temperature
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Housing and Animals
2.2. Environmental and Physiological Response Measurements
2.3. Dataset
2.4. Data Partition Method for Validation of the Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalle Zotte, A.; Szendrő, Z. The role of rabbit meat as functional food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Montero-Vicente, L.; Escribá-Pérez, C.; Baviera-Puig, A.; Buitrago-Vera, J. Analysis of the commercial value of rabbit meat based on positioning of the different types of fresh meat. Span. J. Agric. Res. 2018, 16, 1–9. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Petrescu-Mag, R.M. Consumer behaviour related to rabbit meat as fucntional food. World Rabbit Sci. 2018, 26, 321–333. [Google Scholar] [CrossRef]
- Rommers, J.; De Greef, K. Are combi parks just as useful as regular parks for fatteners for part-time group housing of rabbit does? World Rabbit Sci. 2018, 26, 299–305. [Google Scholar] [CrossRef]
- Maya-Soriano, M.J.; Taberner, E.; Sabes-Alsina, M.; Ramon, J.; Rafel, O.; Tusell, L.; Piles, M.; López-Béjar, M. Daily exposure to summer temperatures affects the motile subpopulation structure of epididymal sperm cells but not male fertility in an in vivo rabbit model. Theriogenology 2015, 84, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Szendrő, Z.; Papp, Z.; Kustos, K. Effect of ambient temperature and restricted feeding on the production of rabbit does and their kits. Acta Agr. Kapos. 2018, 22, 1–17. [Google Scholar] [CrossRef]
- Matics, Z.; Kasza, R.; Gerencsér, Z.; Radnai, I.; Dalle Zotte, A.; Cullere, M.; Szendrő, Z. Effect of hair shearing on live performance and carcass traits of growing rabbits under hot ambient temperature. World Rabbit Sci. 2020, 28, 161–167. [Google Scholar] [CrossRef]
- Berghof, T.V.L.; Poppe, M.; Mulder, H.A. Opportunities to Improve Resilience in Animal Breeding Programs. Front. Genet. 2019, 9, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferraz, P.F.P.; Ferraz, G.A.S.; Barbari, M.; Silva, M.A.J.G.; Damasceno, F.A.; Cecchin, D.; Castro, J.O. Behavioural and physiological responses of rabbits. Agron. Res. 2019, 17, 704–710. [Google Scholar]
- Ferreira, R.A.; Moura, R.S.; Amaral, R.C.; Vilas, P.; Ribeiro, B.; Oliveira, R.F.; Piva, A.E. Estresse agudo por calor em coelhos. Rev. Bras. Cunicult. 2017, 12, 45–56. [Google Scholar]
- Ferraz, P.F.P.; Hernández-Julio, Y.F.; e Silva Ferraz, G.A.; de Moura, R.S.; Rossi, G.; Saraz, J.A.O.; Barbari, M. Decision trees for predicting the physiological responses of rabbits. Animals 2019, 9, 994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluger, M.J.; Gonzalez, R.R.; Mitchell, J.W.; Hardy, J.D. The rabbit ear as a temperature sensor. Life Sci. 1971, 10, 895–899. [Google Scholar] [CrossRef]
- Konradi, G. Textbook of Physiology; Kova, K.M., Ed.; Foreign Languages Pub. House: Moscow, Russia, 1960; p. 763. [Google Scholar]
- Ferraz, P.F.; Damasceno, F.A.; Moura, R.S.D.; Silva, M.A.J.G.; Rodrigues, R.D.L. Spatial variability of enthalpy in rabbit house with and without ridge vent. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 126–132. [Google Scholar] [CrossRef]
- Ferraz, P.F.P.; Ferraz, G.A.; Moura, R.S.D.; Cecchin, D.; Silva, D.R.D.; Cadavid, V.G. Conforto térmico em galpão cunícula em dias com e sem precipitação. Rev. Bras. Cunicult. 2020, 17, 7–17. [Google Scholar]
- Ferraz, P.F.P.; Yanagi, T., Jr.; Ferraz, G.A.S.; Schiassi, L.; Campos, A.T. Spatial variability of enthalpy in broiler house during the heating phase. Rev. Bras. Eng. Agrícola Ambient. 2016, 20, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Curi, T.M.R.D.C.; Conti, D.; Vercellino, R.A.; Massari, J.M.; Moura, D.J.; Souza, Z.M.; Montanari, R. Positioning of sensors for control of ventilation systems in broiler houses: A case study. Sci. Agric. 2017, 74, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, P.F.P.; Ferraz, G.A.S.; Schiassi, L.; Nogueira, V.H.B.; Barbari, M.; Damasceno, F.A. Spatial variability of litter temperature, relative air humidity and skin temperature of chicks in a commercial broiler house. Agron. Res. 2019, 17, 408–417. [Google Scholar]
- Oliveira, C.E.A.; Damasceno, F.A.; Ferraz, P.F.P.; Nascimento, J.A.C.; Ferraz, G.A.S.; Barbari, M. Geostatistics applied to evaluation of thermal conditions and noise in compost dairy barns with different ventilation systems. Agron. Res. 2019, 17, 783–796. [Google Scholar]
- Ferraz, P.F.P.; Gonzalez, V.C.; Ferraz, G.A.S.; Damasceno, F.A.; Osorio, J.A.S.; Conti, L. Assessment of spatial variability of environmental variables of a typical house of laying hens in Colombia: Antioquia state Case. Agron. Res. 2020, 18, 1244–1254. [Google Scholar]
- Faustino, A.C.; Turco, S.H.N.; Silva Junior, R.G.C.; Miranda, I.B.; Anjos, I.E.; Lourençoni, D. Spatial variability of enthalpy and illuminance in free-range broiler sheds. Rev. Bras. Eng. Agríc. Ambient. 2021, 25, 340–344. [Google Scholar] [CrossRef]
- Queiroz, M.L.V.; Barbosa Filho, J.A.D.; Sales, F.A.L.; de Lima, L.R.; Duarte, L.M. Variabilidade espacial em ambiente de galpão de frangos de corte com sistema de nebulização. Rev. Ciência Agronômica 2017, 48, 586–595. [Google Scholar]
- Zeferino, C.P.; Moura, A.S.A.M.T.; Fernandes, S.; Kanayama, J.S.; Scapinello, C.; Sartori, J.R. Genetic group × ambient temperature interaction effects on physiological responses and growth performance of rabbits. Livest. Sci. 2011, 140, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Thom, E.C. Cooling degree: Day air conditioning, heating, and ventilating. Trans. Amer. Soc. Heat. 1958, 55, 65–72. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; p. 561. [Google Scholar]
- Ferraz, G.A.S.; Silva, F.M.D.; Carvalho, L.C.; Alves, M.D.C.; Franco, B.C. Variabilidade espacial e temporal do fósforo, potássio e da produtividade de uma lavoura cafeeira. Eng. Agríc. 2012, 32, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Marchant, B.P.; Lark, R.M. Robust estimation of the variogram by residual maximum likelihood. Geoderma 2007, 140, 62–72. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists: Statistics in Practice, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 333. [Google Scholar]
- Ponciano, P.F.; Yanagi Junior, T.; e Silva Ferraz, G.A.; Scalon, J.D.; Schiassi, L. Spatial variability of air dry bulb temperature and black globe humidity index in a broiler house during the heating phase. Eng. Agríc. 2013, 33, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, P.A.P.; Yanagi Junior, T.; de Oliveira, D.D.; e Silva Ferraz, G.A.; Lourençoni, D. Análise geoestatística das iluminâncias em avíários para poedeiras equipados com lâmpadas fluorescentes compactas e de led. Eng. Agríc. 2016, 36, 962–971. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, I.C.M.; Turco, S.H.N.; Ramos, C.M.C. Variabilidade espacial da temperatura do ar de um free-stall na região semiárida nordestina do Brasil. Revista Brasileira de Engenharia Agrícola e Ambiental 2016, 20, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.M.; Ferraz, G.A.S.; Batista, M.L.; Martins, F.B.; Barbosa, B.D. 2020. Characterization of noise emitted by a low-profile tractor and its influence on the health of agricultural workers. An. Acad. Bras. Ciências 2020, 92, 1–10. [Google Scholar]
- Ribeiro Junior, P.J.; Diggle, P.J. GeoR: A package for geostatistical analysis. R-News 2001, 1, 14–18. [Google Scholar]
- Trangmar, B.B.; Yost, R.S.; Uehara, G. Applications of geostatistics to spatial studies of soil properties. Adv. Agron. 1985, 38, 45–94. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Parkin, T.B.; Karlen, D.L.; Novak, J.M.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Faraco, M.A.; Uribe-Opazo, M.A.; Silva, E.A.A.; Johann, J.A.; Borssoi, J.A. Seleção critérios de modelos de variabilidade espacial utilizados em mapas temáticos de atributos físicos do solo e rendimento da soja. Rev. Bras. Ciênc. Solo 2008, 32, 463–476. [Google Scholar] [CrossRef]
- Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: London, UK, 1991; p. 600. [Google Scholar]
- Damasceno, F.A.; Oliveira, C.E.A.; Ferraz, G.A.S.; Nascimento, J.A.C.; Barbari, M.; Ferraz, P.F.P. Spatial distribution of thermal variables, acoustics and lighting in compost dairy barn with climate control system. Agron. Res. 2019, 17, 385–395. [Google Scholar]
- Cervera, C.; Carmona, F.J. Nutrition and the climatic environment. In The Nutrition of the Rabbit, 2nd ed.; de Blas, C., Wiseman, J., Eds.; CABI Publishing: Wallingford, UK, 2010; pp. 273–295. [Google Scholar]
- Ferreira, W.M.; Machado, L.C.; Jaruche, Y.D.G.; Carvalho, G.D.; Oliveira, C.E.A.; Souza, J.A.S.; Caríssimo, A.P.G. Manual Prático de Cunicultura; Associação Brasileira de Cunicultura: Bambuí, Brazil, 2012; p. 75. [Google Scholar]
- Baracho, M.S.; de Cassiano, J.A.; de Nääs, I.A.; Tonon, G.S.; Garcia, R.G.; Royer, A.F.B.; de Moura, D.J.; deSantana, M.R. Ambiente interno em galpões de frango de corte com cama nova e reutilizada. Rev. Agrar. 2013, 6, 473–478. [Google Scholar]
- Lima, V.; Montes, M.; Rafel, S.; López-Béjar, M.; Ramón, J.; Velarde, A.; Dalmau, A. Use of infrared thermography to assess the influence of high environmental temperature on rabbits. Res. Vet. Sci. 2013, 95, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Resende, L.H.C.; Borges, J.F.P.M.; Serafim, R.S. Tosquia de coelhos como alternativa para melhorar o conforto térmico. FAZU Rev. 2012, 9, 85–89. [Google Scholar]
- Manning, P.J.; Ringler, D.H.; Newcomer, C.E. The Biology of the Laboratory Rabbit, 2nd ed.; Academic Press: London, UK, 1994; p. 483. [Google Scholar]
- Ludwig, N.; Gargano, M.; Luzi, F.; Carenzi, C.; Verga, M. Applicability of infrared thermography as a non invasive measurements of stress in rabbit. World Rabbit Sci. 2010, 15, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Nalivaiko, E.; Blessing, W.W. Synchronous changes in ear and tail blood flow following salient and noxious stimuli in rabbits. Brain Res. 1999, 847, 343–346. [Google Scholar] [CrossRef]
- Lebas, F.; Coudert, P.; Rouvier, R.; de Rochambeau, H. The rabbit. Husbandry, health and production. In Animal Production and Health Series; FAO: Rome, Italy, 1986; p. 254. [Google Scholar]
- Lublin, A.; Wolfenson, D.; Berman, A. Diferenças sexuais na distribuição do fluxo sanguíneo de coelhos normotérmicos e estressados pelo calor. Sou. J. Physiol. Regul. Integr. Comp. Physiol. 1995, 268, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Mutwedu, V.B.; Nyongesa, A.W.; Oduma, J.A.; Kitaa, J.M.; Mbaria, J.M. Thermal stress causes oxidative stress and physiological changes in female rabbits. J. Therm. Biol. 2020, 1, 1–25. [Google Scholar]
- Marai, I.F.M.; Habeeb, A.A.M.; Gad, A.E. Rabbits’ productive, reproductive and physiological performance traits as affected by heat stress: A review. Livest. Prod. Sci. 2002, 78, 71–90. [Google Scholar] [CrossRef]
Day | Time | C0 | C1 | C0 + C1 | A (m) | DSD | ME | SDME | RE | SDRE | |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 6 a.m. | 0.018 | 0.3295 | 0.348 | 0.92 | 95% | Strong | −0.00167 | 0.1649 | −0.00442 | 1.0004 |
12 p.m. | 0.198 | 1.2197 | 1.418 | 4.323 | 86% | Strong | −0.00995 | 0.5313 | −0.00950 | 1.0446 | |
6 p.m. | 0.000 | 0.8435 | 0.844 | 48.72 | 100% | Strong | 0.00927 | 0.1629 | 0.02045 | 0.7199 | |
2 | 6 a.m. | 0.000 | 0.3026 | 0.303 | 40.08 | 100% | Strong | 0.00516 | 0.1059 | 0.01707 | 0.7337 |
12 p.m. | 0.094 | 0.579 | 0.673 | 3.60 | 86% | Strong | 0.00276 | 0.3501 | 0.00387 | 1.0102 | |
6 p.m. | 0.015 | 2.3901 | 2.405 | 17.20 | 99% | Strong | −0.00060 | 0.1335 | −0.00230 | 1.0216 | |
3 | 6 a.m. | 0.000 | 0.6141 | 0.614 | 13.23 | 100% | Strong | −0.00008 | 0.3645 | −0.00041 | 1.0456 |
12 p.m. | 0.000 | 2.013 | 2.013 | 38.82 | 100% | Strong | −0.00420 | 0.3403 | −0.00498 | 0.9370 | |
6 p.m. | 0.000 | 1.95 | 1.950 | 131.42 | 100% | Strong | −0.00097 | 0.1645 | −0.00211 | 0.8153 | |
4 | 6 a.m. | 0.009 | 0.1122 | 0.121 | 2.95 | 93% | Strong | 0.00009 | 0.1113 | 0.0003 | 1.0026 |
12 p.m. | 0.000 | 4.228 | 4.228 | 190.45 | 100% | Strong | −0.00467 | 0.2145 | −0.00900 | 0.8701 | |
6 p.m. | 0.000 | 5.659 | 5.659 | 158.34 | 100% | Strong | 0.00286 | 0.2695 | 0.00424 | 0.8386 | |
5 | 6 a.m. | 0.000 | 0.5387 | 0.539 | 42.75 | 100% | Strong | 0.00148 | 0.1609 | 0.00365 | 0.9152 |
12 p.m. | 0.000 | 5.604 | 5.604 | 333.14 | 100% | Strong | 0.00217 | 0.1395 | 0.00454 | 0.6593 | |
6 p.m. | 0.000 | 1.086 | 1.086 | 116.09 | 100% | Strong | −0.00061 | 0.1259 | −0.00195 | 0.8230 | |
6 | 6 a.m. | 0.000 | 0.889 | 0.889 | 21.46 | 100% | Strong | −0.0058 | 0.28 | −0.0082 | 1.0000 |
12 p.m. | 0.000 | 1.841 | 1.841 | 54.88 | 100% | Strong | −0.01076 | 0.1993 | −0.01696 | 0.6417 | |
6 p.m. | 0.000 | 0.889 | 0.889 | 21.46 | 100% | Strong | −0.00580 | 0.2812 | −0.00821 | 0.8708 | |
7 | 6 a.m. | 0.000 | 2.105 | 2.105 | 136.12 | 100% | Strong | −0.00135 | 0.1747 | −0.00306 | 0.8363 |
12 p.m. | 0.000 | 12.72 | 12.720 | 366.88 | 100% | Strong | −0.00414 | 0.2252 | −0.00618 | 0.7147 | |
6 p.m. | 0.000 | 4.0329 | 4.033 | 1.08 | 100% | Strong | −0.00114 | 2.0546 | −0.00028 | 1.0203 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.A.J.G.; Ferraz, P.F.P.; Santos, L.M.d.; Ferraz, G.A.e.S.; Rossi, G.; Barbari, M. Effect of the Spatial Distribution of the Temperature and Humidity Index in a New Zealand White Rabbit House on Respiratory Frequency and Ear Surface Temperature. Animals 2021, 11, 1657. https://doi.org/10.3390/ani11061657
Silva MAJG, Ferraz PFP, Santos LMd, Ferraz GAeS, Rossi G, Barbari M. Effect of the Spatial Distribution of the Temperature and Humidity Index in a New Zealand White Rabbit House on Respiratory Frequency and Ear Surface Temperature. Animals. 2021; 11(6):1657. https://doi.org/10.3390/ani11061657
Chicago/Turabian StyleSilva, Maria Alice Junqueira Gouvêa, Patrícia Ferreira Ponciano Ferraz, Luana Mendes dos Santos, Gabriel Araújo e Silva Ferraz, Giuseppe Rossi, and Matteo Barbari. 2021. "Effect of the Spatial Distribution of the Temperature and Humidity Index in a New Zealand White Rabbit House on Respiratory Frequency and Ear Surface Temperature" Animals 11, no. 6: 1657. https://doi.org/10.3390/ani11061657
APA StyleSilva, M. A. J. G., Ferraz, P. F. P., Santos, L. M. d., Ferraz, G. A. e. S., Rossi, G., & Barbari, M. (2021). Effect of the Spatial Distribution of the Temperature and Humidity Index in a New Zealand White Rabbit House on Respiratory Frequency and Ear Surface Temperature. Animals, 11(6), 1657. https://doi.org/10.3390/ani11061657