Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Feeding Management
2.3. Sample Collection
2.4. Muscle Nutritional Component Analysis
2.5. Muscle Quality Analysis
2.6. Muscle Texture Measurement
2.7. Muscle Enzymes Activity Measurement
2.8. Histological Analysis
2.9. Real-Time Quantitative PCR Analysis
2.10. Statistical Analysis
3. Results
3.1. Effect of Paper Mulberry on Growth Performance of Grass Carp
3.2. Effect of Paper Mulberry on Muscle Nutritional Component of Grass Carp
3.3. Effect of Paper Mulberry on Muscle Texture of Grass Carp
3.4. Effect of Paper Mulberry on Muscle Water-Holding Capacity and pH of Grass Carp
3.5. Effect of Paper Mulberry on Muscle TVB-N and TBARs of Grass Carp
3.6. Effect of Paper Mulberry on Partial Muscle Enzymes Activity of Grass Carp
3.7. Effect of Paper Mulberry on Muscle Morphology of Grass Carp
3.8. Effect of Paper Mulberry on Muscle Growth-Related Gene Expression of Grass Carp
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Penailillo, J.; Olivares, G.; Moncada, X.; Payacan, C.; Chang, C.S.; Chung, K.F.; Matthews, P.J.; Seelenfreund, A.; Seelenfreund, D. Sex distribution of paper mulberry (Broussonetia Papyrifera) in the pacific. PLoS ONE 2016, 11, e0161148. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.-J.; Jin, J.-H.; Kwon, O.-S.; Kim, J.-T.; Son, K.-H.; Kim, H.-P. Inhibition of Experimental Lung Inflammation and Bronchitis by Phytoformula Containing Broussonetia papyrifera and Lonicera japonica. Biomol. Ther. 2011, 19, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.Z.; Yang, P.L.; Gao, X.H.; Wen, Z.G.; Dai, S.F.; Zhu, M.X.; Wang, L.X. Effects of replacement of alfalfa by big-leaf mulberry on growth performance, digestion and meat quality in growing rabbits. World Rabbit. Sci. 2019, 27, 199–205. [Google Scholar] [CrossRef]
- Kandylis, K.; Hadjigeorgiou, I.; Harizanis, P. The nutritive value of mulberry leaves (Morus alba) as a feed supplement for sheep. Trop. Anim. Health Prod. 2009, 41, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Si, B.; Xu, W.; Tu, Y.; Diao, Q. Effect of Broussonetia papyrifera L. silage on blood biochemical parameters, growth performance, meat amino acids and fatty acids compositions in beef cattle. Asian-Australas. J. Anim. Sci. 2020, 33, 732–741. [Google Scholar] [CrossRef]
- Lacassagne, L.; Francesch, M.; Carré, B.; Melcion, J. Utilization of tannin-containing and tannin-free faba beans (Vicia faba) by young chicks: Effects of pelleting feeds on energy, protein and starch digestibility. Anim. Feed. Sci. Technol. 1988, 20, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Frazier, R.A.; Deaville, E.R.; Green, R.J.; Stringano, E.; Willoughby, I.; Plant, J.; Mueller-Harvey, I. Interactions of tea tannins and condensed tannins with proteins. J. Pharm. Biomed. Anal. 2010, 51, 490–495. [Google Scholar] [CrossRef]
- Yang, Q.C.; Chen, S.H.; Liu, Y. The effect of Broussonetia papyrifera leaf on the production performance, meat quality and apparent digestibility of fatting pigs. J. Henan Agric. Sci. 2014, 43, 133–137. [Google Scholar]
- Martinez, M.; Motta, W.; Cervera, C.; Pla, M. Feeding mulberry leaves to fattening rabbits: Effects on growth, carcass characteristics and meat quality. Anim. Sci. 2005, 80, 275–280. [Google Scholar] [CrossRef]
- Leterme, P.; Botero, M.; Londoño, A.M.; Bindelle, J.; Buldgen, A. Nutritive value of tropical tree leaf meals in adult sows. Anim. Sci. 2006, 82, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Hua, J.; Xu, T.; Shen, Q.; Liu, Y.; Huang, G.; Rao, D.; Song, C.; Wang, J. Productive and metabolic increments of the inclusion of Broussonetia papyrifera to replace maize silage in growing goats. Czech J. Anim. Sci. 2020, 65, 303–310. [Google Scholar] [CrossRef]
- Su, Y.; Chen, G.; Cai, Y.; Gao, B.; Zhi, X.; Chang, F. Effects of Broussonetia papyrifera-fermented feed on the growth performance and muscle quality of Hu sheep. Can. J. Anim. Sci. 2020, 100, 771–780. [Google Scholar] [CrossRef]
- Andrés-Bello, A.; Barreto-Palacios, V.; Garciasegovia, P.; Mirbel, J.; Martínez-Monzó, J. Effect of pH on Color and Texture of Food Products. Food Eng. Rev. 2013, 5, 158–170. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Shackelford, S.D.; Wheeler, T.L.; Lonergan, S.M.; Doumit, M.E. A muscle hypertrophy condition in lamb (callipyge): Characterization of effects on muscle growth and meat quality traits. J. Anim. Sci. 1995, 73, 3596–3607. [Google Scholar] [CrossRef] [PubMed]
- Offer, G.; Cousins, T. The mechanism of drip production: Formation of two compartments of extracellular space in muscle post mortem. J. Sci. Food Agric. 1992, 58, 107–116. [Google Scholar] [CrossRef]
- Xiong, L.Y.; Cai, R.X.; Liu, Y.F. Effects of fermented Broussonetia papyrifera leaf on slaughter performances and meat quality of AA broiler. Guangdong Agric. Sci. 2016, 43, 157–161. [Google Scholar]
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Animal 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.J.; Zhang, H.J.; Liu, N.N. Effects of wormwood leaf complex on growth and immune performance of carp before and after fermentation. J. Gansu Agric. Univ. 2020, 55, 7–13. [Google Scholar]
- Weatherley, A.H.; Gill, H.S.; Lobo, A.F. Recruitment and maximal diameter of axial muscle fibres in teleosts and their relationship to somatic growth and ultimate size. J. Fish Biol. 1988, 33, 851–859. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Z.; Yuan, Z.; Lo, L.J.; Chen, J.; Wang, Y.; Peng, J. Distinctive Genes Determine Different Intramuscular Fat and Muscle Fiber Ratios of the longissimus dorsi Muscles in Jinhua and Landrace Pigs. PLoS ONE 2013, 8, e53181. [Google Scholar] [CrossRef] [Green Version]
- Asaduzzaman, M.; Ikeda, D.; Abol-Munafi, A.B.; Bulbul, M.; Ali, E.; Kinoshita, S.; Watabe, S.; Kader, A. Dietary supplementation of inosine monophosphate promotes cellular growth of muscle and upregulates growth-related gene expression in Nile tilapia Oreochromis niloticus. Aquaculture 2017, 468, 297–306. [Google Scholar] [CrossRef]
- Valente, L.M.; Moutou, K.A.; Conceição, L.E.; Engrola, S.; Fernandes, J.M.; Johnston, I.A. What determines growth potential and juvenile quality of farmed fish species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef] [Green Version]
- Akolkar, D.B.; Asaduzzaman, M.; Kinoshita, S.; Asakawa, S.; Watabe, S. Characterization of Pax3 and Pax7 genes and their expression patterns during different development and growth stages of Japanese pufferfish Takifugu rubripes. Gene 2016, 575, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Alami-Durante, H.; Wrutniak-Cabello, C.; Kaushik, S.; Médale, F. Skeletal muscle cellularity and expression of myogenic regulatory factors and myosin heavy chains in rainbow trout (Oncorhynchus mykiss): Effects of changes in dietary plant protein sources and amino acid profiles. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 156, 561–568. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Sun, J.; Huang, X.; Tang, H.; He, Y.; Pan, Q.; Gan, L. Partial substitution of soybean meal with faba bean meal in grass carp (Ctenopharyngodon idella) diets, and the effects on muscle fatty acid composition, flesh quality, and expression of myogenic regulatory factors. J. World Aquac. Soc. 2019, 51, 1145–1160. [Google Scholar] [CrossRef]
- FAO Agriculture, Capture and Globle Production Database 2020. Available online: http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en (accessed on 24 May 2021).
- Li, X.; Bickerdike, R.; Lindsay, E.; Campbell, P.; Nickell, D.; Dingwall, A.A.; Johnston, I.A. Hydroxylysyl Pyridinoline Cross-Link Concentration Affects the Textural Properties of Fresh and Smoked Atlantic Salmon (Salmo salarL.) Flesh. J. Agric. Food Chem. 2005, 53, 6844–6850. [Google Scholar] [CrossRef]
- Essid, I.; Tajine, S.; Gharbi, S.; Bellagha, S. Use of pomegranate peel and artichoke leaf extracts to improve the quality of marinated sardine (Sardinella aurita) fillets. J. Food Sci. Technol. 2020, 57, 713–722. [Google Scholar] [CrossRef]
- Wang, Z.; He, Z.; Gan, X.; Li, H. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Sci. 2018, 146, 131–139. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Tang, R.; He, X.; Li, L.; Takagi, Y.; Li, D. Improvement of Muscle Quality of Grass Carp (Ctenopharyngodon idellus) With a Bio-Floating Bed in Culture Ponds. Front. Physiol. 2019, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; McPherron, A.C. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 2001, 98, 9306–9311. [Google Scholar] [CrossRef] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shen, H.; Xu, W.; Pan, Y.; Chen, J.; Zhang, W.; Mai, K. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Larimichthys crocea. Aquaculture 2019, 512, 734281. [Google Scholar] [CrossRef]
- Pi, Z.; Shen, S.H. Research on paper mulberry as a new type of protein feedstuff. Feed Ind. 2018, 39, 23–28. [Google Scholar]
- Wu, Z.Y.; Wang, N.F.; Hisano, H.; Cao, Y.P.; Wu, F.Y.; Liu, W.W.; Bao, Y.; Wang, Z.Y.; Fu, C.X. Simultaneous regulation of F5H in COMT-RNAi transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol. J. 2019, 17, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Liu, H.; Chen, P.; Tang, F.; Hu, Y.; Wang, F.; Pi, Z.; Zhao, M.; Chen, N.; Chen, H.; et al. A Chromosome-Scale Genome Assembly of Paper Mulberry (Broussonetia papyrifera) Provides New Insights into Its Forage and Papermaking Usage. Mol. Plant 2019, 12, 661–677. [Google Scholar] [CrossRef]
- Lekva, A.; Hansen, A.-C.; Rosenlund, G.; Karlsen, Ø.; Hemre, G.-I. Energy dilution with α-cellulose in diets for Atlantic cod (Gadus morhua L.) juveniles—Effects on growth, feed intake, liver size and digestibility of nutrients. Aquaculture 2010, 300, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Glencross, B. The influence of soluble and insoluble lupin non-starch polysaccharides on the digestibility of diets fed to rainbow trout (Oncorhynchus mykiss). Aquaculture 2009, 294, 256–261. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Y.; Zhang, Y.; Ning, Z.; Li, Y.; Zhao, Q.; Lu, H.; Huang, R.; Xia, X.; Feng, Q.; et al. The draft genome of the grass carp (Ctenopharyngodon idellus) provides insights into its evolution and vegetarian adaptation. Nat. Genet. 2015, 47, 625–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, K.; Makkar, H. Effects of dietary tannic acid and quebracho tannin on growth performance and metabolic rates of common carp (Cyprinus carpio L.). Aquaculture 1999, 175, 327–335. [Google Scholar] [CrossRef]
- Saha, N.; Kaviraj, A. Acute and chronic toxicity of tannic acid and spent bark of cinchona to tilapia Oreochromis mossambicus. Aquaculture 1996, 145, 119–127. [Google Scholar] [CrossRef]
- Eymard, S.; Carcouet, E.; Rochet, M.-J.; Dumay, J.; Chopin, C.; Genot, C. Development of lipid oxidation during manufacturing of horse mackerel surimi. J. Sci. Food Agric. 2005, 85, 1750–1756. [Google Scholar] [CrossRef] [Green Version]
- Han, Q.; Wu, Z.; Huang, B.; Sun, L.; Ding, C.; Yuan, S.; Zhang, Z.; Chen, Y.; Hu, C.; Zhou, L.; et al. Extraction, antioxidant and antibacterial activities of Broussonetia papyrifera fruits polysaccharides. Int. J. Biol. Macromol. 2016, 92, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Liu, S.-F.; Zhang, C.-S.; Yu, L.-N.; Bi, J.; Zhu, F.; Yang, Q.-L. Chemical Composition and Antioxidant Activities of Broussonetia papyrifera Fruits. PLoS ONE 2012, 7, e32021. [Google Scholar] [CrossRef] [Green Version]
- Si, B.; Tao, H.; Zhang, X.; Guo, J.; Cui, K.; Tu, Y.; Diao, Q.-Y. Effect of Broussonetia papyrifera L. (paper mulberry) silage on dry matter intake, milk composition, antioxidant capacity and milk fatty acid profile in dairy cows. Asian-Australas. J. Anim. Sci. 2018, 31, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, X.; Mågård, M.; Tornberg, E. Glycolytic Potential in Porcine Longissimus Muscle before and after Transport: An in Vivo Study. J. Muscle Foods 1992, 3, 83–89. [Google Scholar] [CrossRef]
- Hua, J.; Cong, G.; Guo, L.; Chen, C.; Song, C. Effects of Broussonetia papyrifera leaves on rumen fermentation characteristics, digestibility and metabolism, production performance, and meat quality of Huanghuai white goat. J. Nanjing Agric. Univ. 2019, 42, 924–931. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, S.Z.; Yang, Q.; Su, Z.X.; Tan, H.; Liu, C.F.; Wu, M.S.; Duan, Y.h.; Yin, Y.L. Effects of Broussonetia papyrifera fermented feed on growth performance, carcass quality and meat quality of xiangsha pigs commercial line of commercial pigs. Chin. J. Anim. Nutr. 2019, 12, 5760–5771. [Google Scholar]
- Pearce, K.L.; Rosenvold, K.; Andersen, H.J.; Hopkins, D.L. Water distribution and mobility in meat during the conversion of muscle to meat and ageing and the impacts on fresh meat quality attributes—A review. Meat Sci. 2011, 89, 111–124. [Google Scholar] [CrossRef]
- Hughes, J.; Oiseth, S.; Purslow, P.; Warner, R. A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Sci. 2014, 98, 520–532. [Google Scholar] [CrossRef]
- Song, B.; Zheng, C.B.; Zhong, Y.Z.; Tian, M.L.; Wu, M.S.; Yang, Q.; Zhu, S.Z.; Zhang, X.; Li, F.N.; Duan, Y.H.; et al. Effects of low-protein diet supplemented with fermented Broussonetia papyrifera on growth performance, carcass traits and meat quality of finishing pigs. Chin. J. Anim. Nutr. 2020, 32, 4841–4851. [Google Scholar]
- Zhang, Y.M.; Yu, H.S.; Zhang, Y.Z.; Wang, D.S. The change of nutrient composition in the broussonetia papyrifera feed fermentation leaves. Feed Ind. 2008, 29, 54–55. [Google Scholar]
- Green-Petersen, D.M.B.; Hyldig, G. Variation in Sensory Profile of Individual Rainbow Trout (Oncorhynchus mykiss) from the Same Production Batch. J. Food Sci. 2010, 75, S499–S505. [Google Scholar] [CrossRef]
- Lefevre, F.; Cardinal, M.; Bugeon, J.; Labbe, L.; Medale, F.; Quillet, E. Selection for muscle fat content and triploidy affect flesh quality in pan-size rainbow trout, Oncorhynchus mykiss. Aquaculture 2015, 448, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Brinker, A.; Reiter, R. Fish meal replacement by plant protein substitution and guar gum addition in trout feed, Part I: Effects on feed utilization and fish quality. Aquaculture 2011, 310, 350–360. [Google Scholar] [CrossRef]
- Larsson, T.; Mørkøre, T.; Kolstad, K.; Østbye, T.-K.K.; Afanasyev, S.; Krasnov, A. Gene Expression Profiling of Soft and Firm Atlantic Salmon Fillet. PLoS ONE 2012, 7, e39219. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-L.; Zeng, Q.-X.; Zhu, Z.-W. Different changes in mastication between crisp grass carp (Ctenopharyngodon idellus C.et V) and grass carp (Ctenopharyngodon idellus) after heating: The relationship between texture and ultrastructure in muscle tissue. Food Res. Int. 2009, 42, 271–278. [Google Scholar] [CrossRef]
- Yu, E.; Xie, J.; Wang, G.; Yu, D.; Gong, W.; Li, Z.; Wang, H.; Xia, Y.; Wei, N. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus) and Crisp Grass Carp. Int. J. Genom. 2014, 2014, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X.; Han, D.; Hu, H. Effect of Different Protein Source Diets on Growth, Sensory Parameters and Flesh texture of On-Growing Grass Carp (Ctenopharyngodon idellus). Isr. J. Aquac. Bamidgeh 2018, 70, 20936. [Google Scholar] [CrossRef]
- Azm, F.R.A.; Kong, F.; Tan, Q.; Zhu, Y.; Yu, H.; Yao, J.; Luo, Z. Effects of replacement of dietary rapeseed meal by distiller’s dried grains with solubles (DDGS) on growth performance, muscle texture, health and expression of muscle-related genes in grass carp (Ctenopharyngodon idellus). Aquaculture 2021, 533, 736169. [Google Scholar]
- Yu, E.-M.; Zhang, H.-F.; Li, Z.-F.; Wang, G.-J.; Wu, H.-K.; Xie, J.; Yu, D.-G.; Xia, Y.; Zhang, K.; Gong, W.-B. Proteomic signature of muscle fibre hyperplasia in response to faba bean intake in grass carp. Sci. Rep. 2017, 7, srep45950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudnicki, M.A.; Schnegelsberg, P.N.; Stead, R.H.; Braun, T.; Arnold, H.-H.; Jaenisch, R. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 1993, 75, 1351–1359. [Google Scholar] [CrossRef]
- Kablar, B.; Krastel, K.; Ying, C.; Tapscott, S.J.; Goldhamer, D.J.; Rudnicki, M.A. Myogenic Determination Occurs Independently in Somites and Limb Buds. Dev. Biol. 1999, 206, 219–231. [Google Scholar] [CrossRef] [Green Version]
- Nabeshima, Y.; Hanaoka, K.; Hayasaka, M.; Esumi, E.; Li, S.; Nonaka, I.; Nabeshima, Y. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 1993, 364, 532–535. [Google Scholar] [CrossRef]
- Braun, T.; Arnold, H. Inactivation of Myf-6 and Myf-5 genes in mice leads to alterations in skeletal muscle development. EMBO J. 1995, 14, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- McKinnell, I.W.; Ishibashi, J.; Le Grand, F.; Punch, V.G.J.; Addicks, G.C.; Greenblatt, J.F.; Dilworth, F.J.; Rudnicki, M.A. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat. Cell Biol. 2007, 10, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Xia, J.; Zhang, X.; He, X.; Li, L.; Tang, R.; Chi, W.; Li, D. Diet Affects Muscle Quality and Growth Traits of Grass Carp (Ctenopharyngodon idellus): A Comparison Between Grass and Artificial Feed. Front. Physiol. 2018, 9, 283. [Google Scholar] [CrossRef]
- Valente, L.M.; Cabral, E.M.; Sousa, V.; Cunha, L.M.; Fernandes, J.M. Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture 2016, 453, 77–85. [Google Scholar] [CrossRef] [Green Version]
- Ulloa, P.E.; Peña, A.A.; Lizama, C.D.; Araneda, C.; Iturra, P.; Neira, R.; Medrano, J.F. Growth Response and Expression of Muscle Growth–Related Candidate Genes in Adult Zebrafish Fed Plant and Fishmeal Protein–Based Diets. Zebrafish 2013, 10, 99–109. [Google Scholar] [CrossRef]
- Zeng, C.; Liu, X.-L.; Wang, W.-M.; Tong, J.-G.; Luo, W.; Zhang, J.; Gao, Z.-X. Characterization of GHRs, IGFs and MSTNs, and analysis of their expression relationships in blunt snout bream, Megalobrama amblycephala. Gene 2014, 535, 239–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, G.-D.; Sun, C.-F.; Pu, J.-W.; Chen, J.; Jiang, X.-Y.; Zou, S.-M. Two myostatin genes exhibit divergent and conserved functions in grass carp (Ctenopharyngodon idellus). Gen. Comp. Endocrinol. 2015, 214, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yu, X.; Tong, J. Molecular characterization of myostatin (MSTN) gene and association analysis with growth traits in the bighead carp (Aristichthys nobilis). Mol. Biol. Rep. 2012, 39, 9211–9221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient | Control Diet | 5%BP | 10%BP | 15%BP | 20%BP |
---|---|---|---|---|---|
Fish meal | 2 | 2 | 2 | 2 | 2 |
Soybean meal | 20 | 20 | 20 | 20 | 20 |
Rapeseed meal | 30 | 30 | 30 | 30 | 30 |
DDGS | 6 | 6 | 6 | 6 | 6 |
BP 1 | 0 | 5 | 10 | 15 | 20 |
Corn gluten meal | 6 | 6 | 6 | 6 | 6 |
Wheat flour | 31 | 25.3 | 19.5 | 13.7 | 8 |
Microcrystalline | 0.26 | 1.25 | 2.34 | 3.44 | 4.43 |
Soybean Oil | 2 | 1.71 | 1.42 | 1.12 | 0.83 |
Choline chloride | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Calcium dihydrogen | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Premix 2 | 1 | 1 | 1 | 1 | 1 |
Antioxidants | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Ethoxyquin | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Proximate analysis (%) | |||||
Moisture | 90.12 | 89.88 | 89.74 | 90.21 | 89.95 |
Crude protein | 31.04 | 30.78 | 30.89 | 31.21 | 31.15 |
Crude lipid | 3.88 | 3.98 | 3.92 | 3.75 | 3.77 |
Crude ash | 8.67 | 8.88 | 8.82 | 8.56 | 8.75 |
Carbohydrate | 35.46 | 35.05 | 34.86 | 34.36 | 33.95 |
Energy (MJ/kg) | 14.96 | 14.79 | 14.83 | 14.75 | 14.68 |
Gene | Primer | Accession NO. |
---|---|---|
MyoD | F 5′-CCCTTGCTTCAACACCAACG-3′ R 5′-TCTCCTCTCCCTCATGGTGG-3′ | GU218462 |
MyoG | F 5′-TGAGGGAGAGGAGACGACT-3′ R 5′-GCTCCAGAACAGGGTAGTAGT-3′ | JQ793897 |
Mrf4 | F: 5′-TCATTCAACTTGTGCCCTCC-3′ R: 5′-GCCCACTTTGCGATACCC-3′ | KT899334 |
Myf5 | F: 5′ -GGAGAGCCGCCACTATGA-3′ R: 5′ -GCAGTCAACCATGCTTTCAG-3′ | AB012883 |
Pax7 | F: 5′-CAAGAAACTGGCTCAATCCG-3′ R: 5′-TCGCAATCGTCCTCATCG-3′ | KJ195463.1 |
IGF2 | F: 5′-GCTTCCACAAACCGCCTACC-3′ R: 5′-AAAGAGTCTCCGCCGTTGCT-3′ | EF062860 |
MSTN1 | F: 5′-GCAGGAGTCACGTCT TGGCA-3′ R: 5′-GAGTCCCTCCGGATTCGCTT-3′ | KM874826 |
β actin | F: 5′-GGCTGTGCTGTCCCTGTA-3′ R: 5′-GGGCATAACCCTCGTAGAT-3′ | M25013 |
Initial Weight (g) | Final Weight (g) | SGR (%) | FCR | SR (%) | |
---|---|---|---|---|---|
Control diet | 49.93 ± 0.07 | 141.42 ± 3.31 b | 1.71 ± 0.04 b | 1.46 ± 0.04 a | 95.00 ± 0.00 |
5%BP | 50.20 ± 0.04 | 131.04 ± 1.97 ab | 1.57 ± 0.02 ab | 1.67 ± 0.03 ab | 90.00 ± 3.82 |
10%BP | 50.00 ± 0.11 | 124.38 ± 5.47 a | 1.49 ± 0.07 a | 1.64 ± 0.08 ab | 92.50 ± 3.82 |
15%BP | 50.03 ± 0.08 | 116.57 ± 3.77 a | 1.39 ± 0.05 a | 2.06 ± 0.04 c | 96.67 ± 2.20 |
20%BP | 49.98 ± 0.04 | 121.25 ± 1.08 a | 1.45 ± 0.02 a | 1.84 ± 0.01 bc | 95.83 ± 0.83 |
p value | |||||
ANOVA | 0.156 | 0.004 | 0.004 | 0.000 | 0.421 |
Linear trend | 0.783 | 0.001 | 0.001 | 0.001 | 0.341 |
Quadratic trend | 0.398 | 0.000 | 0.000 | 0.003 | 0.399 |
Moisture (%) | Crude Fat (% Dry Matter) | Crude Protein (% Dry Matter) | |
---|---|---|---|
Control diet | 78.42 ± 0.31 | 15.87 ± 0.44 b | 81.80 ± 0.16 a |
5%BP | 78.15 ± 0.12 | 14.74 ± 0.19 ab | 82.67 ± 0.52 ab |
10%BP | 77.81 ± 0.36 | 14.38 ± 0.22 a | 84.31 ± 0.26 c |
15%BP | 78.47 ± 0.22 | 14.08 ± 0.32 a | 83.34 ± 0.33 bc |
20%BP | 77.92 ± 0.48 | 14.92 ± 0.27 ab | 82.96 ± 0.20 abc |
p value | |||
ANOVA | 0.538 | 0.016 | 0.003 |
Linear trend | 0.510 | 0.064 | 0.093 |
Quadratic trend | 0.763 | 0.002 | 0.003 |
Water Loss (%) | Lipid Loss (%) | pH | |
---|---|---|---|
Control diet | 5.28 ± 0.89 a | 2.64 ± 0.20 | 6.63 ± 0.05 |
5%BP | 9.38 ± 0.44 b | 2.97 ± 0.21 | 6.81 ± 0.06 |
10%BP | 10.56 ± 0.74 b | 2.71 ± 0.35 | 6.67 ± 0.04 |
15%BP | 9.25 ± 1.02 b | 2.05 ± 0.30 | 6.73 ± 0.05 |
20%BP | 8.77 ± 0.48 b | 2.66 ± 0.10 | 6.69 ± 0.01 |
P value | |||
ANOVA | 0.000 | 0.139 | 0.113 |
Linear trend | 0.028 | 0.293 | 0.858 |
Quadratic trend | 0.000 | 0.568 | 0.524 |
TVB-N (mg/100g) | TBARs (mg MDA/kg) | |
---|---|---|
Control diet | 10.13 ± 0.10 | 0.45 ± 0.02 b |
5%BP | 10.42 ± 0.50 | 0.32 ± 0.02 ab |
10%BP | 10.28 ± 0.09 | 0.40 ± 0.01 ab |
15%BP | 10.66 ± 0.13 | 0.42 ± 0.08 ab |
20%BP | 11.08 ± 0.05 | 0.25 ± 0.00 a |
p value | ||
ANOVA | 0.118 | 0.028 |
Linear trend | 0.010 | 0.082 |
Quadratic trend | 0.029 | 0.193 |
Lactate (mmol/gprot) | Hydroxyproline (ug/100mg) | Troponin T (ng/dL) | Glycogen (mg/g) | |
---|---|---|---|---|
Control diet | 2.59 ± 0.25 | 3.77 ± 0.25 | 387.22 ± 36.45 | 1.24 ± 0.05 b |
5%BP | 2.33 ± 0.30 | 3.03 ± 0.19 | 428.94 ± 46.69 | 1.19 ± 0.03 ab |
10%BP | 2.48 ± 0.29 | 3.46 ± 0.56 | 421.38 ± 28.75 | 1.26 ± 0.05 b |
15%BP | 2.45 ± 0.15 | 3.41 ± 0.48 | 384.09 ± 45.39 | 1.15 ± 0.01 ab |
20%BP | 2.36 ± 0.41 | 3.44 ± 0.55 | 472.58 ± 39.15 | 1.06 ± 0.02 a |
p value | ||||
ANOVA | 0.973 | 0.831 | 0.527 | 0.012 |
Linear trend | 0.706 | 0.845 | 0.320 | 0.007 |
Quadratic trend | 0.921 | 0.789 | 0.564 | 0.006 |
Fiber Diameter (μm) | Fiber Density (N/mm2) | |
---|---|---|
Control diet | 62.31 ± 2.12 b | 108.30 ± 5.07 a |
5%BP | 62.50 ± 1.30 b | 126.91 ± 7.66 ab |
10%BP | 56.41 ± 1.76 ab | 139.67 ± 5.21 b |
15%BP | 51.71 ± 0.66 a | 170.70 ± 5.73 c |
20%BP | 51.26 ± 1.28 a | 185.05 ± 9.26 c |
p value | ||
ANOVA | 0.000 | 0.000 |
Linear trend | 0.000 | 0.000 |
Quadratic trend | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, T.; Bai, J.; Ao, Z.; Wei, Z.; Hu, Y.; Liu, S. Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella). Animals 2021, 11, 1655. https://doi.org/10.3390/ani11061655
Tang T, Bai J, Ao Z, Wei Z, Hu Y, Liu S. Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella). Animals. 2021; 11(6):1655. https://doi.org/10.3390/ani11061655
Chicago/Turabian StyleTang, Tao, Jinhai Bai, Zhipeng Ao, Zehong Wei, Yi Hu, and Shaojun Liu. 2021. "Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella)" Animals 11, no. 6: 1655. https://doi.org/10.3390/ani11061655
APA StyleTang, T., Bai, J., Ao, Z., Wei, Z., Hu, Y., & Liu, S. (2021). Effects of Dietary Paper Mulberry (Broussonetia papyrifera) on Growth Performance and Muscle Quality of Grass Carp (Ctenopharyngodon idella). Animals, 11(6), 1655. https://doi.org/10.3390/ani11061655