Effect of Dried Mealworms (Tenebrio molitor), Larvae and Olive Leaves (Olea europaea L.) on Growth Performance, Carcass Yield and Some Blood Parameters of Japanese Quail (Coturnix coturnix japonica)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Animals and Housing
2.3. Data Collection
2.4. Biochemical Parameters
2.5. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Laudadio, V.; Tufarelli, V. Effect of treated field pea (Pisum sativum L. cv Spirale) as substitute for soybean extracted meal in a wheat middlings-based diet on egg production and quality of early laying brown hens. Arch. Geflügelk. 2012, 76, 1–5. [Google Scholar]
- Bovera, F.; Loponte, R.; Marono, S.; Piccolo, G.; Parisi, G.; Iaconisi, V.; Gasco, L.; Nizza, A. Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. J. Anim. Sci. 2016, 94, 639–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarzuelo, A.; Duarte, J.; Jimenez, J.; Gonzales, M. Utrilla vasodilator effect of olive leaf. Planta Med. 1991, 57, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawie, H.; Al-Hamdani, M.S.S. Hypoglycemic and antioxidant effect of oleuropein in allox¬an-diabetic rabbits. Life Sci. 2006, 78, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Botsoglou, E.; Govaris, A.; Christaki, E.; Botsoglou, N. Effect of dietary olive leaves and/or α-tocopheryl acetate supplementation on microbial growth and lipid oxidation of turkey breast fillets during refrigerated storage. Food Chem. 2010, 121, 17–22. [Google Scholar] [CrossRef]
- Zadeh, Z.S.; Kheiri, F.; Faghani, M. Use of yellow mealworm (Tenebrio molitor) as a protein source on growth performance, carcass traits, meat quality and intestinal morphology of Japanese quails (Coturnix japonica). Vet. Anim. Sci. 2019, 8, 100066. [Google Scholar] [CrossRef] [PubMed]
- Jabri, J.; Kacem, H.; Yaich, H.; Abid, K.; Kamoun, M.; Rekhis, J.; Malek, A. Effect of Olive leaves extract supplementation in drinking water on zootechnical performances and cecal microbiota balance of broiler chickens. J. New Sci. Sustain. Livest. Manag. 2017, 4, 69–75. [Google Scholar]
- Moula, N.; Sadoudi, A.; Touazi, L.; Leroy, P.; Geda, F. Effects of stinging nettle (Urticadioica) powder on laying performance, egg quality, and serum biochemical parameters of Japanese quails. Anim. Nutr. 2019, 5, 410–415. [Google Scholar] [CrossRef]
- Basmacıoğlu-Malayoğlu, B.; Altan, O.; Tüzmen, M.N.; Yesıl-Celiktas, O. Effects of Thymus and Rosemary Essential Oils Added into Compound Feed Enriched by n-3polyunsaturated Fatty Acids in Laying Hens on Oxidative Stability, Lipid Metabolism, Performance and Some Egg Quality Criteria; TOVAG-106O090 Final Report of the Project; TUBITAK: Ankara, Turkey, 2008; p. 125. [Google Scholar]
- Pereira, A.P.; Ferreira, I.C.R.F.; Marcelino, F.; Valentao, F.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Oleaeuropaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; Gonzàlez, E.A.; Hernàndez, A.R.; Pino, J.M. Use of Tenebrio molitor (coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002, 95, 214–220. [Google Scholar] [CrossRef]
- Biasato, I.; De Marco, M.; Rotolo, L.; Renna, M.; Dabbou, S.; Capucchio, M.T.; Capucchio, M.T.; Biasibetti, E.; Costa, P.; Gai, F.; et al. Effects of dietary Tenebrio molitor meal inclusion in free-range chickens. J. Anim. Physiol. Anim. Nutr. 2006, 100, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Moula, N.; Detilleux, J. A Meta-Analysis of the Effects of Insects in Feed on Poultry Growth Performances. Animals 2019, 9, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özdemir, A.; Azman, M.A. Effects of olive leaf extract and vitamin E supplementation in quail diet on some blood parameters and egg yolk fatty acids composition. Ankara Üniv. Vet. FakDerg. 2016, 63, 31–37. [Google Scholar]
- Ali Azeemi, T.; Asif, M.; Niazi, M. Effect of Olive Leaves Extract on Lipid Profile, Glucose and Feed Intake of Japanese quail. Turk. J. Agric. Food Sci. Technol. 2015, 3, 874–876. [Google Scholar]
Ingredients (%) | Grower | Finisher | ||||||
---|---|---|---|---|---|---|---|---|
SCD | SCD + OL3% | SCD + TM 3% | TM (3%) + OL (2%) | SCD | SCD + OL3% | SCD + TM 3% | TM (3%) + OL (2%) | |
Corn | 55 | 53.35 | 53.35 | 52.25 | 62 | 60.14 | 60.14 | 58.9 |
Soybean meal | 36 | 34.92 | 34.92 | 34.2 | 23 | 22.31 | 22.31 | 21.85 |
Bran | 5 | 4.85 | 4.85 | 4.75 | 12 | 11.64 | 11.64 | 11.4 |
Limestone | 1.8 | 1.75 | 1.75 | 1.71 | 1.2 | 1.16 | 1.16 | 1.14 |
Bicalcium Phosphate | 1.2 | 1.16 | 1.16 | 1.14 | 0.8 | 0.776 | 0.776 | 0.76 |
Multivitamin and Mineral Complex | 1 | 0.97 | 0.97 | 0.95 | 1 | 0.97 | 0.97 | 0.95 |
OL | 0 | 3 | 0 | 2 | 0 | 3 | 0 | 2 |
TM | 0 | 0 | 3 | 3 | 0 | 0 | 3 | 3 |
Chemical Composition | ||||||||
Dry Matter (%) | 87.1 | 86.06 | 87.33 | 86.63 | 86.8 | 84.21 | 87.03 | 85.31 |
Metabolic Energy (kcal/kg) | 2631 | 2608 | 2689 | 2674 | 2688 | 2663 | 2744 | 2728 |
Crude Protein (%) | 21.2 | 20.92 | 22.15 | 21.7 | 17 | 16.84 | 18.08 | 17.83 |
Calcium (%) | 0.8 | 0.83 | 0.78 | 0.83 | 0.76 | 0.79 | 0.74 | 0.8 |
Lysine (%) | 1.52 | 1.47 | 1.65 | 1.58 | 1.22 | 1.18 | 1.36 | 1.3 |
Methionine (%) | 0.8 | 0.78 | 0.82 | 0.81 | 0.74 | 0.72 | 0.76 | 0.75 |
Block1 | Block2 | |
---|---|---|
TM (3%) + OL (2%) | Corridor | TM (3%) |
Control | TM (3%) + OL (2%) | |
Control | OL (3%) | |
TM (3%) | OL (3%) | |
TM(3%) | OL (3%) | |
TM (3%) + OL (2%) | Control |
Title Item | Control | TM (3%) | OL (3%) | TM (3%) + OL (2%) | SEM | p-Value |
---|---|---|---|---|---|---|
Week | Live Weight (g) | |||||
0 | 11.86 | 11.77 | 11.82 | 11.78 | 0.09 | 0.88 |
1 | 29.96 | 29.81 | 29.75 | 30.01 | 0.12 | 0.46 |
3 | 103.96 ab | 101.74 b | 107.48 ab | 108.79 a | 2.13 | 0.09 |
5 | 189.99 a | 178.9 c | 191.93 a | 204.96 b | 2.93 | <0.001 |
ADG (g/day) | ||||||
0–3 | 4.39 | 4.28 | 4.56 | 4.62 | - | - |
4–5 | 6.15 | 5.51 | 6.03 | 6.87 | - | - |
0–5 | 5.09 | 4.78 | 5.15 | 5.52 | - | - |
Feed Intake (g/day) | ||||||
0–5 | 15.32 | 14.56 | 14.32 | 16.72 | - | - |
Feed Conversion Ratio | ||||||
1–5 | 3.01 a | 3.05 a | 2.78 b | 3.03 a | 0.06 | 0.01 |
Item | Control | TM (3%) | OL (3%) | Control | TM (3%) | OL (3%) |
---|---|---|---|---|---|---|
Carcass % | 71.53 ± 1.06 | 74.25 ± 0.79 | 72.17 ± 0.93 | 73.61 ± 0.74 | 0.89 | 0.12 |
Liver % | 3.27 a ± 0.04 | 3.25 a ± 0.04 | 3.49 b ± 0.03 | 3.32 a ± 0.05 | 0.04 | 0.01 |
Gizzard % | 2.65 ± 0.04 | 2.53 ± 0.04 | 2.62 ± 0.04 | 2.61 ± 0.04 | 0.05 | 0.22 |
Heart % | 1.19 ± 0.04 | 1.11 ± 0.04 | 1.1 ± 0.04 | 1.13 ± 0.04 | 0.04 | 0.48 |
Giblets % | 6.82 ± 0.03 | 6.85 ± 0.03 | 6.84 ± 0.03 | 6.86 ± 0.03 | 0.03 | 0.82 |
Item | Control | TM (3%) | OL (3%) | TM (3%) + OL (2%) | SEM | p-Value |
---|---|---|---|---|---|---|
TP (g/dL) | 3.02 ± 0.07 | 3.04 ± 0.05 | 2.97 ± 0.08 | 3.15 ± 0.07 | 0.07 | 0.34 |
Alb (g/dL) | 1.30 ± 0.02 | 1.35 ± 0.03 | 1.33 ± 0.08 | 1.31 ± 0.07 | 0.02 | 0.46 |
Glob (g/dL) | 1.70 ± 0.04 | 1.68 ± 0.04 | 1.72 ± 0.04 | 1.71 ± 0.03 | 0.04 | 0.97 |
A/G (%) | 0.77 ± 0.02 | 0.80 ± 0.02 | 0.78 ± 0.03 | 0.76 ± 0.02 | 0.01 | 0.71 |
Creatinine (mg/dL) | 0.27 ± 0.01 | 0.25 ± 0.01 | 0.28 ± 0.01 | 0.26 ± 0.01 | 0.01 | 0.34 |
Urea (g/dL) | 6.81 ± 0.13 | 6.67 ± 0.12 | 6.76 ± 0.13 | 6.53 ± 0.14 | 0.13 | 0.46 |
TG (mg/dL) | 218.5 ± 6.51 | 220.17 ± 6.83 | 220.08 ± 8.65 | 214.58 ± 4.84 | 6.85 | 0.93 |
HDL (mg/dL) | 54.5 ± 1.57 | 56.05 ± 1.69 | 54.33 ± 1.55 | 55.75 ± 2.05 | 1.73 | 0.87 |
LDL (mg/dL) | 95.83 ± 2.64 | 92.67 ± 1.78 | 91.58 ± 2.70 | 99.08 ± 2.16 | 2.35 | 0.12 |
VLDL (mg/dL) | 43.58 ± 1.57 | 42.41 ± 1.26 | 43.75 ± 1.71 | 45.08 ± 1.59 | 1.52 | 0.68 |
TC (mg/dL) | 190.67 ± 2.59 | 196.83 ± 2.61 | 194.33 ± 2.60 | 197.01 ± 3.05 | 2.72 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait-Kaki, A.; Hornick, J.-L.; El Otmani, S.; Chebli, Y.; Moula, N. Effect of Dried Mealworms (Tenebrio molitor), Larvae and Olive Leaves (Olea europaea L.) on Growth Performance, Carcass Yield and Some Blood Parameters of Japanese Quail (Coturnix coturnix japonica). Animals 2021, 11, 1631. https://doi.org/10.3390/ani11061631
Ait-Kaki A, Hornick J-L, El Otmani S, Chebli Y, Moula N. Effect of Dried Mealworms (Tenebrio molitor), Larvae and Olive Leaves (Olea europaea L.) on Growth Performance, Carcass Yield and Some Blood Parameters of Japanese Quail (Coturnix coturnix japonica). Animals. 2021; 11(6):1631. https://doi.org/10.3390/ani11061631
Chicago/Turabian StyleAit-Kaki, Asma, Jean-Luc Hornick, Samira El Otmani, Youssef Chebli, and Nassim Moula. 2021. "Effect of Dried Mealworms (Tenebrio molitor), Larvae and Olive Leaves (Olea europaea L.) on Growth Performance, Carcass Yield and Some Blood Parameters of Japanese Quail (Coturnix coturnix japonica)" Animals 11, no. 6: 1631. https://doi.org/10.3390/ani11061631
APA StyleAit-Kaki, A., Hornick, J.-L., El Otmani, S., Chebli, Y., & Moula, N. (2021). Effect of Dried Mealworms (Tenebrio molitor), Larvae and Olive Leaves (Olea europaea L.) on Growth Performance, Carcass Yield and Some Blood Parameters of Japanese Quail (Coturnix coturnix japonica). Animals, 11(6), 1631. https://doi.org/10.3390/ani11061631