Genomics of Adaptations in Ungulates
Abstract
Simple Summary
Abstract
1. Introduction
2. Understanding the Genetic Basis of Ungulate Adaptations
3. The Adaptive Evolution of Ungulates in Different Habitats
3.1. Arid and Semi-Arid Habitats
3.2. High-Altitude Habitats
3.3. Savanna Habitats
3.4. Marine Habitats
3.5. Arctic Habitats
3.6. Processes Underlying Adaptive Changes in Domesticated Ungulates
3.7. Processes Underlying Adaptive Changes in Feral Ungulates
Environment | Selective Pressure (s) | Selection Signature | Genes under Selection in Ungulates | Biological Functions of Candidate Genes |
---|---|---|---|---|
Desert/Arid | Low water availability | Population differentiation and increased frequency of derived alleles | Red deer (CP2U1) [3], Camel (CYP2J, CYP2E, AQP1, AQP2, AQP3) [5,36], sheep (NXA6, GPX3, GPX7, PTGS2, CPA3, CPVL, ECE1, CALM2, CACNA2D1, KCNJ5, and COX2) [55] | Water-salt balance, regulating water retention and reabsorption |
Airborne dust and allergic diseases | Population differentiation, excess of long haplotype and Sequence altering mutant (rapidly evolving genes) | Red deer (TRAF2 and IL1R1) [3], camel (FOXP3, CX3CR1, CYSLTR2, and SEMA4A) [5], Fat-tail sheep (ZBP1, PRDX1, MAST2, and LURAP) [71], Bakri goat and sheep (GRIA1, IL2, IL7, IL21, IL1R1) [69] | Defend against airborne dusts | |
High UV exposure | Excess of long haplotypes and rapidly evolving genes | Red deer (LAMB1, LAMB2, CYC, FANCF, and GPR98) [3], camel (OPN1SW, CX3CR1, and CNTFR) [5] | Ocular development, visual protection, and photoreceptor cell synapses | |
Excess of long haplotypes | Red deer (SLX4, FANCF, FANCG, FANCI, ATR, and POLH) [3], Fat-tail sheep (PMS1, SPO11, RAD54L, MUTYH, CHEK2, POLR2D, and CMPK1) [71] | DNA repair | ||
Sequence altering mutant (rapidly evolving genes) | Desert goat (ABCA12, ASCL4, and UVSSA) [72] | Skin barrier development and function | ||
High temperature | Population differentiation and excess of long haplotypes | Red deer (GNAI2, FZD4, MP2K2, CREB3, CBP, GNAO, TF7L2, and GNAO) [3], goat (MTOR, and MAPK3) [114], Fat-tail sheep (ERCC3, and TGM3) [71], Bakri goat and sheep (FGF2, GNAI3, and PLCB1) [69] | Response to thermal stress | |
Xenobiotic compounds | Population differentiation and excess of long haplotypes | Red deer (CP2U1, CP3AS, and CP3AO) [3] | Plant secondary metabolism | |
Arctic | Long light and dark periods | Population differentiation, rapidly evolving genes and copy number variable genes | Yakutian Horse (LECT2, and FBXL21) [11], Wooly mammoth (HRH3, PER2, and BMAL1) [13], reindeer (GRIA1, and OPN4B) [12,58] | Regulation of the circadian clock |
Low temperatures | Population differentiation and copy number variable genes, Sequence altering mutant (rapidly evolving genes) | Yakutian Horse (ACADSB, ATP1A2, CYP11B2, HSPG2, and PRKG1) [11], Wooly mammoth (DLK1, and TRPV3) [13], Yakutian cattle (DNAJC9, SOCS3, TRPC7, SLC8A1 GLP1R, PKLR, and TCF7L2) [42], Reindeer (SCN11A, and SILT2) [58] | Thermoregulation | |
Lipid metabolism | Sequence altering mutant (rapidly evolving genes) | Reindeer (APOB and FASN), woolly mammoth (CRH) [13] | Lipid metabolism | |
High-altitude | Hypoxia | Population differentiation, sequence altering mutant (rapidly evolving genes), excess of long haplotypes | Tibetan wild boar (ALB, ECE1, GNG2, and PIK3C2G) [52], Yak (ADAM17, ARG2, and MMP3) [8], goat (CDK2, SOCS2, NOXA1, and ENPEP) [157], Tibetan sheep (EPAS1, CRYAA, LONP1, NF1, DPP4, SOD1, PPARG, and SOCS2) [78], Tibetan pig (EPAS1, HIF1A, RNF4, TNFSF1, PDE1A, and PDE3) [77] | Hypoxia response |
Low temperature | Population differentiation and sequence altering mutant (rapidly evolving genes) | Tibetan wild boar (AEBP1, DGAT1, FABP2, LEPR, and PTPN1) [52], Yak (GCNT3, HSD17B12, WHSC1, and GLUL) [8], Tibetan sheep (DPP4, and PPARG) [78] | Tolerance to cold | |
Intense UV radiations | Sequence altering mutant (rapidly evolving genes) | Tibetan wild boar (BCL3, ERCC4, ERCC6, REV1, USF1, and ZRANB3) [52] | DNA repair, response to radiations | |
Marine | Low oxygen levels | Sequence altering mutant (rapidly evolving genes) | Whales (PRDX1, PRDX2, and GPX2) [96], Minke whale (GPX2, ODC1, GSR, GGT6, GGT7, GCLC, and ANPEP) [67], cetaceans (ALDOA, ENO2, CS, ATP6V0A4, LHPP, NDUFA9, and NDUFV3) [158] | Response to hypoxia |
Salty water | Sequence altering mutant (rapidly evolving genes) | Minke whale (AGTR1, ANPEP, LNPEP, MME, and THOP1) [67], dolphin (TSPO2, EPGN, PLN, EDN2, PLA2G5, and KCNJ2) [15] | Salt water balance | |
Aquatic environment | Sequence altering mutant (rapidly evolving genes) | Minke whale (HOXA5, HOXB1, HOXB2, HOXB5, HOXD12 and HOXD13) [67] | Morphological adaptation to swimming | |
Prolonged, deep diving | Sequence altering mutant (rapidly evolving genes) | Whales and dolphins (GSTA1) [96], dolphin (APOA2, APOC4, APOO, FABP4, SERINC4, CCDC129, PLA2G5, PNLIPRP3, RARRES2, and NR1I3) [15], cetaceans/whales (LDHA, LDHD, PC, PCK1, FBP1, and GPI) [158] | Energy metabolism | |
Cold temperature | Sequence altering mutation (rapidly evolving genes) | Minke whale (NPY) [66] | Thermoregulation | |
Domesticated | Productivity | Population differentiation, rapidly evolving genes, copy number variable genes | Goat (LRP1, PLIN4 and FASN) [4], pig (ACACA, ANKRD23, GM2A, KIT, MOGAT2, MTTP, FASN, SGMS1, SLC27A6, and RETSAT) [132], donkey (TBX3, NCAPG, LOCR, BCOR, CDKL5, and ACSL4) [125], cattle (MUC1) [42] | Regulation body weight, body size, milk production |
Domestication | Population differentiation, sequence altering mutant (rapidly evolving genes), copy number variable genes and excess of long haplotypes | Goat (FGF9, IGF1, ASIP, KITLG, HTT, GNA11, OSTM1, ATRN, GNAQ, HELLS, MUTED, VPS33A, ADAMTS20, MITF and OCA2) [4,114,145], donkey (ASIP and KTLG) [125], sheep and goat (KITLG, HMGI-C, NBEA, and MTMR7) [105], pigs (ESR1, and AHR) [159,160] | Coat color, litter size, fatty acid composition, wool crimping | |
Domestication | Population differentiation, excess of long haplotypes, sequence altering mutant (rapidly evolving genes), and copy number variable genes | Goat (HTR3A, STMI, and PRMI) [4,49], horse (VDAC1, and GRID1) [127], pigs (NRTN, SEMA3C, PLXNC1, AAK1, RAB35 FRS2, APBA2, MC4R, RCAN1, and BAIAP3) [161] and domestic yak (GRIN2D and NTN5) [130] | Tameness, less aggressiveness, reduced fear to humans | |
Increased pathogens | Excess of long haplotypes, sequence altering mutant (rapidly evolving genes), population differentiation and copy number variable genes, adaptive introgression | Goat (IL10RB, IFNLR1, BCL2L1, ERBB2, ENO1, CFH, TRIM5, and MUC6) [4,49,114], cattle (IFNAR1, IFNAR2, IL10RB, NOD2, CD96, CD14, GZMB, IL17A, PFKM, ADAM17, SIRPA IFNAR2, IFNG, CD34, TREM1, TREML1, FCER1A, IL23R, IL24, IL15, and LEAP2) [41,42], pig (IL1B, CD36, CD68, CD163, CRP, and IFIT1) [121] | Host innate immune response, gastrointestinal pathogen resistance, disease resistance |
4. Future Perspectives and Directions
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Applegate, R.D. Groves, C., and P. Grubb. 2011. Ungulate Taxonomy. Johns Hopkins University Press, Baltimore, Maryland, 317 pp. ISBN-13 978-1-4214-0093-8 and ISBN-10 1-4214-0093-6, Price (Hardbound), $100.00. J. Mammal. 2013, 94, 245–246. [Google Scholar] [CrossRef]
- Thewissen, J.G.M.; Cooper, L.N.; George, J.C.; Bajpai, S. From Land to Water: The Origin of Whales, Dolphins, and Porpoises. Evol. Educ. Outreach 2009, 2, 272–288. [Google Scholar] [CrossRef]
- Ababaikeri, B.; Abduriyim, S.; Tohetahong, Y.; Mamat, T.; Ahmat, A.; Halik, M. Whole-Genome Sequencing of Tarim Red Deer (Cervus Elaphus Yarkandensis) Reveals Demographic History and Adaptations to an Arid-Desert Environment. Front. Zool. 2020, 17, 31. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Xie, M.; Arefnezhad, B.; Wang, Z.; Wang, W.; Feng, S.; Huang, G.; Guan, R.; Shen, W.; et al. Reference Genome of Wild Goat (Capra Aegagrus) and Sequencing of Goat Breeds Provide Insight into Genic Basis of Goat Domestication. BMC Genom. 2015, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guang, X.; Al-Fageeh, M.B.; Cao, J.; Pan, S.; Zhou, H.; Zhang, L.; Abutarboush, M.H.; Xing, Y.; Xie, Z.; et al. Camelid Genomes Reveal Evolution and Adaptation to Desert Environments. Nat. Comm. 2014, 5, 5188. [Google Scholar] [CrossRef]
- Agaba, M.; Ishengoma, E.; Miller, W.C.; McGrath, B.C.; Hudson, C.N.; Bedoya Reina, O.C.; Ratan, A.; Burhans, R.; Chikhi, R.; Medvedev, P.; et al. Giraffe Genome Sequence Reveals Clues to Its Unique Morphology and Physiology. Nat. Commun. 2016, 7, 11519. [Google Scholar] [CrossRef] [PubMed]
- Ishengoma, E.; Agaba, M.; Cavener, D.R. Evolutionary Analysis of Vision Genes Identifies Potential Drivers of Visual Differences between Giraffe and Okapi. PeerJ 2017, 5, e3145. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Zhang, G.; Ma, T.; Qian, W.; Wang, J.; Ye, Z.; Cao, C.; Hu, Q.; Kim, J.; Larkin, D.M.; et al. The Yak Genome and Adaptation to Life at High Altitude. Nat. Genet. 2012, 44, 946–949. [Google Scholar] [CrossRef]
- Ge, R.L.; Cai, Q.; Shen, Y.Y.; San, A.; Ma, L.; Zhang, Y.; Yi, X.; Chen, Y.; Yang, L.; Huang, Y.; et al. Draft Genome Sequence of the Tibetan Antelope. Nat. Commun. 2013, 4, 1858. [Google Scholar] [CrossRef]
- Blix, A.S. Adaptations to Polar Life in Mammals and Birds. J. Exp. Biol. 2016, 219, 1093. [Google Scholar] [CrossRef]
- Librado, P.; Der Sarkissian, C.; Ermini, L.; Schubert, M.; Jónsson, H.; Albrechtsen, A.; Fumagalli, M.; Yang, M.A.; Gamba, C.; Seguin-Orlando, A.; et al. Tracking the Origins of Yakutian Horses and the Genetic Basis for Their Fast Adaptation to Subarctic Environments. Proc. Natl. Acad. Sci. USA 2015, 112, E6889. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, L.; Chen, X.; Zhong, Y.; Yang, Y.; Xia, W.; Liu, C.; Zhu, W.; Wang, H.; Yan, B.; et al. Biological Adaptations in the Arctic Cervid, the Reindeer (Rangifer Tarandus). Science 2019, 364, eaav6312. [Google Scholar] [CrossRef] [PubMed]
- Lynch, V.J.; Bedoya-Reina, O.C.; Ratan, A.; Sulak, M.; Drautz-Moses, D.I.; Perry, G.H.; Miller, W.; Schuster, S.C. Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic. Cell Rep. 2015, 12, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Árnason, U.; Lammers, F.; Kumar, V.; Nilsson, M.A.; Janke, A. Whole-Genome Sequencing of the Blue Whale and Other Rorquals Finds Signatures for Introgressive Gene Flow. Sci. Adv. 2018, 4, eaap9873. [Google Scholar] [CrossRef] [PubMed]
- McGowen, M.R.; Grossman, L.I.; Wildman, D.E. Dolphin Genome Provides Evidence for Adaptive Evolution of Nervous System Genes and a Molecular Rate Slowdown. Proc. R. Soc. B: Biol. Sci. 2012, 279, 3643–3651. [Google Scholar] [CrossRef]
- Sun, Y.B.; Zhou, W.P.; Liu, H.Q.; Irwin, D.M.; Shen, Y.Y.; Zhang, Y.P. Genome-Wide Scans for Candidate Genes Involved in the Aquatic Adaptation of Dolphins. Genome Biol. Evol. 2013, 5, 130–139. [Google Scholar] [CrossRef]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 1–19. [Google Scholar] [CrossRef]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021. [Google Scholar] [CrossRef]
- Roffler, G.H.; Amish, S.J.; Smith, S.; Cosart, T.; Kardos, M.; Schwartz, M.K.; Luikart, G. SNP Discovery in Candidate Adaptive Genes Using Exon Capture in a Free-Ranging Alpine Ungulate. Mol. Ecol. Resour. 2016, 16, 1147–1164. [Google Scholar] [CrossRef]
- Pardo-Diaz, C.; Salazar, C.; Jiggins, C.D. Towards the Identification of the Loci of Adaptive Evolution. Methods Ecol. Evol. 2015, 6, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Lewontin, R.C.; Krakauer, J. Distribution of Gene Frequency as a Test of the Theory of the Selective Neutrality of Polymorphisms. Genetics 1973, 74, 175–195. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Sabeti, P.C.; Reich, D.E.; Higgins, J.M.; Levine, H.Z.P.; Richter, D.J.; Schaffner, S.F.; Gabriel, S.B.; Platko, J.V.; Patterson, N.J.; McDonald, G.J.; et al. Detecting Recent Positive Selection in the Human Genome from Haplotype Structure. Nature 2002, 419, 832–837. [Google Scholar] [CrossRef]
- Vitti, J.J.; Grossman, S.R.; Sabeti, P.C. Detecting Natural Selection in Genomic Data. Annu. Rev. Genet. 2013, 47, 97–120. [Google Scholar] [CrossRef]
- Hudson, R.R.; Kreitman, M.; Aguadé, M. A Test of Neutral Molecular Evolution Based on Nucleotide Data. Genetics 1987, 116, 153–159. [Google Scholar] [CrossRef]
- McDonald, J.H.; Kreitman, M. Adaptive Protein Evolution at the Adh Locus in Drosophila. Nature 1991, 351, 652–654. [Google Scholar] [CrossRef]
- Goldman, N.; Yang, Z. A Codon-Based Model of Nucleotide Substitution for Protein-Coding DNA Sequences. Mol. Biol. Evol. 1994, 11, 725–736. [Google Scholar]
- Redon, R.; Ishikawa, S.; Fitch, K.R.; Feuk, L.; Perry, G.H.; Andrews, T.D.; Fiegler, H.; Shapero, M.H.; Carson, A.R.; Chen, W. Global Variation in Copy Number in the Human Genome. Nature 2006, 444, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Gamazon, E.R.; Stranger, B.E. The Impact of Human Copy Number Variation on Gene Expression. Brief. Funct Genom. 2015, 14, 352–357. [Google Scholar] [CrossRef]
- Ba, H.; Cai, Z.; Gao, H.; Qin, T.; Liu, W.; Xie, L.; Zhang, Y.; Jing, B.; Wang, D.; Li, C. Chromosome-Level Genome Assembly of Tarim Red Deer, Cervus Elaphus Yarkandensis. Sci. Data 2020, 7, 187. [Google Scholar] [CrossRef]
- Bana, N.A.; Nyiri, A.; Nagy, J.; Frank, K.; Nagy, T.; Stéger, V.; Schiller, M.; Lakatos, P.; Sugár, L.; Horn, P.; et al. The Red Deer Cervus Elaphus Genome CerEla1.0: Sequencing, Annotating, Genes, and Chromosomes. Mol. Genet. Genom. 2018, 293, 665–684. [Google Scholar] [CrossRef] [PubMed]
- Bahbahani, H.; Musa, H.H.; Wragg, D.; Shuiep, E.S.; Almathen, F.; Hanotte, O. Genome Diversity and Signatures of Selection for Production and Performance Traits in Dromedary Camels. Front. Genet. 2019, 10, 893. [Google Scholar] [CrossRef] [PubMed]
- Hedayat-Evrigh, N.; Khalkhali-Evrigh, R.; Bakhtiarizadeh, M.R. Genome-Wide Identification and Analysis of Variants in Domestic and Wild Bactrian Camels Using Whole-Genome Sequencing Data. Int. J. Genom. 2020, 2020, 2430846. [Google Scholar] [CrossRef] [PubMed]
- Jirimutu, C.; Wang, Z.; Ding, G.; Chen, G.; Sun, Y.; Sun, Z.; Zhang, H.; Wang, L.; Hasi, S.; Zhang, Y.; et al. Genome Sequences of Wild and Domestic Bactrian Camels. Nat. Commun. 2012, 3, 1202. [Google Scholar] [CrossRef]
- Fitak, R.R.; Mohandesan, E.; Corander, J.; Burger, P.A. The de Novo Genome Assembly and Annotation of a Female Domestic Dromedary of North African Origin. Mol. Ecol. Resour. 2016, 16, 314–324. [Google Scholar] [CrossRef]
- Fitak, R.R.; Mohandesan, E.; Corander, J.; Yadamsuren, A.; Chuluunbat, B.; Abdelhadi, O.; Raziq, A.; Nagy, P.; Walzer, C.; Faye, B. Genomic Signatures of Domestication in Old World Camels. Commun. Biol. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Elbers, J.P.; Rogers, M.F.; Perelman, P.L.; Proskuryakova, A.A.; Serdyukova, N.A.; Johnson, W.E.; Horin, P.; Corander, J.; Murphy, D.; Burger, P.A. Improving Illumina Assemblies with Hi-C and Long Reads: An Example with the North African Dromedary. Mol. Ecol. Resour. 2019, 19, 1015–1026. [Google Scholar] [CrossRef]
- Canavez, F.C.; Luche, D.D.; Stothard, P.; Leite, K.R.M.; Sousa-Canavez, J.M.; Plastow, G.; Meidanis, J.; Souza, M.A.; Feijao, P.; Moore, S.S.; et al. Genome Sequence and Assembly of Bos Indicus. J. Hered. 2012, 103, 342–348. [Google Scholar] [CrossRef]
- Elsik, C.G.; Tellam, R.L.; Worley, K.C. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science 2009, 324, 522. [Google Scholar] [CrossRef]
- Weldenegodguad, M.; Popov, R.; Pokharel, K.; Ammosov, I.; Ming, Y.; Ivanova, Z.; Kantanen, J. Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the Northernmost Cattle Farming Regions. Front. Genet. 2019, 9, 728. [Google Scholar] [CrossRef]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahan, F.; Pertea, G.; Van Tassell, C.P.; Sonstegard, T.S.; et al. A Whole-Genome Assembly of the Domestic Cow, Bos Taurus. Genome Biol. 2009, 10, R42. [Google Scholar] [CrossRef]
- Wade, C.M.; Giulotto, E.; Sigurdsson, S.; Zoli, M.; Gnerre, S.; Imsland, F.; Lear, T.L.; Adelson, D.L.; Bailey, E.; Bellone, R.R.; et al. Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse. Science 2009, 326, 865. [Google Scholar] [CrossRef]
- Berihulay, H.; Li, Y.; Gebrekidan, B.; Gebreselassie, G.; Liu, X.; Jiang, L.; Ma, Y. Whole Genome Resequencing Reveals Selection Signatures Associated With Important Traits in Ethiopian Indigenous Goat Populations. Front. Genet. 2019, 10, 1190. [Google Scholar] [CrossRef]
- Bickhart, D.M.; Rosen, B.D.; Koren, S.; Sayre, B.L.; Hastie, A.R.; Chan, S.; Lee, J.; Lam, E.T.; Liachko, I.; Sullivan, S.T.; et al. Single-Molecule Sequencing and Chromatin Conformation Capture Enable de Novo Reference Assembly of the Domestic Goat Genome. Nat. Genet. 2017, 49, 643–650. [Google Scholar] [CrossRef]
- Dong, Y.; Xie, M.; Jiang, Y.; Xiao, N.; Du, X.; Zhang, W.; Tosser-Klopp, G.; Wang, J.; Yang, S.; Liang, J.; et al. Sequencing and Automated Whole-Genome Optical Mapping of the Genome of a Domestic Goat (Capra Hircus). Nat. Biotechnol. 2013, 31, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Tao, H.; Li, P.; Li, L.; Zhong, T.; Wang, L.; Ma, J.; Chen, X.; Song, T.; Zhang, H. Whole-Genome Sequencing Reveals Selection Signatures Associated with Important Traits in Six Goat Breeds. Sci. Rep. 2018, 8, 10405. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Li, M.; Li, Y.; Yang, Z.; Wang, X.; Pan, X.; Gong, M.; Zhang, Y.; Guo, Y.; et al. The Origin of Domestication Genes in Goats. Sci. Adv. 2020, 6, eaaz5216. [Google Scholar] [CrossRef] [PubMed]
- El-Khishin, D.A.; Ageez, A.; Saad, M.E.; Ibrahim, A.; Shokrof, M.; Hassan, L.R.; Abouelhoda, M.I. Sequencing and Assembly of the Egyptian Buffalo Genome. PLoS ONE 2020, 15, e0237087. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L.; Iamartino, D.; Pruitt, K.D.; Sonstegard, T.; Smith, T.P.L.; Low, W.Y.; Biagini, T.; Bomba, L.; Capomaccio, S.; Castiglioni, B.; et al. Genome Assembly and Transcriptome Resource for River Buffalo, Bubalus Bubalis (2n = 50). GigaScience 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, S.; Jin, L.; Zhou, G.; Li, Y.; Zhang, Y.; Wang, T.; Yeung, C.K.L.; Chen, L.; Ma, J.; et al. Genomic Analyses Identify Distinct Patterns of Selection in Domesticated Pigs and Tibetan Wild Boars. Nat. Genet. 2013, 45, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xie, M.; Chen, W.; Talbot, R.; Maddox, J.F.; Faraut, T.; Wu, C.; Muzny, D.M.; Li, Y.; Zhang, W.; et al. The Sheep Genome Illuminates Biology of the Rumen and Lipid Metabolism. Science 2014, 344, 1168. [Google Scholar] [CrossRef]
- Miller, J.M.; Moore, S.S.; Stothard, P.; Liao, X.; Coltman, D.W. Harnessing Cross-Species Alignment to Discover SNPs and Generate a Draft Genome Sequence of a Bighorn Sheep (Ovis Canadensis). BMC Genom. 2015, 16, 397. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.R.; Lv, F.H.; He, S.G.; Tian, S.L.; Peng, W.F.; Sun, Y.W.; Zhao, Y.X.; Tu, X.L.; Zhang, M.; et al. Whole-Genome Sequencing of Native Sheep Provides Insights into Rapid Adaptations to Extreme Environments. Mol. Biol. Evol. 2016, 33, 2576–2592. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhao, Y.; Bai, D.; Shiraigol, W.; Li, B.; Yang, L.; Wu, J.; Bao, W.; Ren, X.; Jin, B.; et al. Donkey Genome and Insight into the Imprinting of Fast Karyotype Evolution. Sci. Rep. 2015, 5, 14106. [Google Scholar] [CrossRef][Green Version]
- Taylor, R.S.; Horn, R.L.; Zhang, X.; Golding, G.B.; Manseau, M.; Wilson, P.J. The Caribou (Rangifer Tarandus) Genome. Genes 2019, 10, 540. [Google Scholar] [CrossRef]
- Weldenegodguad, M.; Pokharel, K.; Ming, Y.; Honkatukia, M.; Peippo, J.; Reilas, T.; Røed, K.H.; Kantanen, J. Genome Sequence and Comparative Analysis of Reindeer (Rangifer Tarandus) in Northern Eurasia. Sci. Rep. 2020, 10, 8980. [Google Scholar] [CrossRef]
- Mizzi, J.E.; Lounsberry, Z.T.; Brown, C.T.; Sacks, B.N. Draft Genome of Tule Elk Cervus Canadensis Nannodes. F1000Res 2017, 6, 1691. [Google Scholar] [CrossRef] [PubMed]
- Dobson, L.K. Sequencing the Genome of the North American Bison. Ph.D. Thesis, A & M University, College Station, TX, USA, 2015. [Google Scholar]
- Liu, Y.; Luo, J.; Dou, J.; Yan, B.; Ren, Q.; Tang, B.; Wang, K.; Qiu, Q. The Sequence and de Novo Assembly of the Wild Yak Genome. Sci. Data 2020, 7, 66. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Li, W.; Jin, J.; Cui, K.; Yan, C.; Peng, C.; Jian, Z.; Bu, P.; Price, M.; Zhang, X.; et al. The Draft Genome Sequence of Forest Musk Deer (Moschus Berezovskii). GigaScience 2018, 7. [Google Scholar] [CrossRef]
- Yi, L.; Dalai, M.; Su, R.; Lin, W.; Erdenedalai, M.; Luvsantseren, B.; Chimedtseren, C.; Wang, Z.; Hasi, S. Whole-Genome Sequencing of Wild Siberian Musk Deer (Moschus Moschiferus) Provides Insights into Its Genetic Features. BMC Genom. 2020, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Ming, Y.; Jian, J.; Yu, F.; Yu, X.; Wang, J.; Liu, W. Molecular Footprints of Inshore Aquatic Adaptation in Indo-Pacific Humpback Dolphin (Sousa Chinensis). Genomics 2019, 111, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Moskalev, A.A.; Kudryavtseva, A.V.; Graphodatsky, A.S.; Beklemisheva, V.R.; Serdyukova, N.A.; Krutovsky, K.V.; Sharov, V.V.; Kulakovskiy, I.V.; Lando, A.S.; Kasianov, A.S.; et al. De Novo Assembling and Primary Analysis of Genome and Transcriptome of Gray Whale Eschrichtius Robustus. BMC Evol. Biol. 2017, 17, 258. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; An, Y.R.; Kanda, N.; An, C.M.; An, H.S.; Kang, J.H.; Kim, E.M.; An, D.H.; Jung, H.; Joung, M.; et al. Cetaceans Evolution: Insights from the Genome Sequences of Common Minke Whales. BMC Genom. 2015, 16, 13. [Google Scholar] [CrossRef] [PubMed]
- Yim, H.S.; Cho, Y.S.; Guang, X.; Kang, S.G.; Jeong, J.Y.; Cha, S.-S.; Oh, H.-M.; Lee, J.-H.; Yang, E.C.; Kwon, K.K.; et al. Minke Whale Genome and Aquatic Adaptation in Cetaceans. Nat. Genet. 2014, 46, 88–92. [Google Scholar] [CrossRef]
- Whitehead, A.; Pilcher, W.; Champlin, D.; Nacci, D. Common Mechanism Underlies Repeated Evolution of Extreme Pollution Tolerance. Proc. R. Soc. B Biol. Sci. 2012, 279, 427–433. [Google Scholar] [CrossRef]
- Kim, E.S.; Elbeltagy, A.R.; Aboul-Naga, A.M.; Rischkowsky, B.; Sayre, B.; Mwacharo, J.M.; Rothschild, M.F. Multiple Genomic Signatures of Selection in Goats and Sheep Indigenous to a Hot Arid Environment. Heredity 2016, 116, 255–264. [Google Scholar] [CrossRef]
- Watson, M.; Holman, D.M.; Maguire-Eisen, M. Ultraviolet Radiation Exposure and Its Impact on Skin Cancer Risk. Semin. Oncol. Nurs. 2016, 32, 241–254. [Google Scholar] [CrossRef]
- Mwacharo, J.M.; Kim, E.S.; Elbeltagy, A.R.; Aboul-Naga, A.M.; Rischkowsky, B.A.; Rothschild, M.F. Genomic Footprints of Dryland Stress Adaptation in Egyptian Fat-Tail Sheep and Their Divergence from East African and Western Asia Cohorts. Sci. Rep. 2017, 7, 17647. [Google Scholar] [CrossRef]
- Chebii, V.J.; Oyola, S.O.; Kotze, A.; Domelevo Entfellner, J.-B.; Musembi Mutuku, J.; Agaba, M. Genome-Wide Analysis of Nubian Ibex Reveals Candidate Positively Selected Genes That Contribute to Its Adaptation to the Desert Environment. Animals 2020, 10, 2181. [Google Scholar] [CrossRef]
- Tunaru, S.; Chennupati, R.; Nüsing, R.M.; Offermanns, S. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor. PLoS ONE 2016, 11, e0163633. [Google Scholar] [CrossRef] [PubMed]
- Blumthaler, M.; Ambach, W.; Ellinger, R. Increase in Solar UV Radiation with Altitude. J. Photochem. Photobiol. B Biol. 1997, 39, 130–134. [Google Scholar] [CrossRef]
- Gou, W.; Peng, J.; Wu, Q.; Zhang, Q.; Zhang, H.; Wu, C. Expression Pattern of Heme Oxygenase 1 Gene and Hypoxic Adaptation in Chicken Embryos. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2014, 174, 23–28. [Google Scholar] [CrossRef]
- Li, L.L.; Ma, S.K.; Peng, W.; Fang, Y.G.; Fu, H.Y.; Jia, G.X. Whole Genome Sequencing of 5 Tibetan Sheep Breeds Identifies Selective Signatures to Adaptability at Different High-Altitude Areas in Qinghai-Tibetan Plateau. bioRxiv 2020. [Google Scholar] [CrossRef]
- Ma, Y.F.; Han, X.M.; Huang, C.P.; Zhong, L.; Adeola, A.C.; Irwin, D.M.; Xie, H.B.; Zhang, Y.P. Population Genomics Analysis Revealed Origin and High-Altitude Adaptation of Tibetan Pigs. Sci. Rep. 2019, 9, 11463. [Google Scholar] [CrossRef]
- Wei, C.; Wang, H.; Liu, G.; Zhao, F.; Kijas, J.W.; Ma, Y.; Lu, J.; Zhang, L.; Cao, J.; Wu, M.; et al. Genome-Wide Analysis Reveals Adaptation to High Altitudes in Tibetan Sheep. Sci. Rep. 2016, 6, 26770. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Li, Y.; Pan, J.; Wang, D.; Chen, W.; Zheng, Z.; He, X.; Zhao, Q.; Pu, Y.; et al. EPAS1 Gain-of-Function Mutation Contributes to High-Altitude Adaptation in Tibetan Horses. Mol. Biol. Evol. 2019, 36, 2591–2603. [Google Scholar] [CrossRef]
- Xiao, W.Y.; Ding, X.Z.; Chu, M.; Guo, X.; Bao, P.J.; Liang, C.N.; Yan, P. Novel SNP of EPAS1 Gene Associated with Higher Hemoglobin Concentration Revealed the Hypoxia Adaptation of Yak (Bos Grunniens). J. Integr. Agric. 2015, 14, 741–748. [Google Scholar] [CrossRef]
- Wu, D.-D.; Yang, C.-P.; Wang, M.-S.; Dong, K.-Z.; Yan, D.-W.; Hao, Z.-Q.; Fan, S.-Q.; Chu, S.-Z.; Shen, Q.-S.; Jiang, L.-P. Convergent Genomic Signatures of High-Altitude Adaptation among Domestic Mammals. Natl. Sci. Rev. 2020, 7, 952–963. [Google Scholar] [CrossRef]
- Iqbal, N.; Liu, X.; Yang, T.; Huang, Z.; Hanif, Q.; Asif, M.; Khan, Q.M.; Mansoor, S. Genomic Variants Identified from Whole-Genome Resequencing of Indicine Cattle Breeds from Pakistan. PLoS ONE 2019, 14, e0215065. [Google Scholar] [CrossRef]
- Palomera, S.Z.; Bucio-Mendez, A.; Valadez-Graham, V.; Reynaud, E.; Zurita, M. Drosophila P53 Is Required to Increase the Levels of the DKDM4B Demethylase after UV-Induced DNA Damage to Demethylate Histone H3 Lysine 9. J. Biol. Chem. 2010, 285, 31370–31379. [Google Scholar] [CrossRef]
- Shao, B.; Long, R.; Ding, Y.; Wang, J.; Ding, L.; Wang, H. Morphological Adaptations of Yak (Bos Grunniens) Tongue to the Foraging Environment of the Qinghai-Tibetan Plateau1. J. Anim. Sci. 2010, 88, 2594–2603. [Google Scholar] [CrossRef]
- Gorkhali, N.A.; Dong, K.; Yang, M.; Song, S.; Kader, A.; Shrestha, B.S.; He, X.; Zhao, Q.; Pu, Y.; Li, X.; et al. Genomic Analysis Identified a Potential Novel Molecular Mechanism for High-Altitude Adaptation in Sheep at the Himalayas. Sci. Rep. 2016, 6, 29963. [Google Scholar] [CrossRef]
- Ishengoma, E.; Agaba, M. Evolution of Toll-like Receptors in the Context of Terrestrial Ungulates and Cetaceans Diversification. BMC Evol. Biol. 2017, 17, 54. [Google Scholar] [CrossRef]
- Ndeereh, D.; Obanda, V.; Mijele, D.; Gakuya, F. Medicine in the Wild: Strategies towards Healthy and Breeding Wildlife Populations in Kenya. JSTOR 2012, 29, 100–108. [Google Scholar]
- Dimitrova, M.; Merilaita, S. Prey Concealment: Visual Background Complexity and Prey Contrast Distribution. Behav. Ecol. 2010, 21, 176–181. [Google Scholar] [CrossRef]
- Mitchell, G.; Roberts, D.G.; van Sittert, S.J.; Skinner, J.D. Orbit Orientation and Eye Morphometrics in Giraffes (Giraffa Camelopardalis). Afr. Zool. 2013, 48, 333–339. [Google Scholar] [CrossRef][Green Version]
- Shen, T.; Xu, S.; Wang, X.; Yu, W.; Zhou, K.; Yang, G. Adaptive Evolution and Functional Constraint at TLR4 during the Secondary Aquatic Adaptation and Diversification of Cetaceans. BMC Evol. Biol. 2012, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Huelsmann, M.; Hecker, N.; Springer, M.S.; Gatesy, J.; Sharma, V.; Hiller, M. Genes Lost during the Transition from Land to Water in Cetaceans Highlight Genomic Changes Associated with Aquatic Adaptations. Sci. Adv. 2019, 5, eaaw6671. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wei, H.; Bi, J.; Ding, X.; Li, L.; Xu, S.; Yang, G.; Ren, W. Insights into Dietary Switch in Cetaceans: Evidence from Molecular Evolution of Proteinases and Lipases. J. Mol. Evol. 2020, 88, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Croll, D.A.; Acevedo-Gutiérrez, A.; Tershy, B.R.; Urbán-Ramírez, J. The Diving Behavior of Blue and Fin Whales: Is Dive Duration Shorter than Expected Based on Oxygen Stores? Comp. Biochem. Physiol. Part. A: Mol. Integr. Physiol. 2001, 129, 797–809. [Google Scholar] [CrossRef]
- Söhle, J.; Machuy, N.; Smailbegovic, E.; Holtzmann, U.; Grönniger, E.; Wenck, H.; Stäb, F.; Winnefeld, M. Identification of New Genes Involved in Human Adipogenesis and Fat Storage. PLoS ONE 2012, 7, e31193. [Google Scholar] [CrossRef] [PubMed]
- Gonchar, O.; Mankovska, I. Antioxidant System in Adaptation to Intermittent Hypoxia. J. Biol. Sci. 2010, 10, 545–554. [Google Scholar] [CrossRef][Green Version]
- Tian, R.; Seim, I.; Ren, W.; Xu, S.; Yang, G. Comparative Genomics Reveals Contraction in Cytosolic Glutathione Transferase Genes in Cetaceans: Implications for Oxidative Stress Adaptation. bioRxiv 2018, 485615. [Google Scholar] [CrossRef]
- Tian, R.; Wang, Z.; Niu, X.; Zhou, K.; Xu, S.; Yang, G. Evolutionary Genetics of Hypoxia Tolerance in Cetaceans during Diving. Genome Biol. Evol. 2016, 8, 827–839. [Google Scholar] [CrossRef]
- Albalat, R.; Canestro, C. Evolution by Gene Loss. Nat. Rev. Genet. 2016, 17, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Hecker, N.; Roscito, J.G.; Foerster, L.; Langer, B.E.; Hiller, M. A Genomics Approach Reveals Insights into the Importance of Gene Losses for Mammalian Adaptations. Nat. Commun. 2018, 9, 1215. [Google Scholar] [CrossRef]
- Lyamin, O.I.; Manger, P.R.; Ridgway, S.H.; Mukhametov, L.M.; Siegel, J.M. Cetacean Sleep: An Unusual Form of Mammalian Sleep. Spec. Sect. Eur. Workshop Imag. Cogn. Neurocognition Vis. Imag. 2008, 32, 1451–1484. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yang, Y.; Zhou, X.; Xu, J.; Zhou, K.; Yang, G. Adaptive Evolution of the Osmoregulation-Related Genes in Cetaceans during Secondary Aquatic Adaptation. BMC Evol. Biol. 2013, 13, 189. [Google Scholar] [CrossRef]
- São Pedro, S.L.; Alves, J.M.P.; Barreto, A.S.; de Lima, A.O.S. Evidence of Positive Selection of Aquaporins Genes from Pontoporia Blainvillei during the Evolutionary Process of Cetaceans. PLoS ONE 2015, 10, e0134516. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, X.; Hu, B.; Zheng, J.; Xiao, W.; Hao, Y.; Liu, W.; Wang, D. Physicochemical Evolution and Molecular Adaptation of the Cetacean Osmoregulation-Related Gene UT-A2 and Implications for Functional Studies. Sci. Rep. 2015, 5, 8795. [Google Scholar] [CrossRef] [PubMed]
- Blix, A.S. Arctic Animals and Their Adaptations to Life on the Edge; Tapir Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Alberto, F.J.; Boyer, F.; Orozco-terWengel, P.; Streeter, I.; Servin, B.; de Villemereuil, P.; Benjelloun, B.; Librado, P.; Biscarini, F.; Colli, L.; et al. Convergent Genomic Signatures of Domestication in Sheep and Goats. Nat. Commun. 2018, 9, 813. [Google Scholar] [CrossRef]
- Ghoreishifar, S.M.; Eriksson, S.; Johansson, A.M.; Khansefid, M.; Moghaddaszadeh-Ahrabi, S.; Parna, N.; Davoudi, P.; Javanmard, A. Signatures of Selection Reveal Candidate Genes Involved in Economic Traits and Cold Acclimation in Five Swedish Cattle Breeds. Genet. Sel. Evol. 2020, 52, 52. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Shen, M.; Xie, X.-L.; Liu, G.-J.; Xu, Y.-X.; Lv, F.-H.; Yang, H.; Yang, Y.-L.; Liu, C.-B. Whole-Genome Resequencing of Wild and Domestic Sheep Identifies Genes Associated with Morphological and Agronomic Traits. Nat. Commun. 2020, 11, 1–16. [Google Scholar] [CrossRef] [PubMed]
- McRae, K.M.; McEwan, J.C.; Dodds, K.G.; Gemmell, N.J. Signatures of Selection in Sheep Bred for Resistance or Susceptibility to Gastrointestinal Nematodes. BMC Genom. 2014, 15, 637. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Li, S.; Liu, Q.; Wang, Z.; Zhou, Z.; Di, R.; Miao, B.; Hu, W.; Wang, X.; Hu, X. Whole-Genome Sequences of 89 Chinese Sheep Suggest Role of RXFP2 in the Development of Unique Horn Phenotype as Response to Semi-Feralization. GigaScience 2018, 7, giy019. [Google Scholar] [CrossRef]
- Wiener, P.; Robert, C.; Ahbara, A.; Salavati, M.; Abebe, A.; Kebede, A.; Wragg, D.; Friedrich, J.; Vasoya, D.; Hume, D.A.; et al. Whole-Genome Sequence Data Suggest Environmental Adaptation of Ethiopian Sheep Populations. Genome Biol. Evol. 2021, 13. [Google Scholar] [CrossRef]
- Yang, L.; Xu, L.; Zhou, Y.; Liu, M.; Wang, L.; Kijas, J.W.; Zhang, H.; Li, L.; Liu, G.E. Diversity of Copy Number Variation in a Worldwide Population of Sheep. Genomics 2018, 110, 143–148. [Google Scholar] [CrossRef]
- Bertolini, F.; Servin, B.; Talenti, A.; Rochat, E.; Kim, E.S.; Oget, C.; Palhière, I.; Crisà, A.; Catillo, G.; Steri, R.; et al. Signatures of Selection and Environmental Adaptation across the Goat Genome Post-Domestication. Genet. Sel. Evol. 2018, 50, 57. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Y.; Rosen, B.D.; Van Tassell, C.P.; Stella, A.; Tosser-Klopp, G.; Rupp, R.; Palhière, I.; Colli, L.; Sayre, B.; et al. Diversity of Copy Number Variation in the Worldwide Goat Population. Heredity 2019, 122, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Onzima, R.B.; Upadhyay, M.R.; Doekes, H.P.; Brito, L.F.; Bosse, M.; Kanis, E.; Groenen, M.A.M.; Crooijmans, R.P.M.A. Genome-Wide Characterization of Selection Signatures and Runs of Homozygosity in Ugandan Goat Breeds. Front. Genet. 2018, 9, 318. [Google Scholar] [CrossRef]
- Ben-Jemaa, S.; Mastrangelo, S.; Lee, S.-H.; Lee, J.H.; Boussaha, M. Genome-Wide Scan for Selection Signatures Reveals Novel Insights into the Adaptive Capacity in Local North African Cattle. Sci. Rep. 2020, 10, 19466. [Google Scholar] [CrossRef]
- Bickhart, D.M.; Hou, Y.; Schroeder, S.G.; Alkan, C.; Cardone, M.F.; Matukumalli, L.K.; Song, J.; Schnabel, R.D.; Ventura, M.; Taylor, J.F. Copy Number Variation of Individual Cattle Genomes Using Next-Generation Sequencing. Genome Res. 2012, 22, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.E.; Hou, Y.; Zhu, B.; Cardone, M.F.; Jiang, L.; Cellamare, A.; Mitra, A.; Alexander, L.J.; Coutinho, L.L.; Dell’Aquila, M.E.; et al. Analysis of Copy Number Variations among Diverse Cattle Breeds. Genome Res. 2010, 20, 693–703. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D.; Bruford, M.W.; Barbato, M.; Orozco-terWengel, P.; Martínez, R.; Sevane, N. Demography and Rapid Local Adaptation Shape Creole Cattle Genome Diversity in the Tropics. Evol. Appl. 2019, 12, 105–122. [Google Scholar] [CrossRef]
- Diao, S.; Luo, Y.; Xi, D.; He, Y.; Ning, G.; Zhang, H.; Li, J.; Chen, Z.; Zhang, Z. Genome-Wide Detection of Selective Signatures in a Duroc Pig Population. J. Integr. Agric. 2018, 17, 2528–2535. [Google Scholar] [CrossRef]
- Groenen, M.A.M. A Decade of Pig Genome Sequencing: A Window on Pig Domestication and Evolution. Genet. Sel. Evol. 2016, 48, 23. [Google Scholar] [CrossRef]
- Groenen, M.A.M.; Archibald, A.L.; Uenishi, H.; Tuggle, C.K.; Takeuchi, Y.; Rothschild, M.F.; Rogel-Gaillard, C.; Park, C.; Milan, D.; Megens, H.J.; et al. Analyses of Pig Genomes Provide Insight into Porcine Demography and Evolution. Nature 2012, 491, 393–398. [Google Scholar] [CrossRef]
- Paudel, Y.; Madsen, O.; Megens, H.-J.; Frantz, L.A.; Bosse, M.; Crooijmans, R.P.; Groenen, M.A. Copy Number Variation in the Speciation of Pigs: A Possible Prominent Role for Olfactory Receptors. BMC Genom. 2015, 16, 330. [Google Scholar] [CrossRef]
- Rubin, C.J.; Megens, H.J.; Barrio, A.M.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, O.; Jern, P.; Jørgensen, C.B.; et al. Strong Signatures of Selection in the Domestic Pig Genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, C.; Chen, J.; Bai, Y.; Wang, K.; Wang, Y.; Fang, M. Genome-Wide Analysis Reveals Human-Mediated Introgression from Western Pigs to Indigenous Chinese Breeds. Genes 2020, 11, 275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Fan, Y.; Wang, G.; Lai, Z.; Gao, Y.; Wu, F.; Lei, C.; Dang, R. Detection of Selection Signatures Underlying Production and Adaptive Traits Based on Whole-Genome Sequencing of Six Donkey Populations. Animals 2020, 10, 1823. [Google Scholar] [CrossRef]
- Petersen, J.L.; Mickelson, J.R.; Rendahl, A.K.; Valberg, S.J.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; et al. Genome-Wide Analysis Reveals Selection for Important Traits in Domestic Horse Breeds. PLoS Genet. 2013, 9, e1003211. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Jónsson, H.; Chang, D.; Der Sarkissian, C.; Ermini, L.; Ginolhac, A.; Albrechtsen, A.; Dupanloup, I.; Foucal, A.; Petersen, B.; et al. Prehistoric Genomes Reveal the Genetic Foundation and Cost of Horse Domestication. Proc. Natl. Acad. Sci. USA 2014, 111, E5661. [Google Scholar] [CrossRef]
- Goshu, H.A.; Chu, M.; Yan, P. Applications of Genomic Copy Number Variations on Livestock: A Review. Afr. J. Biotechnol. 2018, 17, 1313–1323. [Google Scholar]
- Bickhart, D.M.; Xu, L.; Hutchison, J.L.; Cole, J.B.; Null, D.J.; Schroeder, S.G.; Song, J.; Garcia, J.F.; Sonstegard, T.S.; Van Tassell, C.P.; et al. Diversity and Population-Genetic Properties of Copy Number Variations and Multicopy Genes in Cattle. DNA Res. 2016, 23, 253–262. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.; Wang, L.; Yang, Y.; Ni, Z.; Xie, X.; Shao, X.; Han, J.; Wan, D.; Qiu, Q. Genome-Wide Patterns of Copy Number Variation in the Chinese Yak Genome. BMC Genom. 2016, 17, 379. [Google Scholar] [CrossRef]
- Paudel, Y.; Madsen, O.; Megens, H.-J.; Frantz, L.A.; Bosse, M.; Bastiaansen, J.W.; Crooijmans, R.P.; Groenen, M.A. Evolutionary Dynamics of Copy Number Variation in Pig Genomes in the Context of Adaptation and Domestication. BMC Genom. 2013, 14, 449. [Google Scholar] [CrossRef]
- Molnár, J.; Nagy, T.; Stéger, S.; Tóth, G.; Marincs, F.; Barta, E. Genome Sequencing and Analysis of Mangalica, a Fatty Local Pig of Hungary. BMC Genom. 2014, 15, 761. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Seroussi, E.; Larkin, D.M.; Loor, J.J.; Everts-van der Wind, A.; Lee, J.-H.; Drackley, J.K.; Band, M.R.; Hernandez, A.G.; Shani, M.; et al. Identification of a Missense Mutation in the Bovine ABCG2 Gene with a Major Effect on the QTL on Chromosome 6 Affecting Milk Yield and Composition in Holstein Cattle. Genome Res. 2005, 15, 936–944. [Google Scholar] [CrossRef]
- Árnyasi, M.; Komlósi, I.; Kent, M.P.; Czeglédi, L.; Gulyás, G.; Jávor, A. Investigation of Polymorphisms and Association of the ABCG2 Gene with Milk Production Traits in Sheep. Livest. Sci. 2013, 154, 64–68. [Google Scholar] [CrossRef]
- Cieslak, M.; Reissmann, M.; Hofreiter, M.; Ludwig, A. Colours of Domestication. Biol. Rev. 2011, 86, 885–899. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Martelli, P.L.; Beretti, F.; Riggio, V.; Dall’Olio, S.; Colombo, M.; Casadio, R.; Russo, V.; Portolano, B. An Initial Comparative Map of Copy Number Variations in the Goat (Capra Hircus) Genome. BMC Genom. 2010, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Bickhart, D.M.; Liu, G. The Challenges and Importance of Structural Variation Detection in Livestock. Front. Genet. 2014, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Han, J.L.; Yang, M.; Yue, Y.J.; Guo, T.T.; Liu, J.B.; Niu, C.E.; Yang, B.H. Analysis of Agouti Signaling Protein (ASIP) Gene Polymorphisms and Association with Coat Color in Tibetan Sheep (Ovis Aries). Genet. Mol. Res. 2015, 14, 1200–1209. [Google Scholar] [CrossRef]
- Xu, L.; Bickhart, D.M.; Cole, J.B.; Schroeder, S.G.; Song, J.; Tassell, C.P.V.; Sonstegard, T.S.; Liu, G.E. Genomic Signatures Reveal New Evidences for Selection of Important Traits in Domestic Cattle. Mol. Biol. Evol. 2015, 32, 711–725. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Zhang, Y.; Tang, Z.; Li, K.; Liu, B. Genome-Wide Analysis Reveals Artificial Selection on Coat Colour and Reproductive Traits in Chinese Domestic Pigs. Mol. Ecol. Resour. 2015, 15, 414–424. [Google Scholar] [CrossRef]
- Gering, E.; Incorvaia, D.; Henriksen, R.; Wright, D.; Getty, T. Maladaptation in Feral and Domesticated Animals. Evol. Appl. 2019, 12, 1274–1286. [Google Scholar] [CrossRef]
- Qiu, Q.; Wang, L.; Wang, K.; Yang, Y.; Ma, T.; Wang, Z.; Zhang, X.; Ni, Z.; Hou, F.; Long, R.; et al. Yak Whole-Genome Resequencing Reveals Domestication Signatures and Prehistoric Population Expansions. Nat. Commun. 2015, 6, 10283. [Google Scholar] [CrossRef] [PubMed]
- Kawahara-Miki, R.; Tsuda, K.; Shiwa, Y.; Arai-Kichise, Y.; Matsumoto, T.; Kanesaki, Y.; Oda, S.; Ebihara, S.; Yajima, S.; Yoshikawa, H. Whole-Genome Resequencing Shows Numerous Genes with Nonsynonymous SNPs in the Japanese Native Cattle Kuchinoshima-Ushi. BMC Genom. 2011, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mei, C.; Wang, H.; Liao, Q.; Khan, R.; Raza, S.H.A.; Zhao, C.; Wang, H.; Cheng, G.; Tian, W.; Li, Y. Genome-Wide Analysis Reveals the Effects of Artificial Selection on Production and Meat Quality Traits in Qinchuan Cattle. Genomics 2019, 111, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, S.; Zhang, K.; Fang, C.; Xie, S.; Du, X.; Li, X.; Ni, D.; Zhao, S. Genomic Analysis to Identify Signatures of Artificial Selection and Loci Associated with Important Economic Traits in Duroc Pigs. G3: Genesgenomesgenetics 2018, 8, 3617–3625. [Google Scholar] [CrossRef]
- Suárez-Vega, A.; Gutiérrez-Gil, B.; Klopp, C.; Tosser-Klopp, G.; Arranz, J.J. Variant Discovery in the Sheep Milk Transcriptome Using RNA Sequencing. BMC Genom. 2017, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-X.; Yang, J.; Lv, F.-H.; Hu, X.-J.; Xie, X.-L.; Zhang, M.; Li, W.-R.; Liu, M.-J.; Wang, Y.-T.; Li, J.-Q. Genomic Reconstruction of the History of Native Sheep Reveals the Peopling Patterns of Nomads and the Expansion of Early Pastoralism in East Asia. Mol. Biol. Evol. 2017, 34, 2380–2395. [Google Scholar] [CrossRef] [PubMed]
- Frischknecht, M.; Bapst, B.; Seefried, F.R.; Signer-Hasler, H.; Garrick, D.; Stricker, C.; Fries, R.; Russ, I.; Sölkner, J.; Bieber, A. Genome-Wide Association Studies of Fertility and Calving Traits in Brown Swiss Cattle Using Imputed Whole-Genome Sequences. BMC Genom. 2017, 18, 1–13. [Google Scholar] [CrossRef]
- Rothammer, S.; Seichter, D.; Förster, M.; Medugorac, I. A Genome-Wide Scan for Signatures of Differential Artificial Selection in Ten Cattle Breeds. BMC Genom. 2013, 14, 1–17. [Google Scholar] [CrossRef]
- Cao, Y.-H.; Xu, S.-S.; Shen, M.; Chen, Z.-H.; Gao, L.; Lv, F.-H.; Xie, X.-L.; Wang, X.-H.; Yang, H.; Liu, C.-B. Historical Introgression from Wild Relatives Enhanced Climatic Adaptation and Resistance to Pneumonia in Sheep. Mol. Biol. Evol. 2021, 38, 838–855. [Google Scholar] [CrossRef]
- Hu, X.-J.; Yang, J.; Xie, X.-L.; Lv, F.-H.; Cao, Y.-H.; Li, W.-R.; Liu, M.-J.; Wang, Y.-T.; Li, J.-Q.; Liu, Y.-G. The Genome Landscape of Tibetan Sheep Reveals Adaptive Introgression from Argali and the History of Early Human Settlements on the Qinghai–Tibetan Plateau. Mol. Biol. Evol. 2019, 36, 283–303. [Google Scholar] [CrossRef] [PubMed]
- Barbato, M.; Hailer, F.; Upadhyay, M.; Del Corvo, M.; Colli, L.; Negrini, R.; Kim, E.-S.; Crooijmans, R.P.; Sonstegard, T.; Ajmone-Marsan, P. Adaptive Introgression from Indicine Cattle into White Cattle Breeds from Central Italy. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Li, Z.; Yan, Y.; Li, Y.; Wu, H.; Pei, J.; Yan, P.; Yang, R.; Guo, X.; Lan, X. Selection and Introgression Facilitated the Adaptation of Chinese Native Endangered Cattle in Extreme Environments. Evol. Appl. 2021, 14, 860–873. [Google Scholar] [CrossRef]
- Fan, R.; Gu, Z.; Guang, X.; Marín, J.C.; Varas, V.; González, B.A.; Wheeler, J.C.; Hu, Y.; Li, E.; Sun, X. Genomic Analysis of the Domestication and Post-Spanish Conquest Evolution of the Llama and Alpaca. Genome Biol. 2020, 21, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Grossen, C.; Keller, L.; Biebach, I.; Croll, D. International Goat Genome Consortium Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex. PLoS Genet. 2014, 10, e1004438. [Google Scholar] [CrossRef] [PubMed]
- Hendrickson, S.L. A Genome Wide Study of Genetic Adaptation to High Altitude in Feral Andean Horses of the Páramo. BMC Evol. Biol. 2013, 13, 1–13. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X.; et al. Whole-Genome Sequencing of Eight Goat Populations for the Detection of Selection Signatures Underlying Production and Adaptive Traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Yin, D.; Liu, Y.; Seim, I.; Xu, S.; Yang, G. Adaptive Evolution of Energy Metabolism-Related Genes in Hypoxia-Tolerant Mammals. Front. Gen. 2017, 8, 205. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Li, K.; Fan, B.; Tang, Z. A Genome-Wide Scan for Signatures of Selection in Chinese Indigenous and Commercial Pig Breeds. BMC Genet. 2014, 15, 7. [Google Scholar] [CrossRef]
- Bosse, M.; Megens, H.J.; Madsen, O.; Frantz, L.A.F.; Paudel, Y.; Crooijmans, R.P.M.A.; Groenen, M.A.M. Untangling the Hybrid Nature of Modern Pig Genomes: A Mosaic Derived from Biogeographically Distinct and Highly Divergent Sus Scrofa Populations. Mol. Ecol. 2014, 23, 4089–4102. [Google Scholar] [CrossRef]
- Frantz, L.A.F.; Schraiber, J.G.; Madsen, O.; Megens, H.J.; Cagan, A.; Bosse, M.; Paudel, Y.; Crooijmans, R.P.M.A.; Larson, G.; Groenen, M.A.M. Evidence of Long-Term Gene Flow and Selection during Domestication from Analyses of Eurasian Wild and Domestic Pig Genomes. Nat. Genet. 2015, 47, 1141–1148. [Google Scholar] [CrossRef]
Type of Signature | Detectable Pattern | Methodologies |
---|---|---|
Change allele frequency spectrum | Increased frequency of derived alleles | Tajima’s D [24] |
Extended haplotype homozygosity | Linkage disequilibrium (LD) persistency and unusual long-range haplotypes | Cross-population extended haplotype homozygosity (XP-EHH) [23] |
Integrated haplotype score (iHS) [23] | ||
Population differentiation | Different allele frequencies between populations | FST [23] |
Composite methods | Detects increased frequency of derived alleles, difference in allele frequencies and unusual long-range haplotypes | CMS [26] |
Ungulate | Species | Genome Size (Gbp) | Number of Annotated Genes | GenBank Assembly Accession |
---|---|---|---|---|
Desert ungulates | Bactrian camel | 2.4 | 20,251 | AGVR01000000, JARL00000000 |
Dromedary camel | 2.5 | 20,714 | JDVD00000000 | |
Red deer | 3.3 | 22,138 | MKHE00000000 | |
High-altitude ungulates | Wild yak | 2.6 | 22,282 | AGSK01000000 |
Siberian musk deer | 3.1 | 19,363 | GCA_011751665.1 | |
Artic ungulates | Rein deer | 2.9 | 27,332 | GCA_014898785.1 |
Savanna | Giraffe | 2.9 | 17,210 | LVKQ00000000 |
African buffalo | 2.7 | 19,765 | SAMN05717674 | |
Marine | Blue whale | 2.4 | 19,518 | GCA_009873245.2 |
Dolphin | 2.5 | 16,550 | GCA_011057625.1 | |
Domesticated ungulates | Cow | 2.7 | 21,880 | GCA_002263795.2 |
Sheep | 2.9 | 20,506 | GCA_002742125.1 | |
Goat | 2.9 | 21,361 | GCA_001704415.1 | |
Pig | 2.5 | 21,303 | GCA_000003025.6 | |
Donkey | 2.3 | 19,963 | GCA_003033725.1 | |
Horse | 2.5 | 20,955 | GCA_002863925.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebii, V.J.; Mpolya, E.A.; Muchadeyi, F.C.; Domelevo Entfellner, J.-B. Genomics of Adaptations in Ungulates. Animals 2021, 11, 1617. https://doi.org/10.3390/ani11061617
Chebii VJ, Mpolya EA, Muchadeyi FC, Domelevo Entfellner J-B. Genomics of Adaptations in Ungulates. Animals. 2021; 11(6):1617. https://doi.org/10.3390/ani11061617
Chicago/Turabian StyleChebii, Vivien J., Emmanuel A. Mpolya, Farai C. Muchadeyi, and Jean-Baka Domelevo Entfellner. 2021. "Genomics of Adaptations in Ungulates" Animals 11, no. 6: 1617. https://doi.org/10.3390/ani11061617
APA StyleChebii, V. J., Mpolya, E. A., Muchadeyi, F. C., & Domelevo Entfellner, J.-B. (2021). Genomics of Adaptations in Ungulates. Animals, 11(6), 1617. https://doi.org/10.3390/ani11061617