Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Heat Treatment
2.3. Heat Stress
2.4. Examination of Embryonic Abnormalities
2.5. Semen Collection and Classification
- Volume (mL): determined with a pipette;
- Motility: determined by subjective estimation using a light microscope (Leica) on a scoring scale from 0 to 5 at 40× magnification. The test was always performed by the same experienced person;
- Concentration: determined with a spectrophotometer (Accucell IMV, France). At the beginning of the experiment, the instrument was calibrated. A concentration curve was established by comparing the spectrophotometer data of the samples in a dilution series with the concentrations determined using the Makler chamber;
- Type of morphological abnormalities and live/dead cell ratio: the study was performed using eosin–aniline blue vital staining [37].
2.6. Collection of Gonadal Tissues
2.7. DNA Isolation and Sex Determination
2.8. RNA Isolation, cDNA Writing, and Real-time qPCR
2.9. Statistical Analysis
3. Results
3.1. Analysis the Effect of Heat Stress on Reproductive Parameters of Heat-Treated Chickens
3.1.1. Spermatological Analysis in Roosters
3.1.2. Examination the Egg Production and Fertilization Rate in Hens
3.2. Comparison the Expression Profile of Heat-Shock Proteins and Heat-Shock Factors in Heat-Treated and Control Chicken Gonads
3.2.1. Comparison the Delta Ct Values
3.2.2. Comparison the Relative Expression Profile
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babinszky, L.; Halas, V.; Verstegen, M.W. Impacts of Climate Change on Animal Production and Quality of Animal Food Products. In Climate Change Socioeconomic Effects; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Araya, A.; Prasad, P.; Zambreski, Z.; Gowda, P.; Ciampitti, I.; Assefa, Y.; Girma, A. Spatial analysis of the impact of climate change factors and adaptation strategies on productivity of wheat in Ethiopia. Sci. Total. Environ. 2020, 731, 139094. [Google Scholar] [CrossRef] [PubMed]
- Grünig, M.; Mazzi, D.; Calanca, P.; Karger, D.N.; Pellissier, L. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change. Commun. Biol. 2020, 3, 1–10. [Google Scholar] [CrossRef]
- Wolfenson, D.; Lew, B.; Thatcher, W.; Graber, Y.; Meidan, R. Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Anim. Reprod. Sci. 1997, 47, 9–19. [Google Scholar] [CrossRef]
- Rath, P.; Behura, N.; Sahoo, S.; Panda, P.; Mandal, K.; Panigrahi, P. Amelioration of Heat Stress for Poultry Welfare: A Strategic Approach. Int. J. Livest. Res. 2015, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mashaly, M.M.; Hendricks, G.L.; Kalama, M.A.; Gehad, A.E.; Abbas, A.O.; Patterson, P.H. Effect of Heat Stress on Production Parameters and Immune Responses of Commercial Laying Hens. Poult. Sci. 2004, 83, 889–894. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Tu, W.-L.; Wang, S.-H.; Tang, P.-C.; Chen, C.-F.; Chen, H.-H.; Lee, Y.-P.; Chen, S.-E.; Huang, S.-Y. Annotation of Differential Gene Expression in Small Yellow Follicles of a Broiler-Type Strain of Taiwan Country Chickens in Response to Acute Heat Stress. PLoS ONE 2015, 10, e0143418. [Google Scholar] [CrossRef] [Green Version]
- Murugesan, S.; Ullengala, R.; Amirthalingam, V. Heat shock protein and thermal stress in chicken. In Heat Shock Proteins in Veterinary Medicine and Sciences; Springer Science and Business Media LLC: Berlin, Germany, 2018; pp. 179–193. ISBN 9783319733777. [Google Scholar]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Lin, X.; Liu, H.-C.; Odle, J.; Luo, X. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poult. Sci. 2015, 94, 1635–1644. [Google Scholar] [CrossRef]
- Zhang, W.W.; Kong, L.N.; Zhang, X.Q.; Luo, Q.B. Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genet. Mol. Res. 2014, 13, 9787–9794. [Google Scholar] [CrossRef]
- Xie, J.; Tang, L.; Lu, L.; Zhang, L.; Xi, L.; Liu, H.-C.; Odle, J.; Luo, X. Differential Expression of Heat Shock Transcription Factors and Heat Shock Proteins after Acute and Chronic Heat Stress in Laying Chickens (Gallus gallus). PLoS ONE 2014, 9, e102204. [Google Scholar] [CrossRef] [Green Version]
- Cedraz, H.; Gromboni, J.G.G.; Garcia, A.A.P.; Filho, R.V.F.; Souza, T.M.; De Oliveira, E.R.; De Oliveira, E.B.; Nascimento, C.S.D.; Meneghetti, C.; Wenceslau, A.A. Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS ONE 2017, 12, e0186083. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Saelao, P.; Chanthavixay, K.; Gallardo, R.; Bunn, D.; Lamont, S.J.; Dekkers, J.M.; Kelly, T.; Zhou, H. Physiological responses to heat stress in two genetically distinct chicken inbred lines. Poult. Sci. 2018, 97, 770–780. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, A.; Michiels, J.; DeGroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rozenboim, I.; Tako, E.; Gal-Garber, O.; Proudman, J.A.; Uni, Z. The Effect of Heat Stress on Ovarian Function of Laying Hens. Poult. Sci. 2007, 86, 1760–1765. [Google Scholar] [CrossRef] [PubMed]
- Al-Rukibat, R.K.; Al-Zghoul, M.B.; Hananeh, W.M.; Al-Natour, M.Q.; Abu-Basha, E.A. Thermal manipulation during late embryogenesis: Effect on body weight and temperature, thyroid hormones, and differential white blood cell counts in broiler chickens. Poult. Sci. 2017, 96, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Walstra, I.; Napel, J.T.; Kemp, B.; Brand, H.V.D. Temperature manipulation during layer chick embryogenesis. Poult. Sci. 2010, 89, 1502–1508. [Google Scholar] [CrossRef]
- Al-Zghoul, M.B.; El-Bahr, S.M. Thermal manipulation of the broilers embryos: Expression of muscle markers genes and weights of body and internal organs during embryonic and post-hatch days. BMC Veter- Res. 2019, 15, 166. [Google Scholar] [CrossRef]
- Vinoth, A.; Thirunalasundari, T.; Shanmugam, M.; Uthrakumar, A.; Suji, S.; Rajkumar, U. Evaluation of DNA methylation and mRNA expression of heat shock proteins in thermal manipulated chicken. Cell Stress Chaperon. 2017, 23, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Geraert, P.A.; Guillaumin, S.; Leclercq, B. Are genetically lean broilers more resistant to hot climate? Br. Poult. Sci. 1993, 34, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, U.; Reddy, M.R.; Rao, S.V.R.; Radhika, K.; Shanmugam, M. Evaluation of Growth, Carcass, Immune Response and Stress Parameters in Naked Neck Chicken and Their Normal Siblings under Tropical Winter and Summer Temperatures. Asian-Australasian J. Anim. Sci. 2011, 24, 509–516. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.M.; Choi, Y.-H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Perini, F.; Cendron, F.; Rovelli, G.; Castellini, C.; Cassandro, M.; Lasagna, E. Emerging Genetic Tools to Investigate Molecular Pathways Related to Heat Stress in Chickens: A Review. Animals 2020, 11, 46. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperons, and the stress response: Evolutionary and Ecological Physiology. Annu. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef] [Green Version]
- Genest, O.; Wickner, S.; Doyle, S.M. Hsp90 and Hsp70 chaperones: Collaborators in protein remodeling. J. Biol. Chem. 2019, 294, 2109–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, G.C.; Mak, J.Y. Re-induction of hsp70 synthesis: An assay for thermotolerance. Int. J. Hyperth. 2009, 25, 249–257. [Google Scholar] [CrossRef]
- Johnson, J.L. Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim. Biophys. Acta (BBA) Bioenerg. 2012, 1823, 607–613. [Google Scholar] [CrossRef] [Green Version]
- Stankiewicz, M.; Mayer, M.P. The universe of Hsp90. Biomol. Concepts 2012, 3, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Taipale, M.; Jarosz, D.F.; Lindquist, S. HSP90 at the hub of protein homeostasis: Emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, K.A.; Iwama, G.K.; Nichols, C.R.; Godin, D.V.; Cheng, K.M. Increased Heat Shock Protein Expression after Stress in Japanese Quail. Stress 1998, 2, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Saju, J.M.; Hossain, M.S.; Liew, W.C.; Pradhan, A.; Thevasagayam, N.M.; Tan, L.S.E.; Anand, A.; Olsson, P.-E.; Orbán, L. Heat Shock Factor 5 Is Essential for Spermatogenesis in Zebrafish. Cell Rep. 2018, 25, 3252–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabergh, C.; Airaksinen, S.; Soitamo, A.; Bjorklund, H.; Johansson, T.; Nikinmaa, M.; Sistonen, L. Tissue-specific expression of zebrafish (Danio rerio) heat shock factor 1 mRNAs in response to heat stress. J. Exp. Biol. 2000, 203, 1817–1824. [Google Scholar] [CrossRef]
- Nakai, A.; I Morimoto, R. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Mol. Cell. Biol. 1993, 13, 1983–1997. [Google Scholar] [CrossRef]
- Fujimoto, M.; Nakai, A. The heat shock factor family and adaptation to proteotoxic stress. FEBS J. 2010, 277, 4112–4125. [Google Scholar] [CrossRef] [PubMed]
- Melesse, A.; Maak, S.; Schmidt, R.; Von Lengerken, G. Effect of long-term heat stress on some performance traits and plasma enzyme activities in Naked-neck chickens and their F1 crosses with commercial layer breeds. Livest. Sci. 2011, 141, 227–231. [Google Scholar] [CrossRef]
- Burrows, W.; Quinn, J. The Collection of Spermatozoa from the Domestic Fowl and Turkey. Poult. Sci. 1937, 16, 19–24. [Google Scholar] [CrossRef]
- Váradi, É.; Drobnyák, Á.; Végi, B.; Liptói, K.; Kiss, C.; Barna, J. Cryopreservation of gander semen in cryovials – Comparative study. Acta Vet. Hung. 2019, 67, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Borowska, D.; Rothwell, L.; Bailey, R.; Watson, K.; Kaiser, P. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs. Vet. Immunol. Immunopathol. 2016, 170, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Gao, Y.-Y.; Huang, Y.-Q.; Fan, Q.; Lu, X.-T.; Wang, C.-K. Selection of housekeeping genes for quantitative gene expression analysis in yellow-feathered broilers. Ital. J. Anim. Sci. 2017, 17, 540–546. [Google Scholar] [CrossRef] [Green Version]
- El-Tarabany, M.S. Effect of thermal stress on fertility and egg quality of Japanese quail. J. Therm. Biol. 2016, 61, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Laine, V.N.; Verhagen, I.; Mateman, A.C.; Pijl, A.; Williams, T.D.; Gienapp, P.; Van Oers, K.; Visser, M.E. Exploration of tissue-specific gene expression patterns underlying timing of breeding in contrasting temperature environments in a song bird. BMC Genom. 2019, 20, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Végi, B.; Váradi, É.; Szabó, Zs.; Ferencziné, Sz.Zs.; Molnár Kőrösiné, M.A.; Barna, J. A hőkezelés hatása hímivarú baromfifélék spermatológiai mutatóira. AWETH 2008, 4, 401–408. (In Hungarian) [Google Scholar]
- Yahav, S.; Luger, D.; Cahaner, A.; Dotan, M.; Rusal, M.; Hurwitz, S. Thermoregulation in naked neck chickens subjected to different ambient temperatures. Br. Poult. Sci. 1998, 39, 133–138. [Google Scholar] [CrossRef]
- Mezquita, J.; Mezquita, B.; Durfort, M.; Mezquita, C. Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. J. Cell. Biochem. 2001, 82, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Tarkhan, A.H.; Saleh, K.M.M.; Al-Zghoul, M.B. HSF3 and Hsp70 Expression during Post-Hatch Cold Stress in Broiler Chickens Subjected to Embryonic Thermal Manipulation. Vet. Sci. 2020, 7, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, L.; Yu, J.; Bao, E. Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. Br. Poult. Sci. 2009, 50, 504–511. [Google Scholar] [CrossRef]
- Hao, Y.; Gu, X.H. Effects of heat shock protein 90 expression on pectoralis major oxidation in broilers exposed to acute heat stress. Poult. Sci. 2014, 93, 2709–2717. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-H.; Cheng, C.-Y.; Tang, P.-C.; Chen, C.-F.; Chen, H.-H.; Lee, Y.-P.; Huang, S.-Y. Acute Heat Stress Induces Differential Gene Expressions in the Testes of a Broiler-Type Strain of Taiwan Country Chickens. PLoS ONE 2015, 10, e0125816. [Google Scholar] [CrossRef]
- Wang, S.-H.; Cheng, C.-Y.; Chen, C.-J.; Chan, H.-L.; Chen, H.-H.; Tang, P.-C.; Chen, C.-F.; Lee, Y.-P.; Huang, S.-Y. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens. Anim. Biotechnol. 2019, 30, 129–145. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, F.; Hamasaki, S.; Hara, S.; Uchimura, T.; Shiraishi, E.; Osafune, N.; Takagi, H.; Yazawa, T.; Kamei, Y.; Kitano, T. Heat shock factor 1 protects germ cell proliferation during early ovarian differentiation in medaka. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinkawa, T.; Tan, K.; Fujimoto, M.; Hayashida, N.; Yamamoto, K.; Takaki, E.; Takii, R.; Prakasam, R.; Inouye, S.; Mezger, V.; et al. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol. Biol. Cell 2011, 22, 3571–3583. [Google Scholar] [CrossRef] [PubMed]
- Joutsen, J.; Da Silva, A.J.; Luoto, J.C.; Budzynski, M.A.; Nylund, A.S.; de Thonel, A.; Concordet, J.-P.; Mezger, V.; Sabéran-Djoneidi, D.; Henriksson, E.; et al. Heat Shock Factor 2 Protects against Proteotoxicity by Maintaining Cell-Cell Adhesion. Cell Rep. 2020, 30, 583–597. [Google Scholar] [CrossRef]
- Lee, J.C.-I.; Tsai, L.-C.; Hwa, P.-Y.; Chan, C.-L.; Huang, A.; Chin, S.-C.; Wang, L.-C.; Lin, J.-T.; Linacre, A.; Hsieh, H.-M. A novel strategy for avian species and gender identification using the CHD gene. Mol. Cell. Probes 2010, 24, 27–31. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, R.; Tokodyné Szabadi, N.; Lázár, B.; Buda, K.; Végi, B.; Barna, J.; Patakiné Várkonyi, E.; Liptói, K.; Pain, B.; Gócza, E. Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. Animals 2021, 11, 1575. https://doi.org/10.3390/ani11061575
Tóth R, Tokodyné Szabadi N, Lázár B, Buda K, Végi B, Barna J, Patakiné Várkonyi E, Liptói K, Pain B, Gócza E. Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. Animals. 2021; 11(6):1575. https://doi.org/10.3390/ani11061575
Chicago/Turabian StyleTóth, Roland, Nikolett Tokodyné Szabadi, Bence Lázár, Kitti Buda, Barbara Végi, Judit Barna, Eszter Patakiné Várkonyi, Krisztina Liptói, Bertrand Pain, and Elen Gócza. 2021. "Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken" Animals 11, no. 6: 1575. https://doi.org/10.3390/ani11061575
APA StyleTóth, R., Tokodyné Szabadi, N., Lázár, B., Buda, K., Végi, B., Barna, J., Patakiné Várkonyi, E., Liptói, K., Pain, B., & Gócza, E. (2021). Effect of Post-Hatch Heat-Treatment in Heat-Stressed Transylvanian Naked Neck Chicken. Animals, 11(6), 1575. https://doi.org/10.3390/ani11061575