Effect of Rumex nervosus Leaf Powder on the Breast Meat Quality, Carcass Traits, and Performance Indices of Eimeria tenella Oocyst-Infected Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Consent to Participate
2.2. Birds’ Housing and Management
2.3. Dietary Experimental Treatments
2.4. Collection and Compositions of Rumex nervosus Leaf Powder
2.5. Growth Performance Indices
2.6. Slaughter Composition Variables
2.7. Meat Quality Indicators
2.7.1. Meat pH
2.7.2. Color Measurements
2.7.3. Water-Holding Capacity (WHC)
2.7.4. Measurement of Cooking Water Loss (CWL)
2.7.5. Measurement of Myofibril Fragmentation Index
2.7.6. Warner–Bratzler Shear Force (Tenderness) Measurement
2.7.7. Texture Profile Analysis (TPA)
2.8. Statistical Analysis
3. Results
3.1. Growth Performance Indices
3.2. Carcasses and Body Component Variables
3.3. Muscle pH and Color
3.4. Quality of Meat
3.5. Texture Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augustyńska-Prejsnar, A.; Sokołowicz, Z. Factors affecting the sensory quality of broiler chicken meat. Wiadomości Zootech. 2014, 2, 108–116. [Google Scholar]
- Organisation for Economic Co-operation and Development (OECD); Food and Agricultural Organization of the United Nations (FAO). OECD–FAO Agricultural Outlook 2008–2017. Organisation for Economic Cooperation and Development; FAO: Rome, Italy; OECD: Paris, France, 2008. [Google Scholar]
- Shewita, R.; Taha, A. Influence of dietary supplementation of ginger powder at different levels on growth performance, haematological profiles, slaughter traits and gut morphometry of broiler chickens. S. Afr. J. Anim. Sci. 2018, 48. [Google Scholar] [CrossRef]
- Santiago, H.L. Biological, Nutritional, and Processing Factors Affecting Breast Meat Quality of Broilers. Ph.D. Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2002. [Google Scholar]
- Hussein, E.; Suliman, G.; Al-Owaimer, A.; Ahmed, S.; Abudabos, A.; Abd El-Hack, M.; Taha, A.; Saadeldin, I.M.; Swelum, A. Effects of stock, sex, and muscle type on carcass characteristics and meat quality attributes of parent broiler breeders and broiler chickens. Poult. Sci. 2019, 98, 6586–6592. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, K.D. Comparative effect of dietary Morinda lucida leaf and Butylated hydroxyanisole (BHA) on carcass traits, meat quality, and oxidative stability of broiler chickens. J. Food Sci. Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Matarneh, S.K.; England, E.M.; Scheffler, T.L.; Gerrard, D.E. The conversion of muscle to meat. In Lawrie’ s Meat Science; Elsevier: Amsterdam, The Netherlands, 2017; pp. 159–185. [Google Scholar]
- Álvarez, C.; Morán, L.; Keenan, D.F.; Mullen, A.-M.; Delgado-Pando, G. Mechanical and biochemical methods for rigor measurement: Relationship with eating quality. J. Food Qual. 2019, 2019, 1894543. [Google Scholar] [CrossRef]
- Mir, N.A.; Rafiq, A.; Kumar, F.; Singh, V.; Shukla, V. Determinants of broiler chicken meat quality and factors affecting them: A review. J. Food Sci. Technol. 2017, 54, 2997–3009. [Google Scholar] [CrossRef]
- Partovi, R.; Seifi, S.; Pabast, M.; Babaei, A. Effects of dietary supplementation with nanocurcumin on quality and safety of meat from broiler chicken infected with Eimeria species. J. Food Saf. 2019, 39, e12703. [Google Scholar] [CrossRef]
- Galli, G.M.; Gerbet, R.R.; Griss, L.G.; Fortuoso, B.F.; Petrolli, T.G.; Boiago, M.M.; Souza, C.F.; Baldissera, M.D.; Mesadri, J.; Wagner, R. Combination of herbal components (curcumin, carvacrol, thymol, cinnamaldehyde) in broiler chicken feed: Impacts on response parameters, performance, fatty acid profiles, meat quality and control of coccidia and bacteria. Microb. Pathog. 2020, 139, 103916. [Google Scholar] [CrossRef]
- European Commission (EC). Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union 2003, L268, 1–30. [Google Scholar]
- Granstad, S.; Kristoffersen, A.B.; Benestad, S.L.; Sjurseth, S.K.; David, B.; Sørensen, L.; Fjermedal, A.; Edvardsen, D.H.; Sanson, G.; Løvland, A. Effect of feed additives as alternatives to in-feed antimicrobials on production performance and intestinal clostridium perfringens counts in broiler chickens. Animals 2020, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Roila, R.; Branciari, R.; Pecorelli, I.; Cristofani, E.; Carloni, C.; Ranucci, D.; Fioroni, L. Occurrence and residue concentration of coccidiostats in feed and food of animal origin; Human exposure assessment. Foods 2019, 8, 477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, L.; Fodey, T.L.; Crooks, S.R.; Moloney, M.; O’Mahony, J.; Delahaut, P.; O’Kennedy, R.; Danaher, M. A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 2014, 97, 358–374. [Google Scholar] [CrossRef]
- Khater, H.F.; Ziam, H.; Abbas, A.; Abbas, R.Z.; Raza, M.A.; Selim, A. Avian coccidiosis: Recent advances in alternative control strategies and vaccine development. Agrobiol. Rec. 2020, 1, 11–25. [Google Scholar]
- McDougald, L.R.; Seibert, B.P. Residual activity of anticoccidial drugs in chickens after withdrawal of medicated feeds. Vet. Parasitol. 1998, 74, 91–99. [Google Scholar] [CrossRef]
- Vasas, A.; Orbán-Gyapai, O.; Hohmann, J. The genus rumex: Review of traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2015, 175, 198–228. [Google Scholar] [CrossRef] [PubMed]
- Orbán-Gyapai, O. Pharmacological Screening of Polygonaceae Species and Isolation of Biologically Active Compounds from Rumex aquaticus L. and Rumex thyrsiflorus Fingerh. Ph.D. Thesis, University of Szeged, Szeged, Hungary, 2017. [Google Scholar]
- Al-Sunafi, S.M.Y. Pharmacognostical Study of Rumex nervosus Vahl. Family (Polygonaceae) growing in Yemen. Ph.D. Thesis, Cairo University, Cairo, Egypt, 2016. [Google Scholar]
- Quradha, M.M.; Khan, R.; Rehman, M.-U.; Abohajeb, A. Chemical composition and in vitro anticancer, antimicrobial and antioxidant activities of essential oil and methanol extract from Rumex nervosus. Nat. Prod. Res. 2018, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gebreslassie, H.B.; Hagos, Z.; Hintsa, K.; Weletnsae, T.; Tadege, T. Antioxidant and free radical scavenging activities of ethyl acetate leaf extract of Rumex nervosus. Drug Invent. Today 2020, 14, 11–16. [Google Scholar]
- Al-Quraishy, S.; Qasem, M.A.; Al-Shaebi, E.M.; Murshed, M.; Mares, M.M.; Dkhil, M.A. Rumex nervosus changed the oxidative status of chicken caecum infected with Eimeria tenella. J. King Saud Univ. Sci. 2020, 32, 2207–2211. [Google Scholar] [CrossRef]
- Qasem, M.A.; Dkhil, M.A.; Al-Shaebi, E.M.; Murshed, M.; Mares, M.; Al-Quraishy, S. Rumex nervosus leaf extracts enhance the regulation of goblet cells and the inflammatory response during infection of chickens with Eimeria tenella. J. King Saud Univ. Sci. 2020, 32, 1818–1823. [Google Scholar] [CrossRef]
- Azzam, M.M.; Qaid, M.M.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Albaadani, H.H.; Alhidary, I.A. Rumex nervosus leaves meal improves body weight gain, duodenal morphology, serum thyroid hormones, and cecal microflora of broiler chickens during the starter period. Poult. Sci. 2020, 99, 5572–5581. [Google Scholar] [CrossRef]
- Qaid, M.M.; Al-Mufarrej, S.I.; Azzam, M.M.; Al-Garadi, M.A.; Albaadani, H.H.; Alhidary, I.A.; Aljumaah, R.S. Anti-coccidial effect of rumex nervosus leaf powder on broiler chickens infected with eimeria tenella oocyst. Animals 2021, 11, 167. [Google Scholar] [CrossRef]
- Macdonald, S.E.; Nolan, M.J.; Harman, K.; Boulton, K.; Hume, D.A.; Tomley, F.M.; Stabler, R.A.; Blake, D.P. Effects of Eimeria tenella infection on chicken caecal microbiome diversity, exploring variation associated with severity of pathology. PLoS ONE 2017, 12, e0184890. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry: 1994; National Academies Press: Washington, DC, USA, 1994.
- Song, X.; Li, Y.; Chen, S.; Jia, R.; Huang, Y.; Zou, Y.; Li, L.; Zhao, X.; Yin, Z. Anticoccidial effect of herbal powder “Shi Ying Zi” in chickens infected with Eimeria tenella. Animals 2020, 10, 1484. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Alyemni, A.H.; Swilam, E.O.; Al-Ghadi, M.A.Q. Comparative anticoccidial effect of some natural products against Eimeria spp. infection on performance traits, intestinal lesion and occyte number in broiler. Pak. J. Zool. 2017, 49, 989–1995. [Google Scholar] [CrossRef]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Kaczmarek, S.; Adamski, M.; Rutkowski, A.; Zmudzińska, A.; Perz, K.; Hejdysz, M. Growth Performance and Carcass Quality in Broiler Chickens Fed on Legume Seeds and Rapeseed Meal. Animals 2020, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Valizadeh, S.; Naseri, M.; Babaei, S.; Hosseini, S.M.H.; Imani, A. Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. Int. J. Biol. Macromol. 2019, 134, 604–612. [Google Scholar] [CrossRef]
- Cázares-Gallegos, R.; Silva-Vázquez, R.; Hernández-Martínez, C.; Gutiérrez-Soto, J.; Kawas-Garza, J.; Hume, M.; Méndez-Zamora, G. Performance, carcass variables, and meat quality of broilers supplemented with dietary Mexican oregano oil. Braz. J. Poult. Sci. 2019, 21. [Google Scholar] [CrossRef]
- Ledesma, E.; Laca, A.; Rendueles, M.; Díaz, M. Texture, colour and optical characteristics of a meat product depending on smoking time and casing type. LWT Food Sci. Technol. 2016, 65, 164–172. [Google Scholar] [CrossRef]
- Wilhelm, A.E.; Maganhini, M.B.; Hernández-Blazquez, F.J.; Ida, E.I.; Shimokomaki, M. Protease activity and the ultrastructure of broiler chicken PSE (pale, soft, exudative) meat. Food Chem. 2010, 119, 1201–1204. [Google Scholar] [CrossRef]
- Hussein, E.; Suliman, G.; Alowaimer, A.; Ahmed, S.; Abd El-Hack, M.; Taha, A.; Swelum, A. Growth, carcass characteristics, and meat quality of broilers fed a low-energy diet supplemented with a multienzyme preparation. Poult. Sci. 2020, 99, 1988–1994. [Google Scholar] [CrossRef]
- Suliman, G.M.; Al-Owaimer, A.N.; Hussein, E.O.S.; Abuelfatah, K.; Othman, M.B. Meat quality characteristics of the Arabian camel (Camelus dromedarius) at different ages and post-mortem ageing periods. Asian Australas. J. Anim. Sci. 2020, 33, 1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novaković, S.; Tomašević, I. A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: A review. In Proceedings of the 59th International Meat Industry Conference, Zlatibor, Serbia, 1–4 October 2017. IOP Conference Series: Earth and Environmental Science. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute. SAS/OR 9.3 User’s Guide: Mathematical Programming Examples; SAS Institute: Cary, NC, USA, 2012. [Google Scholar]
- El-Shazly, K.A.; El-Latif, A.A.; Abdo, W.; El-Morsey, A.; El-Aziz, M.I.A.; El-Mogazy, H. The anticoccidial activity of the fluoroquinolone lomefloxacin against experimental Eimeria tenella infection in broiler chickens. Parasitol. Res. 2020, 119, 1955–1968. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, W.K. Dietary application of tannins as a potential mitigation strategy for current challenges in poultry production: A review. Animals 2020, 10, 2389. [Google Scholar] [CrossRef] [PubMed]
- Bozkurt, M.; Ege, G.; Aysul, N.; Akşit, H.; Tüzün, A.E.; Küçükyılmaz, K.; Borum, A.E.; Uygun, M.; Akşit, D.; Aypak, S. Effect of anticoccidial monensin with oregano essential oil on broilers experimentally challenged with mixed Eimeria spp. Poult. Sci. 2016, 95, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, R.A.; Bounechada, M.; Mohammedi, A.; Silva, L.R.; Alves, G. Dietary use of Rosmarinus officinalis and Thymus vulgaris as anticoccidial alternatives in poultry. Anim. Feed Sci. Technol. 2021, 273, 114826. [Google Scholar] [CrossRef]
- Sidiropoulou, E.; Skoufos, I.; Marugan-Hernandez, V.; Giannenas, I.; Bonos, E.; Aguiar-Martins, K.; Lazari, D.; Blake, D.; Tzora, A. In vitro anticoccidial study of oregano and garlic essential oils and effects on growth performance, faecal oocyst output and intestinal microbiota in vivo. Front. Vet. Sci. 2020, 7, 420. [Google Scholar] [CrossRef]
- Shetshak, M.; Suleiman, M.; Jatau, I.; Ameh, M.; Akefe, I. Anticoccidial efficacy of Garcinia kola (Heckel H.) against experimental Eimeria tenella infection in chicks. J. Parasit. Dis. 2021, 1–15. [Google Scholar] [CrossRef]
- Pop, L.M.; Györke, A.; Pop, I.A.; Friss, Z.; Bărburaş, D.; Toma-Naic, A.; Kálmar, Z.; Magdaş, V.; Pintea, A.; Mircean, V. Artemisia annua improves chickens performances but has little anticoccidial effect in broiler chickens. Sci. Parasitol. 2015, 16, 95–102. [Google Scholar]
- Giannenas, I.; Florou-Paneri, P.; Papazahariadou, M.; Christaki, E.; Botsoglou, N.; Spais, A. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch. Anim. Nutr. 2003, 57, 99–106. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.; Farag, M.; Shaheen, H.; Abdel-Latif, M.; Noreldin, A.; Patra, A. The usefulness of oregano and its derivatives in poultry nutrition. World Poult. Sci. J. 2018, 74, 463–474. [Google Scholar] [CrossRef]
- Samuel, K.; Wang, J.; Yue, H.; Wu, S.; Zhang, H.; Duan, Z.; Qi, G. Effects of dietary gallic acid supplementation on performance, antioxidant status, and jejunum intestinal morphology in broiler chicks. Poult. Sci. 2017, 96, 2768–2775. [Google Scholar] [CrossRef]
- Chauhan, S.; Singh, V.; Thakur, V. Influence of herbal supplementation on dressed yield and percent organ weights of broilers during coccidiosis. Pharma Innov. J. 2021, 10, 249–252. [Google Scholar]
- Allen, P.; McMurtry, J. Changes in pancreatic hormones associated with coccidiosis. Poult. Sci. 1984, 63, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.O.; Belal, S.A.; Kim, S.J.; Shim, K.S. Quality traits, fatty acids, mineral content of meat and blood metabolites changes of broiler chickens after artificial infection with sporulated Eimeria tenella oocysts. Ital. J. Anim. Sci. 2020, 19, 1462–1471. [Google Scholar] [CrossRef]
- AL-Sagan, A.A.; Khalil, S.; Hussein, E.O.; Attia, A.Y. Effects of fennel seed powder supplementation on growth performance, carcass characteristics, meat quality, and economic efficiency of broilers under thermoneutral and chronic heat stress conditions. Animals 2020, 10, 206. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of dietary betaine on growth performance, digestive function, carcass traits, and meat quality in indigenous yellow-feathered broilers under long-term heat stress. Animals 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Sampath, V.; Shanmugam, S.; Park, J.H.; Kim, I.H. The effect of black pepper (piperine) extract supplementation on growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs. Animals 2020, 10, 1965. [Google Scholar] [CrossRef]
- Suliman, G.M.; Alowaimer, A.N.; Al-Mufarrej, S.I.; Hussein, E.O.; Fazea, E.H.; Naiel, M.A.; Alhotan, R.A.; Swelum, A.A. The effects of clove seeds (Syzygium aromaticum) dietary administration on carcass characteristics, meat quality and sensory attributes of broiler chickens. Poult. Sci. 2021, 100, 100904. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Glamoclija, N.; Starcevic, M.; Janjic, J.; Ivanovic, J.; Boskovic, M.; Djordjevic, J.; Markovic, R.; Baltic, M.Z. The effect of breed line and age on measurements of pH-value as meat quality parameter in breast muscles (m. pectoralis major) of broiler chickens. Procedia Food Sci. 2015, 5, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Uhlířová, L.; Tumová, E.; Chodová, D.; Vlčková, J.; Ketta, M.; Volek, Z.; Skřivanová, V. The effect of age, genotype and sex on carcass traits, meat quality and sensory attributes of geese. Asian Australas. J. Anim. Sci. 2018, 31, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karunanayaka, D.S.; Jayasena, D.D.; Jo, C. Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. J. Anim. Sci. Technol. 2016, 58, 27. [Google Scholar] [CrossRef] [Green Version]
- Qamar, A.; Mohyuddin, S.; Hamza, A.; Lartey, K.; Shi, C.; Yang, F.; Lu, Z.; Yang, J.; Chen, J. Physical and chemical factors affecting chicken meat color. Pak. J. Sci. 2019, 71, 82. [Google Scholar]
- Lawrie, R.A.; Ledward, D. Lawrie’s Meat Science; Woodhead Publishing: Cambridge, UK, 2014. [Google Scholar]
- Rajput, N.; Ali, S.; Naeem, M.; Khan, M.; Wang, T. The effect of dietary supplementation with the natural carotenoids curcumin and lutein on pigmentation, oxidative stability and quality of meat from broiler chickens affected by a coccidiosis challenge. Br. Poult. Sci. 2014, 55, 501–509. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Lonergan, S.M. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 2005, 71, 194–204. [Google Scholar] [CrossRef]
- Zhuang, H.; Savage, E. Postmortem aging and freezing and thawing storage enhance ability of early deboned chicken pectoralis major muscle to hold added salt water. Poult. Sci. 2012, 91, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Zdanowska-Sąsiadek, Ż.; Michalczuk, M.; Poławska, E.; Damaziak, K.; Niemiec, J.; Radzik-Rant, A. Dietary vitamin E supplementation on cholesterol, vitamin E content, and fatty acid profile in chicken muscles. Can. J. Anim. Sci. 2016, 96, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Hafid, K.; Gagaoua, M.; Boudechicha, H.-R.; Nait-Rabah, S.; Ziane, F.; Sellama, M.; Becila, S.; Boudjellal, A. A comparison of the carcass and meat quality of ISA (F15) spent hens slaughtered at two different ages. Am. J. Food Technol. 2016, 11, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.; Günther, C. The role of carotenoids in consumer choice and the likely benefits from their inclusion into products for human consumption. Trends Food Sci. Technol. 2004, 15, 484–488. [Google Scholar] [CrossRef]
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. In The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease; Springer: Boston, MA, USA, 2007; pp. 105–125. [Google Scholar]
- Smet, K.; Raes, K.; Huyghebaert, G.; Haak, L.; Arnouts, S.; De Smet, S. Lipid and protein oxidation of broiler meat as influenced by dietary natural antioxidant supplementation. Poult. Sci. 2008, 87, 1682–1688. [Google Scholar] [CrossRef]
- Morrissey, P.; Sheehy, P.; Galvin, K.; Kerry, J.; Buckley, D. Lipid stability in meat and meat products. Meat Sci. 1998, 49, S73–S86. [Google Scholar] [CrossRef]
Ingredient | Period | |
---|---|---|
Starter | Finisher | |
Yellow corn | 53.218 | 58.09 |
Soybean meal | 37.85 | 32.15 |
Wheat bran | 2.00 | 2.2 |
Corn gluten meal | 1.4 | 0 |
Choline chloride CL 60 | 0.05 | 0.05 |
Corn oil | 1.5 | 4.2 |
Dicalcuim phosphate DCP | 1.98 | 1.615 |
Ground limestone | 0.9 | 0.79 |
Salt | 0.400 | 0.30 |
DL-methionine | 0.292 | 0.25 |
Lysine-HCL | 0.21 | 0.105 |
Vitamin–mineral premix 1 | 0.200 | 0.200 |
Total | 100 | 100 |
Metabolic energy, kcal/kg | 3000 | 3200 |
Crude protein, % | 23.0 | 20.0 |
Non phytate P, % | 0.48 | 0.405 |
Calcium, % | 0.96 | 0.81 |
d-lysine, % | 1.28 | 1.06 |
Sulfur amino acids, % | 0.95 | 0.83 |
Threonine, % | 0.86 | 0.71 |
Parameter/TRT | UUT | IUT | SAL | 1 g RNL | 3 g RNL | 5 g RNL | ±SEM | p-Value |
---|---|---|---|---|---|---|---|---|
ABW (g) | ||||||||
21 days (1 dpi) | 779 c | 781 c | 892 a | 778 c | 809 bc | 857 ab | 10.298 | 0.0002 |
28 days (7 dpi) | 1285 a | 1120 d | 1238 ab | 1112 d | 1136 cd | 1200 bc | 13.716 | <0.001 |
34 days (14 dpi) | 1875 a | 1604 e | 1849 ab | 1690 d | 1745 cd | 1797 bc | 18.890 | <0.001 |
Gain (g) | ||||||||
1 to 7 dpi | 84.300 a | 56.46 b | 57.74 b | 55.68 b | 54.38 b | 57.20 b | 1.982 | <0.001 |
8 to 14 dpi | 84.400 | 69.12 | 87.26 | 82.60 | 87.00 | 85.40 | 2.135 | 0.1141 |
1 to 14 dpi | 84.328 a | 62.78 c | 72.50 b | 69.13 bc | 70.69 b | 71.28 b | 1.501 | 0.0001 |
FI (g) | ||||||||
1 to 7 dpi | 118.36 a | 99.36 c | 104.36 b | 96.88 c | 96.46 c | 98.80 c | 1.510 | <0.001 |
8 to 14 dpi | 135.02 a | 125.00 b | 130.70 ab | 126.62 b | 129.48 ab | 135.08 a | 1.174 | 0.0434 |
1 to 14 dpi | 126.68 a | 112.19 b | 117.52 b | 111.75 b | 112.97 b | 116.93 b | 1.317 | 0.0020 |
FCR (g) | ||||||||
1 to 7 dpi | 1.41 b | 1.81 a | 1.81 a | 1.77 a | 1.77 a | 1.74 a | 0.030 | <0.001 |
8 to 14 dpi | 1.61 b | 1.87 a | 1.54 b | 1.54 b | 1.50 b | 1.61 b | 0.029 | 0.0002 |
1 to 14 dpi | 1.50 c | 1.84 a | 1.63 b | 1.63 b | 1.60 b | 1.66 b | 0.020 | <0.001 |
FE | ||||||||
1 to 7 dpi | 0.71 a | 0.57 b | 0.55 b | 0.57 b | 0.56 b | 0.58 b | 0.013 | 0.0013 |
8 to 14 dpi | 0.62 a | 0.55 b | 0.66 a | 0.65 a | 0.67 a | 0.63 a | 0.011 | 0.0085 |
1 to 14 dpi | 0.67 a | 0.56 c | 0.62 b | 0.62 b | 0.62 b | 0.61 b | 0.008 | 0.0013 |
PEF | ||||||||
1 to 7 dpi | 339.13 a | 236.97 b | 254.19 b | 237.88 b | 237.49 b | 257.61 b | 7.629 | <0.001 |
8 to 14 dpi | 344.82 a | 259.87 b | 362.71 a | 324.37 a | 344.95 a | 334.88 a | 7.714 | 0.0001 |
1 to 14 dpi | 341.97 a | 248.42 c | 308.45 b | 281.13 b | 291.22 b | 296.24 b | 6.365 | <0.001 |
PI | ||||||||
1 to 7 dpi | 60.35 a | 33.14 b | 32.03 b | 32.36 b | 30.71 b | 33.29 b | 2.071 | <0.001 |
8 to 14 dpi | 52.96 a | 38.86 b | 59.15 a | 53.99 a | 58.69 a | 54.52 a | 1.604 | 0.0002 |
1 to 14 dpi | 56.65 a | 36.00 c | 45.59 b | 43.17 b | 44.70 b | 43.90 b | 1.306 | <0.001 |
Treatment | UUT | IUT | SAL | 1 g RNL | 3 g RNL | 5 g RNL | SEM | Probability |
---|---|---|---|---|---|---|---|---|
Live weight (kg) | 1759 | 1614 | 1747 | 1670 | 1797 | 1700 | 20.00 | 0.09 |
Carcass or dressing weight (kg) | 1171 | 1052 | 1179 | 1109 | 1167 | 1129 | 14.39 | 0.07 |
Dressing yield % | 66.58 a | 65.15 b | 67.44 a | 66.39 a | 66.56 a | 66.42 a | 0.192 | 0.02 |
1 Body components | ||||||||
Heart % | 0.45 | 0.46 | 0.46 | 0.48 | 0.50 | 0.55 | 0.011 | 0.06 |
Liver % | 1.72 c | 1.95 ab | 1.90 ab | 2.00 a | 1.87 b | 1.95 ab | 0.020 | <0.001 |
Proventriculus % | 0.38 | 0.38 | 0.34 | 0.37 | 0.41 | 0.43 | 0.010 | 0.06 |
Gizzard % | 2.04 b | 2.31 ab | 2.00 b | 2.08 b | 2.34 ab | 2.63 a | 0.064 | 0.02 |
Bursa % | 0.21 | 0.16 | 0.21 | 0.22 | 0.20 | 0.20 | 0.007 | 0.33 |
Spleen % | 0.08 c | 0.10 bc | 0.12 a | 0.11 ab | 0.09bc | 0.13 a | 0.004 | 0.001 |
Thymus % | 0.31 | 0.35 | 0.34 | 0.33 | 0.38 | 0.33 | 0.013 | 0.82 |
Breast % | 26.55 bcd | 25.64 d | 28.34 a | 27.13 abc | 26.06 cd | 27.57 ab | 0.225 | 0.001 |
Leg % | 20.4 | 19.97 | 19.4 | 20.16 | 19.86 | 18.83 | 0.251 | 0.547 |
Fat % | 0.87 | 0.67 | 0.85 | 0.81 | 0.64 | 0.61 | 0.046 | 0.43 |
Pancreas % | 0.18 b | 0.24 a | 0.27 a | 0.27 a | 0.24 a | 0.25 a | 0.008 | 0.001 |
Treatment | UUT | IUT | SAL | 1 g RNL | 3 g RNL | 5 g RNL | SEM | Probabilities |
---|---|---|---|---|---|---|---|---|
Initial pH, 1 h | 6.08 | 6.16 | 6.23 | 6.26 | 6.28 | 6.17 | 0.034 | 0.637 |
Ultimate pH, 24 h | 5.78 bc | 5.79 bc | 5.76 c | 5.86 ab | 5.76 c | 5.88 a | 0.013 | 0.010 |
pH Decrease | 0.31 | 0.37 | 0.46 | 0.40 | 0.52 | 0.29 | 0.037 | 0.467 |
L* | 49.91 a | 44.29 b | 43.18 b | 44.31 b | 43.01 b | 46.69 ab | 0.666 | 0.006 |
a* | 7.25 | 7.94 | 7.55 | 5.97 | 7.87 | 8.56 | 0.413 | 0.629 |
b* | 10.48 | 10.79 | 9.95 | 9.77 | 12.32 | 13.39 | 0.569 | 0.403 |
∆E | 45.48 b | 51.09 a | 52.01 a | 50.77 a | 52.55 a | 49.38 ab | 0.686 | 0.018 |
Chroma | 12.81 | 13.4 | 12.54 | 11.49 | 14.68 | 15.98 | 0.648 | 0.421 |
Hue angle | 55.68 | 53.49 | 53.44 | 57.96 | 57.9 | 56.6 | 1.14 | 0.794 |
BI | 33.82 | 41.13 | 38.71 | 35.91 | 46.65 | 47.55 | 2.322 | 0.468 |
WI | 48.25 a | 42.66 b | 41.79 b | 43.01 b | 41.12 b | 44.25 ab | 0.690 | 0.021 |
Treatment | UUT | IUT | SAL | 1 g RNL | 3 g RNL | 5 g RNL | SEM | p-Value |
---|---|---|---|---|---|---|---|---|
WHC% | 31.85 ab | 32.35 a | 30.38 abc | 26.94 d | 27.97 cd | 29.22 bcd | 0.494 | 0.0015 |
CL% | 23.36 d | 22.46 d | 35.75 a | 31.21 b | 20.83 e | 25.92 c | 0.998 | <0.001 |
DL% | 1.55 b | 0.99 c | 1.01 c | 0.91 c | 2.04 a | 2.14 a | 0.104 | <0.001 |
MFI% | 112.85 bc | 104.80 c | 123.33 a | 118.03 ab | 57.90e | 83.73 d | 4.346 | <0.001 |
SF (kgf) | 1.328 b | 1.404 ab | 1.470 ab | 0.86c | 1.688 ab | 1.763 a | 0.0556 | <0.001 |
Treatment | UUT | IUT | SAL | 1 g RNL | 3 g RNL | 5 g RNL | SEM | Probability |
---|---|---|---|---|---|---|---|---|
Hardness | 5.02 b | 6.08 b | 9.20 a | 6.63 b | 7.08 b | 6.63 b | 0.308 | 0.004 |
Springiness | 0.91 a | 0.88 ab | 0.90 a | 0.90 a | 0.79 c | 0.80 bc | 0.013 | 0.007 |
Cohesiveness | 0.43 | 0.44 | 0.45 | 0.41 | 0.40 | 0.44 | 0.007 | 0.129 |
Chewiness | 2.07 b | 2.46 b | 3.67 a | 2.40 b | 2.29 b | 2.30 b | 0.128 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaid, M.M.; Al-Mufarrej, S.I.; Azzam, M.M.; Al-Garadi, M.A.; Alqhtani, A.H.; H. Fazea, E.; Suliman, G.M.; Alhidary, I.A. Effect of Rumex nervosus Leaf Powder on the Breast Meat Quality, Carcass Traits, and Performance Indices of Eimeria tenella Oocyst-Infected Broiler Chickens. Animals 2021, 11, 1551. https://doi.org/10.3390/ani11061551
Qaid MM, Al-Mufarrej SI, Azzam MM, Al-Garadi MA, Alqhtani AH, H. Fazea E, Suliman GM, Alhidary IA. Effect of Rumex nervosus Leaf Powder on the Breast Meat Quality, Carcass Traits, and Performance Indices of Eimeria tenella Oocyst-Infected Broiler Chickens. Animals. 2021; 11(6):1551. https://doi.org/10.3390/ani11061551
Chicago/Turabian StyleQaid, Mohammed M., Saud I. Al-Mufarrej, Mahmoud M. Azzam, Maged A. Al-Garadi, Abdulmohsen H. Alqhtani, Esam H. Fazea, Gamaleldin M. Suliman, and Ibrahim A. Alhidary. 2021. "Effect of Rumex nervosus Leaf Powder on the Breast Meat Quality, Carcass Traits, and Performance Indices of Eimeria tenella Oocyst-Infected Broiler Chickens" Animals 11, no. 6: 1551. https://doi.org/10.3390/ani11061551
APA StyleQaid, M. M., Al-Mufarrej, S. I., Azzam, M. M., Al-Garadi, M. A., Alqhtani, A. H., H. Fazea, E., Suliman, G. M., & Alhidary, I. A. (2021). Effect of Rumex nervosus Leaf Powder on the Breast Meat Quality, Carcass Traits, and Performance Indices of Eimeria tenella Oocyst-Infected Broiler Chickens. Animals, 11(6), 1551. https://doi.org/10.3390/ani11061551