Effect of Oats and Wheat Genotype on In Vitro Gas Production Kinetics of Straw
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cereal Breeding Trials
2.2. Straw Collection, Morphological Measurements and Proximate Analyses
2.3. In Vitro Incubations
2.4. Calculations
2.5. Statistical Analyses
3. Results
3.1. Chemical Composition
3.2. Straw Morphology
3.3. In Vitro Incubations
3.4. Associations of Gas Production Parameters and pH with Chemical Composition and Straw Morphology
3.5. Association between In Vitro Gas Production and Agronomic Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Engler, A.; del Pozo, A. Assessing long- and short-term trends in cereal yields: The case of Chile between 1929 and 2009. Cienc. Investig. Agrar. 2013, 40, 55–67. [Google Scholar] [CrossRef] [Green Version]
- McCartney, D.H.; Block, H.; Dubeski, P.; Ohama, A.; Ohama, P. Review: The composition and availability of straw and chaff from small grain cereals for beef cattle in Western Canada. Can. J. Anim. Sci. 2006, 86, 443–455. [Google Scholar] [CrossRef]
- Ruiz, C.; Wolff, M.; Claret, M. Rastrojos de Cultivos Anuales y Residuos Forestales. In Rastrojos de Cultivos y Residuos Forestales. Programa de Transferencia de Prácticas Alternativas al Uso del Fuego en la Región del Biobío; Ruiz, C., Ed.; Instituto de Investigaciones Agropecuarias INIA: Chillán, Chile, 2015; Volume 308, pp. 10–29. Available online: https://biblioteca.inia.cl/handle/123456789/7857 (accessed on 30 November 2018).
- Logeswaran, J.; Shamsuddin, A.H.; Silitonga, A.S.; Mahlia, T.M.I. Prospect of using rice straw for power generation: A review. Environ. Sci. Pollut. Res. Int. 2020, 27, 25956–25969. [Google Scholar] [CrossRef]
- Ministerio de Agricultura. Reglamento sobre roce a fuego. Decreto 276. Diario Oficial de la República de Chile September 26. 1980. Available online: https://www.bcn.cl/leychile/navegar/imprimir?idNorma=147733&idVersion=2016-05-13 (accessed on 7 January 2021).
- Sahai, S.; Sharma, C.; Singh, D.P.; Dixit, C.K.; Singh, N.; Sharma, P.; Singh, K.; Bhatt, S.; Ghude, S.; Gupta, V.; et al. A study for development of emission factors for trace gases and carbonaceous particulate species from in situ burning of wheat straw in agricultural fields in India. Atmos. Environ. 2007, 41, 9173–9186. [Google Scholar] [CrossRef]
- Biederbeck, V.O.; Campbell, C.A.; Bowren, K.E.; Schnitzer, M.; McIver, R.N. Effect of Burning Cereal Straw on Soil Properties and Grain Yields in Saskatchewan. Soil Sci. Soc. Am. J. 1980, 44, 103–111. [Google Scholar] [CrossRef]
- Santiago-De la Rosa, N.; Mugica-Alvarez, V.; Cereceda-Balic, F.; Guerrero, F.; Yanez, K.; Lapuerta, M. Emission factors from different burning stages of agriculture wastes in Mexico. Environ. Sci. Pollut. Res. Int. 2017, 24, 24297–24310. [Google Scholar] [CrossRef]
- Valzano, F.P.; Greene, R.S.B.; Murphy, B.W. Direct effects of stubble burning on soil hydraulic and physical properties in a direct drill tillage system. Soil Tillage Res. 1997, 42, 209–219. [Google Scholar] [CrossRef]
- Ayantunde, A.A.; Duncan, A.J.; van Wijk, M.T.; Thorne, P. Review: Role of herbivores in sustainable agriculture in Sub-Saharan Africa. Animal 2018, 12, s199–s209. [Google Scholar] [CrossRef] [Green Version]
- Wright, I.A.; Tarawali, S.; Blummel, M.; Gerard, B.; Teufel, N.; Herrero, M. Integrating crops and livestock in subtropical agricultural systems. J. Sci. Food Agric. 2012, 92, 1010–1015. [Google Scholar] [CrossRef]
- Frei, M. Lignin: Characterization of a multifaceted crop component. Sci. World J. 2013, 2013, 436517. [Google Scholar] [CrossRef] [Green Version]
- Capper, B.S. Genetic variation in the feeding value of cereal straw. Anim. Feed Sci. Technol. 1988, 21, 127–140. [Google Scholar] [CrossRef]
- Kernan, J.A.; Coxworth, E.C.; Crowle, W.L.; Spurr, D.T. The nutritional value of crop residue components from several wheat cultivars grown at different fertilizer levels. Anim. Feed Sci. Technol. 1984, 11, 301–311. [Google Scholar] [CrossRef]
- Singh, S.; Bhat, B.V.; Shukla, G.P.; Gaharana, D.; Anele, U.Y. Nutritional evaluation of different varieties of sorghum stovers in sheep. Anim. Feed Sci. Technol. 2017, 227, 42–51. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Blümmel, M.; Ørskov, E.R. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Anim. Feed Sci. Technol. 1993, 40, 109–119. [Google Scholar] [CrossRef]
- Mathias-Ramwell, M.; Salvo-Garrido, H.; Reyes-Rebolledo, M.; Montenegro-Barriga, A. Jupiter INIA: A new oat variety with improved β-glucan and protein contents. Chil. J. Agric. Res. 2016, 76, 401–408. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists (AOAC) International: Airlington, VA, USA, 1995; p. 771. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); United States Department of Agriculture: Washington, DC, USA, 1970; p. 24.
- Jung, H.J. Analysis of forage fiber and cell walls in ruminant nutrition. J. Nutr. 1997, 127, 810s–813s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mould, F.L.; Morgan, R.; Kliem, K.E.; Krystallidou, E. A review and simplification of the in vitro incubation medium. Anim. Feed Sci. Technol. 2005, 123-124, 155–172. [Google Scholar] [CrossRef]
- Pell, A.N.; Schofield, P. Computerized Monitoring of Gas Production to Measure Forage Digestion In Vitro. J. Dairy Sci. 1993, 76, 1063–1073. [Google Scholar] [CrossRef]
- Ungerfeld, E.M. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Front. Microbiol. 2015, 6, 1–17. [Google Scholar] [CrossRef]
- JMP®. Version 13.2.1; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Ravi, D.; Vishala, A.D.; Nayaker, N.Y.; Seetharama, N.; Blümmel, M. Grain yield and stover fodder value relations in rabi sorghum. ISMN 2003, 44, 28–31. [Google Scholar]
- Pienaar, J.P.; Hofmeyr, H.S.; Plaut, K.L.; Grattarolar, L. Sodium hydroxide treated wheat straw for sheep. S. Afr. J. Anim. Sci. 1980, 10, 209–214. [Google Scholar]
- Bines, J.A.; Davey, A.W.F. Voluntary intake, digestion, rate of passage, amount of material in the alimentary tract and behaviour in cows receiving complete diets containing straw and concentrates in different proportions. Br. J. Nutr. 1970, 24, 1013–1028. [Google Scholar] [CrossRef]
- Ndlovu, L.R.; Buchanan-Smith, J.G. Utilization of poor quality roughages by sheep: Effects of alfalfa supplementation on ruminal parameters, fiber digestion and rate of passage from the rumen. Can. J. Anim. Sci. 1985, 65, 693–703. [Google Scholar] [CrossRef]
- Blümmel, M.; Becker, K. The degradability characteristics of fifty-four roughages and roughage neutral-detergent fibres as described by in vitro gas production and their relationship to voluntary feed intake. Br. J. Nutr. 1997, 77, 757–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colucci, P.E.; Falk, D.; Macleod, G.K.; Grieve, D.G. In situ organic matter degradability of untreated and urea-treated varieties of spring barley and oat straws, and of untreated varieties of winter wheat straws. Anim. Feed Sci. Technol. 1992, 37, 73–84. [Google Scholar] [CrossRef]
- White, L.M.; Hartman, G.P.; Bergman, J.W. In Vitro Digestibility, Crude Protein, and Phosphorus Content of Straw of Winter Wheat, Spring Wheat, Barley, and Oat Cultivars in Eastern Montana. Agron. J. 1981, 73, 117–121. [Google Scholar] [CrossRef]
- Kernan, J.A.; Coxworth, E.C.; Crowle, W.L.; Spurr, D.T. Straw quality of cereal cultivars before and after treatment with anhydrous ammonia. Can. J. Anim. Sci. 1979, 59, 511–517. [Google Scholar] [CrossRef]
- Joshi, A.; Mishra, V.; Chand, R.; Chatrath, R.; Naik, R.; Biradar, S.; Singh, R.; Budhlakoti, N.; Devulapalli, R.; Blϋmmel, M. Variations in straw fodder quality and grain-Straw relationships in a mapping population of 287 diverse spring wheat lines. Field Crop. Res. 2019, 243, 1–7. [Google Scholar] [CrossRef]
- Blümmel, M.; Updahyay, S.R.; Gautam, N.; Barma, N.C.; Abdul Hakim, M.; Hussain, M.; Yaqub Mujahid, M.; Chatrath, R.; Sohu, V.S.; Mavi, G.; et al. Comparative assessment of food-fodder traits in a wide range of wheat germplasm for diverse biophysical target domains in South Asia. Field Crops Res. 2019, 236, 68–74. [Google Scholar] [CrossRef]
- Thomson, E.F.; Herbert, F.; Rihawi, S. Effect of genotype and simulated rainfall on the morphological characteristics, chemical composition and rumen degradation of the straw fraction of barley plants. Anim. Feed Sci. Technol. 1993, 44, 181–208. [Google Scholar] [CrossRef]
- Narasimhalu, P.; Kong, D.; Choo, T.M. Straw yields and nutrients of seventy-five Canadian barley cultivars. Can. J. Anim. Sci. 1998, 78, 127–134. [Google Scholar] [CrossRef]
- Reddy, K.; Blϋmmel, M.; Rao, P.; Reddy, B.; Ramesh, S.; Reddy, K.M.V. Evaluation of farmer-grown improved sorghum cultivars for stover quality traits. ISME 2005, 46, 86–89. [Google Scholar]
- Singh, S.; Bhat, B.; Shukla, G.; Singh, K.; Gehrana, D. Variation in carbohydrate and protein fractions, energy, digestibility and mineral concentrations in stover of sorghum cultivars. Trop. Grassl. Forrajes Trop. 2018, 6, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Blϋmmel, M.; Zerbini, E.; Reddy, B.V.; Hash, C.T.; Bidinger, F.R.; Khan, A.A. Improving the production and utilization of sorghum and pearl millet as livestock feed: Progress towards dual-purpose genotypes. Field Crops Res. 2003, 84, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Pearce, G.R.; Beard, J.; Hilliard, E.P. Variability in the chemical composition of cereal straws and in vitro digestibility with and without sodium hydroxide treatment. Aust. J. Exp. Agric. Anim. Husb. 1979, 19, 350–353. [Google Scholar] [CrossRef]
- Joshi, A.K.; Barma, N.C.; Hakim, M.A.; Kalappanavar, I.K.; Naik, V.R.; Biradar, S.S.; Prasad, S.V.; Singh, R.P.; Blümmel, M. Opportunities for wheat cultivars with superior straw quality traits targeting the semi-arid tropics. Field Crops Res. 2019, 231, 51–56. [Google Scholar] [CrossRef]
- Jung, H.J.; Samac, D.A.; Sarath, G. Modifying crops to increase cell wall digestibility. Plant Sci. 2012, 185–186, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Flachowsky, G.; Kamra, D.N.; Zadrazil, F. Cereal Straws as Animal Feed—Possibilities and Limitations. J. Appl. Anim. Res. 1999, 16, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Weimer, P.J. Why Don’t Ruminal Bacteria Digest Cellulose Faster? J. Dairy Sci. 1996, 79, 1496–1502. [Google Scholar] [CrossRef]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef] [Green Version]
- Moraïs, S.; Mizrahi, I. Islands in the stream: From individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol. Rev. 2019, 43, 362–379. [Google Scholar] [CrossRef]
- Flachowsky, G.; Tiroke, K.; Schein, G. Botanical fractions of straw of 51 cereal varieties and in sacco degradability of various fractions. Anim. Feed Sci. Technol. 1991, 34, 279–289. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Goto, I.; Minson, D.J. Prediction of the day matter digestibility of tropical grasses using a pepsin-cellulase assay. Anim. Feed Sci. Technol. 1977, 2, 247–253. [Google Scholar] [CrossRef]
- Travis, A.J.; Murison, A.D.; Hirst, D.J.; Walker, K.C.; Chesson, A. Comparison of the anatomy and degradability of straw from varieties of wheat and barley that differ in susceptibility to lodging. J. Agric. Sci. 1996, 127, 1–10. [Google Scholar] [CrossRef]
- Tuah, A.K.; Lufadeju, E.; Ørskov, E.R.; Blackett, G.A. Rumen degradation of straw 1. Untreated and ammonia-treated barley, oat and wheat straw varieties and triticale straw. Anim. Sci. 1986, 43, 261–269. [Google Scholar] [CrossRef]
- Ramanzin, M.; Bailoni, L.; Beni, G. Varietal differences in rumen degradation of barley, wheat and hard wheat straws. Anim. Sci. 1991, 53, 143–150. [Google Scholar] [CrossRef]
- Blümmel, M.; Rao, P. Economic Value of Sorghum Stover Traded as Fodder for Urban and Peri-urban Dairy Production in Hyderabad, India. ISME 2006, 47, 97–100. [Google Scholar]
Breeding Trial | Fraction | Mean | SD 1 | Min | Max |
---|---|---|---|---|---|
Oats 1 | DM 2 (%) | 90.6 | 0.89 | 89.9 | 94.7 |
OM (%DM) | 93.4 | 0.80 | 92.2 | 95.6 | |
CP (%DM) | 2.28 | 0.30 | 1.81 | 3.00 | |
NDF (%DM) | 79.1 | 1.69 | 75.3 | 81.8 | |
ADF (%DM) | 53.3 | 2.07 | 49.6 | 58.3 | |
ADL (%DM) | 5.63 | 0.91 | 4.34 | 7.94 | |
Hemicellulose (%DM) 3 | 25.8 | 1.67 | 22.0 | 28.8 | |
Cellulose (%DM) 4 | 47.7 | 1.56 | 45.1 | 50.3 | |
IVDMD | 50.4 | 5.43 | 32.9 | 58.6 | |
Oats 2 | DM (%) | 90.6 | 0.34 | 90.2 | 91.4 |
OM (%DM) | 93.6 | 0.61 | 92.7 | 95.1 | |
CP (%DM) | 2.21 | 0.27 | 1.69 | 2.88 | |
NDF (%DM) | 80.5 | 2.24 | 78.1 | 89.7 | |
ADF (%DM) | 55.6 | 1.69 | 52.0 | 59.8 | |
ADL (%DM) | 6.49 | 0.77 | 4.87 | 8.25 | |
Hemicellulose (%DM) | 25.0 | 2.51 | 22.5 | 35.6 | |
Cellulose (%DM) | 49.1 | 1.27 | 46.8 | 51.7 | |
IVDMD | 44.6 | 4.88 | 35.8 | 52.3 | |
Wheat | DM (%) | 90.3 | 0.29 | 89.8 | 91.0 |
OM (%DM) | 91.5 | 0.94 | 89.7 | 93.1 | |
CP (%DM) | 2.86 | 0.42 | 1.88 | 3.81 | |
NDF (%DM) | 77.2 | 1.62 | 74.1 | 80.3 | |
ADF (%DM) | 52.0 | 1.60 | 49.5 | 55.6 | |
ADL (%DM) | 5.76 | 0.71 | 4.37 | 7.22 | |
Hemicellulose (%DM) | 25.2 | 1.43 | 22.5 | 27.5 | |
Cellulose (%DM) | 46.2 | 1.20 | 43.2 | 48.4 | |
IVDMD | 48.7 | 3.01 | 41.2 | 53.2 |
Breeding Trial | Response | Overall Mean | SEM 1 | Min | Max | Genotype p = |
---|---|---|---|---|---|---|
Oats 1 | a (mmol/g DM incubated) 2 | 0.789 | 0.128 | 0.729 | 0.848 | 0.16 |
b (mmol/g DM incubated) | 3.53 | 0.129 | 3.20 | 3.99 | 0.008 | |
c (h−1) | 0.048 | 0.004 | 0.043 | 0.053 | 0.056 | |
P8 (mmol/g DM incubated) | 1.90 | 0.0995 | 1.84 | 2.02 | 0.084 | |
P24 (mmol/g DM incubated) | 3.16 | 0.130 | 2.96 | 3.41 | 0.015 | |
P40 (mmol/g DM incubated) | 3.75 | 0.146 | 3.50 | 4.10 | 0.011 | |
Pmax (mmol/g DM incubated) | 4.32 | 0.183 | 4.05 | 4.73 | 0.017 | |
Final pH | 6.26 | 0.026 | 6.20 | 6.35 | 0.007 | |
Oats 2 | a (mmol/g DM incubated) | 0.506 | 0.0378 | 0.497 | 0.527 | 0.53 |
b (mmol/g DM incubated) | 3.51 | 0.103 | 2.92 | 3.86 | 0.004 | |
c (h−1) | 0.055 | 0.002 | 0.047 | 0.058 | 0.021 | |
P8 (mmol/g DM incubated) | 1.74 | 0.0478 | 1.65 | 1.86 | 0.024 | |
P24 (mmol/g DM incubated) | 3.05 | 0.0725 | 2.80 | 3.32 | 0.008 | |
P40 (mmol/g DM incubated) | 3.60 | 0.0788 | 3.23 | 3.93 | 0.006 | |
Pmax (mmol/g DM incubated) | 4.02 | 0.0847 | 3.52 | 4.37 | 0.005 | |
Final pH | 6.21 | 0.025 | 6.14 | 6.32 | 0.002 | |
Wheat | a (mmol/g DM incubated) | 0.572 | 0.0346 | 0.504 | 0.657 | 0.025 |
b (mmol/g DM incubated) | 3.90 | 0.112 | 3.38 | 4.14 | 0.020 | |
c (h−1) | 0.047 | 0.003 | 0.042 | 0.067 | 0.015 | |
P8 (mmol/g DM incubated) | 1.78 | 0.0615 | 1.67 | 1.85 | 0.066 | |
P24 (mmol/g DM incubated) | 3.17 | 0.0988 | 2.95 | 3.31 | 0.018 | |
P40 (mmol/g DM incubated) | 3.83 | 0.106 | 3.59 | 4.01 | 0.020 | |
Pmax (mmol/g DM incubated) | 4.47 | 0.116 | 4.03 | 4.70 | 0.034 | |
Final pH | 6.07 | 0.037 | 6.02 | 6.13 | 0.004 |
Parameter Or Variable | a (mmol/g DM Incubated) 1 | b (mmol/g DM Incubated) | c (h−1) | P8 (mmol/g DM Incubated) | P24 (mmol/g DM Incubated) | P40 (mmol/g DM Incubated) | Pmax (mmol/g DM Incubated) | Final pH |
---|---|---|---|---|---|---|---|---|
a (mmol/g DM incubated) | 1 | - | - | - | - | - | - | - |
b (mmol/g DM incubated) | −0.209 *** 2 | 1 | - | - | - | - | - | - |
c (h−1) | −0.363 *** | −0.365 *** | 1 | - | - | - | - | - |
P8 (mmol/g DM incubated) | 0.614 *** | 0.169 *** | 0.207 *** | 1 | - | - | - | - |
P24 (mmol/g DM incubated) | 0.213 *** | 0.607 *** | 0.150 *** | 0.846 *** | 1 | - | - | - |
P40 (mmol/g DM incubated) | 0.187 *** | 0.789 *** | −0.101 * | 0.719 *** | 0.957 *** | 1 | - | - |
Pmax (mmol/g DM incubated) | 0.291 *** | 0.875 *** | −0.534 *** | 0.469 *** | 0.702 *** | 0.866 *** | 1 | - |
final pH | 0.327 *** | −0.567 *** | 0.0103 NS | −0.0347 NS | −0.348 *** | −0.425 *** | −0.401 *** | 1 |
Response | Equation |
---|---|
P8 (mmol/g DM incubated) 1 | |
P24 (mmol/g DM incubated) | |
P40 (mmol/g DM incubated) | |
Pmax (mmol/g DM incubated) | |
c (h−1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñailillo, K.A.; Aedo, M.F.; Scorcione, M.C.; Mathias, M.L.; Jobet, C.; Vial, M.; Lobos, I.A.; Saldaña, R.C.; Escobar-Bahamondes, P.; Etcheverría, P.; et al. Effect of Oats and Wheat Genotype on In Vitro Gas Production Kinetics of Straw. Animals 2021, 11, 1552. https://doi.org/10.3390/ani11061552
Peñailillo KA, Aedo MF, Scorcione MC, Mathias ML, Jobet C, Vial M, Lobos IA, Saldaña RC, Escobar-Bahamondes P, Etcheverría P, et al. Effect of Oats and Wheat Genotype on In Vitro Gas Production Kinetics of Straw. Animals. 2021; 11(6):1552. https://doi.org/10.3390/ani11061552
Chicago/Turabian StylePeñailillo, Karen A., María Fernanda Aedo, María Carolina Scorcione, Mónica L. Mathias, Claudio Jobet, Manuel Vial, Iris A. Lobos, Rodolfo C. Saldaña, Paul Escobar-Bahamondes, Paulina Etcheverría, and et al. 2021. "Effect of Oats and Wheat Genotype on In Vitro Gas Production Kinetics of Straw" Animals 11, no. 6: 1552. https://doi.org/10.3390/ani11061552
APA StylePeñailillo, K. A., Aedo, M. F., Scorcione, M. C., Mathias, M. L., Jobet, C., Vial, M., Lobos, I. A., Saldaña, R. C., Escobar-Bahamondes, P., Etcheverría, P., & Ungerfeld, E. M. (2021). Effect of Oats and Wheat Genotype on In Vitro Gas Production Kinetics of Straw. Animals, 11(6), 1552. https://doi.org/10.3390/ani11061552