Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Obtaining Seminal Plasma Samples
2.3. Fractioning Seminal Plasma Samples
2.4. Isolation of PMN
2.5. Semen Collection and Preparation
2.6. Co-incubation of Sperm and PMN
2.7. Evaluation of Sperm Viability and Morphology
2.8. Evaluation of Sperm Motility
2.9. Determination of Sperm–PMN Binding
2.10. Statistical Analyses
3. Results
3.1. Effect of Seminal Plasma Fractions on Sperm–PMN Binding
3.2. Effect of Seminal Plasma Fractions on the Viability of Unbound and Bound-to-PMN Sperm Populations
3.3. Effect of Seminal Plasma Fractions on the Motility of Unbound and Bound-to-PMN Sperm Populations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neves, E.S.; Chiarini-Garcia, H.; França, L.R. Comparative testis morphometry and seminiferous epithelium cycle length in donkeys and mules. Biol. Reprod. 2002, 67, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Miró, J.; Lobo, V.; Quintero-Moreno, A.; Medrano, A.; Peña, A.; Rigau, T. Sperm motility patterns and metabolism in Catalonian donkey semen. Theriogenology 2005, 63, 1706–1716. [Google Scholar] [CrossRef]
- Flores, E.; Taberner, E.; Rivera, M.M.; Peña, A.; Rigau, T.; Miró, J.; Rodríguez-Gil, J.E. Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates. Theriogenology 2008, 70, 936–945. [Google Scholar] [CrossRef] [PubMed]
- Rota, A.; Magelli, C.; Panzani, D.; Camillo, F. Effect of extender, centrifugation and removal of seminal plasma on cooled-preserved Amiata donkey spermatozoa. Theriogenology 2008, 69, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, C.; Mari, G.; Mislei, B.; Love, C.; Panzani, D.; Camillo, F.; Rota, A. Effect of post-thaw addition of seminal plasma on motility, viability and chromatin integrity of cryopreserved donkey jack (Equus asinus) spermatozoa. Reprod. Domest. Anim. 2014, 49, 989–994. [Google Scholar] [CrossRef]
- Glatzel, P.; El Houssain, K.; Tibary, A. Stallions and jackasses of Moroccan horse and mule breeds. Initial results using fluid and frozen semen in mule breeding. Berl. Munch. Tierarztl. Wochenschr. 1981, 94, 445–448. [Google Scholar]
- Vidament, M.; Vincent, P.; Martin, F.X.; Magistrini, M.; Blesbois, E. Differences in ability of jennies and mares to conceive with cooled and frozen semen containing glycerol or not. Anim. Reprod. Sci. 2009, 112, 22–35. [Google Scholar] [CrossRef]
- Canisso, I.F.; Carvalho, G.R.; Morel, M.D.; Ker, P.G.; Rodrigues, A.L.; Silva, E.C.; Da Silva, M.A.C. Seminal parameters and field fertility of cryopreserved donkey jack semen after insemination of horse mares. Equine Vet. J. 2011, 43, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.V.; Papa, F.O.; Melo-Oña, C.M.; Monteiro, G.A.; Puoli-Filho, J.N.P.; Alvarenga, M.A. New procedures to freeze donkey semen and its influence on mares and jennies fertility. J. Equine Vet. Sci. 2012, 32, 503–504. [Google Scholar] [CrossRef]
- Kotilainen, T.; Huhtinen, M.; Katila, T. Sperm-induced leukocytosis in the equine uterus. Theriogenology 1994, 41, 629–636. [Google Scholar] [CrossRef]
- Larsson, B.; Larsson, K. Distribution of Spermatozoa in the Genital Tract of Artificially Inseminated Heifers. Acta Vet. Scand. 1985, 26, 385–395. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Miró, J.; Sebastián, I.; Ibarz, A.; Labèrnia, J. Rheological properties of the anterior vaginal fluid from superovulated dairy heifers at estrus. Theriogenology 1993, 40, 167–180. [Google Scholar] [CrossRef]
- Miró, J.; Vilés, K.; García, W.; Jordana, J.; Yeste, M. Effect of donkey seminal plasma on sperm movement and sperm-polymorphonuclear neutrophils attachment in vitro. Anim. Reprod. Sci. 2013, 140, 164–172. [Google Scholar] [CrossRef]
- Troedsson, M.H.T.; Loset, K.; Alghamdi, A.M.; Dahms, B.; Crabo, B.G. Interaction between equine semen and the endometrium: The inflammatory response to semen. Anim. Reprod. Sci. 2001, 68, 273–278. [Google Scholar] [CrossRef]
- Rozeboom, K.J.; Troedssont, M.H.T.; Rocha, G.R.; Crabo, B.G. The chemotactic properties of porcine seminal components toward neutrophils in vitro. J. Anim. Sci. 2001, 79, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthijs, A.; Engel, B.; Woelders, H. Neutrophil recruitment and phagocytosis of boar spermatozoa after artificial insemination of sows, and the effects of inseminate volume, sperm dose and specific additives in the extender. Reproduction 2003, 125, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Görgens, A.; Leibold, W.; Klug, E.; Schuberth, H.J.; Martinsson, G.; Zerbe, H. Inseminate components are modulating the chemotactic activity of uterine polymorphonuclear granulocytes (PMN) of mares. Anim. Reprod. Sci. 2005, 89, 308–310. [Google Scholar] [PubMed]
- Miró, J.; Marín, H.; Catalán, J.; Papas, M.; Gacem, S.; Yeste, M. Seminal Plasma, Sperm Concentration, and Sperm-PMN Interaction in the Donkey: An In Vitro Model to Study Endometrial Inflammation at Post-Insemination. Int. J. Mol. Sci. 2020, 21, 3478. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Lovaas, B.J.; Bird, S.L.; Lamb, G.C.; Rendahl, A.K.; Taube, P.C.; Foster, D.N. Species-specific interaction of seminal plasma on sperm-neutrophil binding. Anim. Reprod. Sci. 2009, 114, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Gacem, S.; Papas, M.; Catalan, J.; Miró, J. Examination of jackass (Equus asinus) accessory sex glands by B-mode ultrasound and of testicular artery blood flow by colour pulsed-wave Doppler ultrasound: Correlations with semen production. Reprod. Domest. Anim. 2020, 55, 181–188. [Google Scholar] [CrossRef]
- Jonakova, V.; Jonak, J.; Ticha, M. Proteomics of Male Seminal Plasma. In Reproductive Genomics in Domestic Animals; Wiley-Blackwell: Oxford, UK, 2010; pp. 339–366. [Google Scholar]
- Baumber, J.; Ball, B.A. Determination of glutathione peroxidase and superoxide dismutase-like activities in equine spermatozoa, seminal plasma, and reproductive tissues. Am. J. Vet. Res. 2005, 66, 1415–1419. [Google Scholar] [CrossRef] [PubMed]
- Talluri, T.R.; Mal, G.; Ravi, S.K. Biochemical components of seminal plasma and their correlation to the fresh seminal characteristics in Marwari stallions and Poitou jacks. Vet. World 2017, 10, 214–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papas, M.; Arroyo, L.; Bassols, A.; Catalán, J.; Bonilla-Correal, S.; Gacem, S.; Yeste, M.; Miró, J. Activities of antioxidant seminal plasma enzymes (SOD, CAT, GPX and GSR) are higher in jackasses than in stallions and are correlated with sperm motility in jackasses. Theriogenology 2019, 140, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Šichtař, J.; Bubeníčková, F.; Sirohi, J.; Šimoník, O. How to increase post-thaw semen quality in poor freezing stallions: Preliminary results of the promising role of seminal plasma added after thawing. Animals 2019, 9, 414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rota, A.; Panzani, D.; Sabatini, C.; Camillo, F. Donkey jack (Equus asinus) semen cryopreservation: Studies of seminal parameters, post breeding inflammatory response, and fertility in donkey jennies. Theriogenology 2012, 78, 1846–1854. [Google Scholar] [CrossRef] [PubMed]
- Vilés, K.; Rabanal, R.; Rodríguez-Prado, M.; Miró, J. Effect of ketoprofen treatment on the uterine inflammatory response after AI of jennies with frozen semen. Theriogenology 2013, 79, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Loftus, J.P.; Williams, J.M.; Belknap, J.K.; Black, S.J. In vivo priming and ex vivo activation of equine neutrophils in black walnut extract-induced equine laminitis is not attenuated by systemic lidocaine administration. Vet. Immunol. Immunopathol. 2010, 138, 60–69. [Google Scholar] [CrossRef]
- Kenney, R.M.; Bergman, R.V.; Cooper, W.L.; Morse, G.W. Minimal contamination techniques for breeding mares: Technique and preliminary findings. Proc. Am. Assoc. Equine Pr. 1975, 21, 327–336. [Google Scholar]
- Morrell, J.; Garcia, B.M.; Penã, F.J.; Johannisson, A. Processing stored stallion semen doses by Single Layer Centrifugation. Theriogenology 2011, 76, 1424–1432. [Google Scholar] [CrossRef] [PubMed]
- Bamba, K. Evaluation of acrosomal integrity of boar spermatozoa by bright field microscopy using an eosin-nigrosin stain. Theriogenology 1988, 29, 1245–1251. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Foster, D.N.; Troedsson, M.H.T. Equine seminal plasma reduces sperm binding to polymorphonuclear neurophils (PMN’s) and improves the fertility of fresh semen inseminated into inflamed uteri. Reproduction 2004, 127, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Palm, F.; Walter, I.; Budik, S.; Aurich, C. Influence of different semen extenders and seminal plasma on the inflammatory response of the endometrium in oestrous mares. Anim. Reprod. Sci. 2006, 94, 286–289. [Google Scholar] [CrossRef]
- Catalán, J.; Papas, M.; Trujillo-Rojas, L.; Blanco-Prieto, O.; Bonilla-Correal, S.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Red LED Light Acts on the Mitochondrial Electron Chain of Donkey Sperm and Its Effects Depend on the Time of Exposure to Light. Front. Cell Dev. Biol. 2020, 8, 588621. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, H.; Kvist, U.; Ernerudh, J.; Sanz, L.; Calvete, J.J. Seminal plasma proteins: What role do they play? Am. J. Reprod. Immunol. 2011, 66, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Al-Somai, N.; Vishwanath, R.; Shannon, P.; Molan, P.C. Low molecular weight components in bovine semen difusa te and their effects on motility of bull sperm. Reprod. Fertil. 1994, 6, 165–171. [Google Scholar] [CrossRef]
- Fagundes, B.; Van Tilburg, M.F.; Souza, G.V.; Caiado, J.R.C.; Barreto, M.A.P.; Silva, J.F.S. Effect of addition of concentrat es proteins and seminal plasma low molecular weight proteins in freezing and thawing of equine semen. Acta Biomed. Bras. 2011, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.A.M.; Souza, C.E.A.; Martins, J.A.M.; Rego, J.P.A.; Oliveira, J.T.A.; Domont, G.; Nogueira, F.C.S.; Moura, A.A. Seminal plasma proteins and their relationships with sperm motility in Santa Inés rams. Small Rumin. Res. 2013, 109, 94–100. [Google Scholar] [CrossRef] [Green Version]
- Bubenkova, F.; Postlerova, P.; Simonik, O.; Sirohi, J.; Sichtar, J. Effects of seminal plasma protein fractions on stallion sperm cryopreservation. Int. J. Mol. Sci. 2020, 21, 6415. [Google Scholar] [CrossRef]
- Miró, J.; Taberner, E.; Rivera, M.; Peña, A.; Medrano, A.; Rigau, T.; Peñalba, A. Effects of dilution and centrifugation on the survival of spermatozoa and the structure of motile sperm cell subpopulations in refrigerated Catalonian donkey semen. Theriogenology 2009, 72, 1017–1022. [Google Scholar] [CrossRef]
- Abaigar, T.; Holt, W.V.; Harrison, R.A.P.; Del Barrio, G. Sperm subpopulations in Boar (Sus scrofa) and Gazelle (Gazella dama mhorr) semen as revealed by pattern analysis of computer-assisted motility assessments. Biol. Reprod. 1999, 60, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Abaigar, T.; Cano, M.; Pickard, A.R.; Holt, W.V. Use of computer-assisted sperm motility assessment and multivariate pattern analysis to characterize ejaculate quality in Mohor gazelles (Gazella dama mhorr): Effects of body weight, electroejaculation technique and short-term semen storage. Reproduction 2001, 122, 265–273. [Google Scholar] [CrossRef]
- Rigau, T.; Farré, M.; Ballester, J.; Mogas, T.; Pea, A.; Rodríguez-Gil, J.E. Effects of glucose and fructose on motility patterns of dog spermatozoa from fresh ejaculates. Theriogenology 2001, 56, 801–815. [Google Scholar] [CrossRef]
- Thurston, L.M.; Watson, P.F.; Mileham, A.J.; Holt, W.V. Morphologically distinct sperm subpopulations defined by fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. J. Androl. 2001, 22, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Quintero-Moreno, A.; Miró, J.; Teresa Rigau, A.; Rodríguez-Gil, J.E. Identification of sperm subpopulations with specific motility characteristics in stallion ejaculates. Theriogenology 2003, 59, 1973–1990. [Google Scholar] [CrossRef]
- Quintero-Moreno, A.; Rigau, T.; Rodríguez-Gil, J.E. Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. Theriogenology 2004, 61, 673–690. [Google Scholar] [CrossRef]
- Martinez-Pastor, F.; Garcia-Macias, V.; Alvarez, M.; Herraez, P.; Anel, L.; de Paz, P. Sperm Subpopulations in Iberian Red Deer Epididymal Sperm and Their Changes Through the Cryopreservation Process1. Biol. Reprod. 2005, 72, 316–327. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.A.; Morató, R.; Yeste, M.; Arcarons, N.; Pena, A.I.; Tamargo, C.; Hidalgo, C.O.; Muiño, R.; Mogas, T. Evaluation of sperm subpopulation structure in relation to invitro sperm-oocyte interaction of frozen-thawed semen from Holstein bulls. Theriogenology 2014, 81, 1067–1072. [Google Scholar] [CrossRef]
- Estrada, E.; Rivera del Álamo, M.M.; Rodríguez-Gil, J.E.; Yeste, M. The addition of reduced glutathione to cryopreservation media induces changes in the structure of motile subpopulations of frozen-thawed boar sperm. Cryobiology 2017, 78, 56–64. [Google Scholar] [CrossRef]
- Gimeno-Martos, S.; Casao, A.; Yeste, M.; Cebrián-Pérez, J.A.; Muiño-Blanco, T.; Pérez-Pé, R. Melatonin reduces cAMP-stimulated capacitation of ram spermatozoa. Reprod. Fertil. Dev. 2019, 31, 420–431. [Google Scholar] [CrossRef]
- Catalán, J.; Papas, M.; Gacem, S.; Mateo-Otero, Y.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Red-Light Irradiation of Horse Spermatozoa Increases Mitochondrial Activity and Motility through Changes in the Motile Sperm Subpopulation Structure. Biology 2020, 9, 254. [Google Scholar] [CrossRef]
- Pesch, S.; Bergmann, M.; Bostedt, H. Determination of some enzymes and macro- and microelements in stallion seminal plasma and their correlations to semen quality. Theriogenology 2006, 66, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, J.G.; Touchstone, J.C.; Blasco, L.; Storey, B.T. Spontaneous Lipid Peroxidation and Production of Hydrogen Peroxide and Superoxide in Human Spermatozoa Superoxide Dismutase as Major Enzyme Protectant Against Oxygen Toxicity. J. Androl. 1987, 8, 338–348. [Google Scholar] [CrossRef]
- Alvarez, J.G.; Storey, B.T. Role of glutathione peroxidase in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. Gamete Res. 1989, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Beconi, M.T.; Francia, C.R.; Mora, N.G.; Affranchino, M.A. Effect of natural antioxidants on frozen bovine semen preservation. Theriogenology 1993, 40, 841–851. [Google Scholar] [CrossRef]
- Marti, E.; Mara, L.; Marti, J.I.; Muiño-Blanco, T.; Cebrián-Pérez, J.A. Seasonal variations in antioxidant enzyme activity in ram seminal plasma. Theriogenology 2007, 67, 1446–1454. [Google Scholar] [CrossRef]
- Papas, M.; Catalan, J.; Barranco, I.; Arroyo, L.; Bassols, A.; Yeste, M.; Miró, J. Total and specific activities of superoxide dismutase (SOD) in seminal plasma are related with the cryotolerance of jackass spermatozoa. Cryobiology 2020, 92, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Waheed, M.M.; El-Bahr, S.M.; Al-haider, A.K. Influence of Seminal Plasma Antioxidants and Osteopontin on Fertility of the Arabian Horse. J. Equine Vet. Sci. 2013, 33, 705–709. [Google Scholar] [CrossRef]
- Sumner, J.B.; Gralén, N. The Molecular Weight of Crystalline Catalase. J. Biol. Chem. 1938, 125, 33–36. [Google Scholar] [CrossRef]
- Garcìa-Alfonso, C.; Martìnez-Galisteo, E.; Llobell, A.; Bárcena, J.A.; lÓpez-Barea, J. Horse-liver glutathione reductase: Purification and characterization. Int. J. Biochem. 1993, 25, 61–68. [Google Scholar] [CrossRef]
- Nozik-Grayck, E.; Suliman, H.B.; Piantadosi, C.A. Extracellular superoxide dismutase. Int. J. Biochem. Cell Biol. 2005, 37, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateo-Otero, Y.; Zambrano, F.; Gacem, S.; Yeste, M.; Miro, J.; Fernandez-Fuertes, B. Sperm induce NETosis in jenny polymorphonuclear cells in a concentration and time dependent manner. J. Equine Vet. Sci. 2020, 89, 103037. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Zychlinsky, A. Beneficial suicide: Why neutrophils die to make NETs. Nat. Rev. Microbiol. 2007, 5, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.S.; Foster, D.N. Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 2005, 73, 1174–1181. [Google Scholar] [CrossRef] [PubMed]
- Doty, A.; Buhi, W.C.; Benson, S.; Scoggin, K.E.; Pozor, M.; Macpherson, M.; Mutz, M.; Troedsson, M.H.T. Equine CRISP3 modulates interaction between spermatozoa and polymorphonuclear neutrophils. Biol. Reprod. 2011, 85, 157–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Motility Descriptors | SP1 (n = 6616) | SP2 (n = 8484) | SP3 (n = 6306) | SP4 (n = 9049) | ||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Range (min, max) | Mean ± SD | Range (min, max) | Mean ± SD | Range (min, max) | Mean ± SD | Range (min, max) | |
VCL | 152.05 ± 29.05 | 88.95, 304.00 | 123.42 ± 21.94 | 68.06, 218.59 | 54.00 ± 19.74 | 10.00, 105.92 | 68.57 ± 21.12 | 10.14, 132.50 |
VSL | 35.91 ± 20.03 | 0.00, 135.91 | 77.62 ± 22.13 | 27.62, 169.34 | 31.87 ± 13.45 | 3.76, 71.49 | 16.65 ± 9.32 | 0.00, 46.51 |
VAP | 90.60 ± 22.46 | 19.47, 230.51 | 97.40 ± 21.52 | 51.17, 199.72 | 38.84 ± 15.30 | 3.91, 75.03 | 35.10 ± 13.83 | 4.20, 81.88 |
LIN | 23.49 ± 11.43 | 0.00, 63.97 | 63.25 ± 15.54 | 28.45, 98.51 | 59.64 ± 14.75 | 31.97, 99.21 | 24.09 ± 10.29 | 0.00, 44.57 |
STR | 39.83 ± 19.30 | 0.00, 92.68 | 79.46 ± 12.37 | 30.37, 99.72 | 82.11 ± 10.60 | 32.47, 100.00 | 47.76 ± 19.35 | 0.00, 93.80 |
WOB | 59.90 ± 11.49 | 11.84, 94.02 | 79.09 ± 11.69 | 44.38, 100.00 | 72.32 ± 12.78 | 36.74, 100.00 | 51.03 ± 11.92 | 9.44, 96.70 |
ALH | 6.08 ± 1.37 | 2.35, 14.40 | 3.92 ± 1.21 | 0.66, 9.70 | 2.19 ± 0.89 | 0.23, 5.91 | 3.24 ± 1.01 | 0.55, 7.00 |
BCF | 8.24 ± 3.62 | 0.00, 22.00 | 8.88 ± 3.10 | 0.00, 20.00 | 7.63 ± 3.30 | 0.00, 20.00 | 6.40 ± 2.74 | 0.00, 19.00 |
DANCE | 951.78 ± 389.09 | 257.76, 4103.72 | 497.53 ± 215.35 | 61.09, 1816.66 | 131.87 ± 85.21 | 3.37, 479.16 | 240.97 ± 137.77 | 5.93, 769.68 |
MDAabs | 111.24 ± 30.92 | 0.00, 240.19 | 83.11 ± 44.51 | 0.00, 266.35 | 100.79 ± 40.76 | 0.00, 286.16 | 122.78 ± 26.64 | 0.00, 226.72 |
MDAalg | 0.16 ± 9.63 | −39.55, 42.46 | 0.00 ± 9.88 | −43.82, 43.71 | −0.16 ± 7.77 | −41.68, 34.40 | −0.25 ± 8.24 | −41.01, 43.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miró, J.; Catalán, J.; Marín, H.; Yánez-Ortiz, I.; Yeste, M. Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey. Animals 2021, 11, 1388. https://doi.org/10.3390/ani11051388
Miró J, Catalán J, Marín H, Yánez-Ortiz I, Yeste M. Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey. Animals. 2021; 11(5):1388. https://doi.org/10.3390/ani11051388
Chicago/Turabian StyleMiró, Jordi, Jaime Catalán, Henar Marín, Iván Yánez-Ortiz, and Marc Yeste. 2021. "Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey" Animals 11, no. 5: 1388. https://doi.org/10.3390/ani11051388
APA StyleMiró, J., Catalán, J., Marín, H., Yánez-Ortiz, I., & Yeste, M. (2021). Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey. Animals, 11(5), 1388. https://doi.org/10.3390/ani11051388