The Nero Lucano Pig Breed: Recovery and Variability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Pedigree Analysis
2.3. DNA Analyses
3. Results
3.1. Pedigree Analysis
3.2. Microarray Analysis
3.3. Analysis of Runs of Homozygosity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maiorano, G. Swine production in Italy and research perspectives for the local breeds. Slovak J. Anim. Sci. 2009, 42, 159–166. [Google Scholar]
- Stanga, I. Suinicoltura Pratica; Hoepli, U., Ed.; Editore Libraio della Real Casa: Milano, Italy,, 1915. [Google Scholar]
- Croce, L. Il Problema Zootecnico del Mezzogiorno Continentale d’Italia; Tipografia Mario Nucci: Potenza, Italy, 1930. [Google Scholar]
- Gutierrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, J.P.; Cervantes, I.; Molina, A.; Valera, M.; Goyache, F. Individual increase in inbreeding allows estimating realised effective sizes from pedigrees. Genet. Sel. Evol. 2008, 40, 359–378. [Google Scholar] [CrossRef]
- Gutierrez, J.P.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corvera, S. Phosphatidylinositol 3-kinase and the control of endosome dynamics. Traffic 2001, 2, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, A.; Wurmser, A.E.; Emr, S.D.; Stenmark, H. The role of phosphoinositides in membrane transport. Curr. Opin. Cell Biol. 2001, 13, 485–492. [Google Scholar] [CrossRef]
- Weiner, O.D.; Neilsen, P.O.; Prestwich, G.D.; Kirschner, M.W.; Cantley, L.C.; Bourne, H.R. A PtdInsP(3)- and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 2002, 4, 509–513. [Google Scholar] [CrossRef] [Green Version]
- Gurung, A.B.; Bhattacharjee, A. Significance of Ras signaling in cancer and strategies for its control. Oncol. Hematol Rev. 2015, 11, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Munoz, M.; Bozzi, R.; García-Casco, J.; Nunez, Y.; Ribani, A.; Franci, O.; García, F.; Skrlep, M.; Schiavo, G.; Bovo, S.; et al. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci. Rep. 2019, 9, 13546. [Google Scholar] [CrossRef]
- Schiavo, G.; Bovo, S.; Bertolini, F.; Dall’Olio, S.; Costa, L.N.; Tinarelli, S.; Gallo, M.; Fontanesi, L. Runs of homozygosity islands in Italian cosmopolitan and autochthonous pig breeds identify selection signatures in the porcine genome. Livest. Sci. 2020, 240, 104219. [Google Scholar] [CrossRef]
- Sujit, K.M.; Singh, V.; Trivedi, S.; Singh, K.; Gupta, G.; Rajender, S. Increased DNA methylation in the spermatogenesis-associated (SPATA) genes correlates with infertility. Andrology 2020, 8, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Van Son, M.; Kent, M.P.; Grove, H.; Agarwal, R.; Hamland, H.; Lien, S.; Grindflek, E. Fine mapping of a QTL affecting levels of skatole on pig chromosome 7. BMC Genet. 2017, 18, 85. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhao, J.; Yang, L.; Guan, M.; Yuan, L.; Geng, Y. Protective effects of calbindin D28K on the UVB radiation induced apoptosis of human lens epithelial cells. Int. J. Mol. Med. 2020, 45, 1793–1802. [Google Scholar] [CrossRef] [PubMed]
- Behdani, E.; Ghaderi-Zefrehei, M.; Rafeie, F.; Bakhtiarizadeh, M.; Roshanfeker, H.; Fayazi, J. RNA-Seq Bayesian Network Exploration of Immune System in Bovine. Iran. J. Biotechnol. 2019, 17, e1748. [Google Scholar] [CrossRef]
- Ramirez, O.; Quintanilla, R.; Varona, L.; Gallardo, D.; Díaz, I.; Pena, R.N.; Amills, M. DECR1 and ME1 genotypes are associated with lipid composition traits in Duroc pigs. J. Anim. Breed. Genet. 2014, 131, 46–52. [Google Scholar] [CrossRef]
- Melka, M.G.; Schenkel, F. Analysis of genetic diversity in four Canadian swine breeds using pedigree data. Can. J. Anim. Sci. 2010, 90, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.Q.; Xue, J.; Lian, M.J.; Yang, R.F.; Liu, T.F.; Zeng, Z.Y.; Jiang, A.A.; Jiang, Y.Z.; Zhu, L.; Bai, L.; et al. Inbreeding and genetic diversity in three imported swine breeds in china using pedigree data. Asian-Australas. J. Anim. Sci. 2013, 26, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Krupa, E.; Zakova, E.; Krupová, Z. Evaluation of Inbreeding and Genetic Variability of Five Pig Breeds in Czech Republic. Asian-Australas. J. Anim. Sci. 2015, 28, 25–36. [Google Scholar] [CrossRef] [Green Version]
- FAO. Secondary guidelines for development of farm animal genetic resources management plans. In Management of Small Populations at Risk; FAO: Rome, Italy, 2000. [Google Scholar]
- Grossi, D.A.; Jafarikia, M.; Brito, L.F.; Buzanskas, M.E.; Sargolzaei, M.; Schenkel, F.S. Genetic diversity, extent of linkage disequilibrium and persistence of gametic phase in Canadian pigs. BMC Genet. 2017, 18, 6. [Google Scholar] [CrossRef] [Green Version]
- Saura, M.; Fernandez, A.; Rodrıguez, M.C.; Toro, M.A.; Barragan, C.; Fernandez, A.I.; Villanueva, B. Genome-Wide estimates of coancestry and inbreeding in a closed herd of ancient Iberian pigs. PLoS ONE 2013, 8, e78314. [Google Scholar] [CrossRef]
- Gomez-Raya, L.; Rodriguez, C.; Barragan, C.; Silio, L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genet. Sel. Evol. 2015, 47, 81. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Mu, Y.; Xu, L.; Li, K.; Han, J.; Wu, T.; Liu, L.; Gao, Q.; Xia, Y.; Hou, G.; et al. Genomic analysis reveals specific patterns of homozygosity and heterozygosity in inbred pigs. Animals 2019, 9, 314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosse, M.; Megens, H.-J.; Madsen, O.; Paudel, Y.; Frantz, L.A.F.; Schook, L.B.; Crooijmans, R.P.M.A.; Groenen, M.A.M. Regions of homozygosity in the porcine genome: Consequence of demography and the recombination landscape. PLoS Genet. 2012, 8, e1003100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacolina, L.; Stronen, A.V.; Pertoldi, C.; Tokarska, M.; Norgaard, L.S.; Munoz, J.; Kjærsgaard, A.; Ruiz-Gonzalez, A.; Kaminski, S.; Purfield, D.C. Novel graphical analyses of runs of homozygosity among species and livestock breeds. Int. J. Genomics 2016, 2016, 2152847. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Ferencakovic, M.; Solkner, J.; Curik, I. Estimating autozygosity from high-throughput information: Effects of SNP density and genotyping errors. Genet. Sel. Evol. 2013, 45, 42. [Google Scholar] [CrossRef] [Green Version]
- Spotter, A.; Drogemuller, C.; Hamann, H.; Distl, O. Evidence of a new leukemia inhibitory factor-associated genetic marker for litter size in a synthetic pig line. J. Anim. Sci. 2005, 83, 2264–2270. [Google Scholar] [CrossRef]
- Ding, Y.; Ding, C.; Wu, X.; Wu, C.; Qian, L.; Li, D.; Zhang, W.; Wang, Y.; Yang, M.; Wang, L.; et al. Porcine LIF gene polymorphisms and their association with litter size traits in four pig breeds. Can. J. Anim. Sci. 2020, 100, 85–92. [Google Scholar] [CrossRef]
- Zanella, R.; Peixoto, J.O.; Cardoso, F.F.; Cardoso, L.L.; Biegelmeyer, P.; Cantao, M.E.; Otaviano, A.; Freitas, M.S.; Caetano, A.R.; Ledur, M.C. Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data. Genet. Sel. Evol. 2016, 48, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Generation | Completeness Index |
---|---|
Parents | 0.851 |
Grandparents | 0.461 |
Great-grandparents | 0.072 |
gg-grandparents | 0.003 |
Interval | N | Years ± SD |
---|---|---|
sire–sire | 13 | 3.503 ± 1.469 |
sire–dam | 62 | 3.250 ± 1.320 |
dam–sire | 13 | 3.187 ± 0.836 |
dam–dam | 62 | 2.328 ± 0.778 |
Total | 150 | 2.886 ± 1.190 |
Generation | N Pigs | Mean F | % Inbred | Mean Ffor Inbred | Mean Relat. | Eff.Pop. Size |
---|---|---|---|---|---|---|
0 | 42 | 0 | ── | ── | 0.0238 | ── |
1 | 153 | 0.043 | 17.6 | 0.245 | 0.0565 | 11.5 |
2 | 86 | 0.109 | 62.8 | 0.174 | 0.0643 | 7.2 |
Generation | N Pigs | |
---|---|---|
Pedigree | DNA Samples | |
0 | 42 | 6 |
1 | 153 | 132 |
2 | 86 | 85 |
GO Term | Biological Process | Genes |
---|---|---|
GO:0042992 | negative regulation of transcription factor import into nucleus | RAB23, NF1 |
GO:0046888 | negative regulation of hormone secretion | LIF, OSM |
GO:0007265 | Ras protein signal transduction | KSR1, NF1, SYNGAP1 |
GO:0007260 | tyrosine phosphorylation of Stat3 protein | LIF, OSM |
GO:0043410 | positive regulation of MAPK cascade | KSR1, LIF, OSM |
GO:2000786 | positive regulation of autophagosome assembly | KIAA1324, PIP4K2A |
GO:0045835 | negative regulation of meiotic nuclear division | LIF, OSM |
GO:0001675 | acrosome assembly | TMF1, PLA2G3 |
GO:0048711 | positive regulation of astrocyte differentiation | BIN1, LIF |
GO:0048169 | regulation of long-term neuronal synaptic plasticity | NF1, SYNGAP1 |
SSC | N 1 | Shared ROH Region | Breed 2 | Reference | NCBI Genes in Shared Region |
---|---|---|---|---|---|
4 | 77 | 45.15–46.82 | AC | [15] | CALB1, DECR1, TMEM64, NBN, NECAB1, C4H8orf88, OTUD6B, SLC26A7, TMEM55A |
7 | 141 | 72.73–73.13 | CA | [14] | NOVA1 |
8 | 136 | 100.93–101.22 | AC, CS | [14] | SPATA5 |
9 | 165 | 37.15–37.81 | AC | [15] | DDX10, C9H11orf87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valluzzi, C.; Rando, A.; Macciotta, N.P.P.; Gaspa, G.; Di Gregorio, P. The Nero Lucano Pig Breed: Recovery and Variability. Animals 2021, 11, 1331. https://doi.org/10.3390/ani11051331
Valluzzi C, Rando A, Macciotta NPP, Gaspa G, Di Gregorio P. The Nero Lucano Pig Breed: Recovery and Variability. Animals. 2021; 11(5):1331. https://doi.org/10.3390/ani11051331
Chicago/Turabian StyleValluzzi, Carmelisa, Andrea Rando, Nicolò P. P. Macciotta, Giustino Gaspa, and Paola Di Gregorio. 2021. "The Nero Lucano Pig Breed: Recovery and Variability" Animals 11, no. 5: 1331. https://doi.org/10.3390/ani11051331