Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Tissue Processing and Histopathology
2.2. Immunohistochemistry and Immunofluorescence
2.3. Statistical Analysis
3. Results
3.1. Hyperplasia/Dysplasia
3.2. Tubular/Tubulopapillary Carcinoma
3.3. Solid Carcinoma
3.4. Micropapillary Carcinoma
3.5. Correlation between the Different Immune Cells’ Numbers and the Grading of Malignant Lesions
3.6. Epithelial Positivity for CD79a
3.7. Immunoglobulins
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dvorak, H.F. Tumors: Wounds that do not heal-redux. Cancer Immunol. Res. 2015, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Beirao, B.C.; Raposo, T.; Pang, L.Y.; Argyle, D.J. Canine mammary cancer cells direct macrophages toward an intermediate activation state between M1/M2. BMC Vet. Res. 2015, 11, 151. [Google Scholar] [CrossRef] [Green Version]
- Raposo, T.P.; Beirao, B.C.; Pang, L.Y.; Queiroga, F.L.; Argyle, D.J. Inflammation and cancer: Till death tears them apart. Vet. J. 2015, 205, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Oldford, S.A.; Marshall, J.S. Mast cells as targets for immunotherapy of solid tumors. Mol. Immunol. 2015, 63, 113–124. [Google Scholar] [CrossRef]
- Pittoni, P.; Colombo, M.P. The dark side of mast cell-targeted therapy in prostate cancer. Cancer Res. 2012, 72, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Knief, J.; Reddemann, K.; Petrova, E.; Herhahn, T.; Wellner, U.; Thorns, C. High Density of Tumor-infiltrating B-Lymphocytes and Plasma Cells Signifies Prolonged Overall Survival in Adenocarcinoma of the Esophagogastric Junction. Anticancer Res. 2016, 36, 5339–5345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, M.; Zhang, Y.; Rosenblatt, J.D. B cell regulation of the anti-tumor response and role in carcinogenesis. J. Immunother. Cancer 2016, 4, 40. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Deng, H.; Ma, J.; Guo, Y.; Liang, Y.; Wu, R.; Geng, Z.; Qiu, X.; Wang, Y. Expression of immunoglobulin G in human podocytes, and its role in cell viability and adhesion. Int. J. Mol. Med. 2018, 41, 3296–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Zhang, L.; Ma, T.; Zhang, P.; Qiu, X. Expression of immunoglobulin gene with classical V-(D)-J rearrangement in mouse testis and epididymis. J. Histochem. Cytochem. 2009, 57, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Niu, N.; Li, B.; McNutt, M.A. Neuron-derived IgG protects neurons from complement-dependent cytotoxicity. J. Histochem. Cytochem. 2013, 61, 869–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liu, Y.; Chen, Z.; Korteweg, C.; Gu, J. Immunoglobulin g (IgG) expression in human umbilical cord endothelial cells. J. Histochem. Cytochem. 2011, 59, 474–488. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.H.; Ye, C.X.; Huang, Y.; Jiang, H.P.; Ye, Y.J.; Wang, S.; Zhou, Y.; Shen, Z.L.; Qiu, X.Y. Human colorectal cancer cells frequently express IgG and display unique Ig repertoire. World J. Gastrointest. Oncol. 2019, 11, 195–207. [Google Scholar] [CrossRef]
- Sheng, Z.; Liu, Y.; Qin, C.; Liu, Z.; Yuan, Y.; Yin, H.; Qiu, X.; Xu, T. Involvement of cancer-derived IgG in the proliferation, migration and invasion of bladder cancer cells. Oncol. Lett. 2016, 12, 5113–5121. [Google Scholar] [CrossRef]
- Goldschmidt, M.; Peña, L.; Rasotto, R.; Zappulli, V. Classification and grading of canine mammary tumors. Vet. Pathol. 2011, 48, 117–131. [Google Scholar] [CrossRef]
- Zappulli, V.; Pena, L.; Rasotto, R.; Goldschmidt, M.H.; Gama, A.; Scruggs, J.L.; Kiupel, M. Surgical Pathology of Tumors of Domestic Animals. Volume 2: Mammary Tumors; Davis-Thompson Foundation: Gurnee, IL, USA, 2018. [Google Scholar]
- Varricchi, G.; Galdiero, M.R.; Marone, G.; Granata, F.; Borriello, F. Controversial role of mast cells in skin cancers. Exp. Dermatol. 2017, 26, 11–17. [Google Scholar] [CrossRef] [Green Version]
- Sammarco, G.; Varricchi, G.; Ferraro, V.; Ammendola, M.; De Fazio, M.; Altomare, D.F.; Luposella, M.; Maltese, L.; Curro, G.; Marone, G.; et al. Mast Cells, Angiogenesis and Lymphangiogenesis in Human Gastric Cancer. Int. J. Mol. Sci. 2019, 20, 2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfacteria, A.; Lanteri, G.; Grasso, G.; Macri, B.; Mazzullo, G. Mast cells in canine mammary gland tumour: Number, distribution and EPOR positivity. Vet. Comp. Oncol. 2011, 9, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Im, K.S.; Kim, J.H.; Yhee, J.Y.; Yu, C.H.; Kim, N.H.; Nho, W.G.; Sur, J.H. Tryptase-positive mast cells correlate with angiogenesis in canine mammary carcinoma. J. Comp. Pathol. 2011, 144, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Ariyarathna, H.; Thomson, N.; Aberdein, D.; Munday, J.S. Low Stromal Mast Cell Density in Canine Mammary Gland Tumours Predicts a Poor Prognosis. J. Comp. Pathol. 2020, 175, 29–38. [Google Scholar] [CrossRef]
- Hu, G.; Wang, S.; Cheng, P. Tumor-infiltrating tryptase. Int. J. Cancer 2018, 142, 813–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daeron, M. Innate myeloid cells under the control of adaptive immunity: The example of mast cells and basophils. Curr. Opin. Immunol. 2016, 38, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Groot Kormelink, T.; Powe, D.G.; Kuijpers, S.A.; Abudukelimu, A.; Fens, M.H.; Pieters, E.H.; Kassing van der Ven, W.W.; Habashy, H.O.; Ellis, I.O.; Blokhuis, B.R.; et al. Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation. Oncotarget 2014, 5, 3159–3167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassetta, L.; Pollard, J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018, 17, 887–904. [Google Scholar] [CrossRef] [PubMed]
- Raposo, T.P.; Pires, I.; Carvalho, M.I.; Prada, J.; Argyle, D.J.; Queiroga, F.L. Tumour-associated macrophages are associated with vascular endothelial growth factor expression in canine mammary tumours. Vet. Comp. Oncol. 2015, 13, 464–474. [Google Scholar] [CrossRef]
- Raposo, T.; Gregorio, H.; Pires, I.; Prada, J.; Queiroga, F.L. Prognostic value of tumour-associated macrophages in canine mammary tumours. Vet. Comp. Oncol. 2014, 12, 10–19. [Google Scholar] [CrossRef]
- De Souza, T.A.; de Campos, C.B.; De Biasi Bassani Goncalves, A.; Nunes, F.C.; Monteiro, L.N.; de Oliveira Vasconcelos, R.; Cassali, G.D. Relationship between the inflammatory tumor microenvironment and different histologic types of canine mammary tumors. Res. Vet. Sci. 2018, 119, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Tamma, R.; Guidolin, D.; Annese, T.; Tortorella, C.; Ruggieri, S.; Rega, S.; Zito, F.A.; Nico, B.; Ribatti, D. Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma. Exp. Cell Res. 2017, 359, 179–184. [Google Scholar] [CrossRef]
- Sorenmo, K.U.; Durham, A.C.; Kristiansen, V.; Pena, L.; Goldschmidt, M.H.; Stefanovski, D. Developing and testing prognostic bio-scoring systems for canine mammary gland carcinomas. Vet. Comp. Oncol. 2019, 17, 479–488. [Google Scholar] [CrossRef]
- Qiu, X.; Zhu, X.; Zhang, L.; Mao, Y.; Zhang, J.; Hao, P.; Li, G.; Lv, P.; Li, Z.; Sun, X.; et al. Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. Cancer Res. 2003, 63, 6488–6495. [Google Scholar]
- Vijayakumar, T.; Ankathil, R.; Remani, P.; Sasidharan, V.K.; Vijayan, K.K.; Vasudevan, D.M. Serum immunoglobulins in patients with carcinoma of the oral cavity, uterine cervix and breast. Cancer Immunol. Immunother. 1986, 22, 76–79. [Google Scholar] [CrossRef]
- Hu, D.; Zheng, H.; Liu, H.; Li, M.; Ren, W.; Liao, W.; Duan, Z.; Li, L.; Cao, Y. Immunoglobulin expression and its biological significance in cancer cells. Cell Mol. Immunol. 2008, 5, 319–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Ma, C.; Chen, Z.; Yi, W.; McNutt, M.A.; Wang, Y.; Korteweg, C.; Gu, J. Correlation of immunoglobulin G expression and histological subtype and stage in breast cancer. PLoS ONE 2013, 8, e58706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Visser, K.E.; Korets, L.V.; Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 2005, 7, 411–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.Y.; Gout, P.W.; Collins, C.C.; Wang, Y. Epithelial immune cell-like transition (EIT): A proposed transdifferentiation process underlying immune-suppressive activity of epithelial cancers. Differentiation 2012, 83, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Sparger, E.E.; Murphy, B.G.; Kamal, F.M.; Arzi, B.; Naydan, D.; Skouritakis, C.T.; Cox, D.P.; Skorupski, K. Investigation of immune cell markers in feline oral squamous cell carcinoma. Vet. Immunol. Immunopathol. 2018, 202, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeki, K.; Endo, Y.; Uchida, K.; Nishimura, R.; Sasaki, N.; Nakagawa, T. Significance of tumor-infiltrating immune cells in spontaneous canine mammary gland tumor: 140 cases. J. Vet. Med. Sci. 2012, 74, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Zhang, L.; Zheng, J.; Zhao, L.; Huang, J.; Shao, W.; Liao, Q.; Ma, T.; Geng, L.; Yin, C.C.; et al. Spontaneous production of immunoglobulin M in human epithelial cancer cells. PLoS ONE 2012, 7, e51423. [Google Scholar] [CrossRef]
Case # | Breed | Age | Sex | Histotype | Grade |
---|---|---|---|---|---|
1 | Sicilian hound | 7 | F | Tubular Carcinoma | G1 |
2 | Crossbreed | n.a. | F | Tubular Carcinoma | G1 |
3 | Crossbreed | 12 | F | Tubular Carcinoma | G1 |
4 | Yorkshire terrier | 7 | F | Tubulopapillary Carcinoma | G1 |
5 | Crossbreed | 5 | F | Tubulopapillary Carcinoma | G1 |
6 | German Shepherd | 11 | F | Tubulopapillary Carcinoma | G1 |
7 | Yorkshire terrier | 10 | F | Tubulopapillary Carcinoma | G1 |
8 | Yorkshire terrier | 4 | F | Tubulopapillary Carcinoma | G2 |
9 | Cocker | 15 | F | Tubulopapillary Carcinoma | G2 |
10 | Cocker | 10 | F | Tubulopapillary Carcinoma | G2 |
11 | Breton | 8 | F | Micropapillary Carcinoma | G2 |
12 | Shih-Tzu | 10 | F | Micropapillary Carcinoma | G2 |
13 | German Shepherd | 5 | F | Micropapillary Carcinoma | G2 |
14 | Jack Russel | 5 | F | Micropapillary Carcinoma | G2 |
15 | Jack Russel | 7 | F | Micropapillary Carcinoma | G2 |
16 | German Shepherd | 10 | F | Micropapillary Carcinoma | G2 |
17 | Yorkshire terrier | 7 | F | Micropapillary Carcinoma | G3 |
18 | Dalmatian dog | 8 | F | Micropapillary Carcinoma | G3 |
19 | Golden Retriver | 8 | F | Solid Carcinoma | G2 |
20 | Crossbreed | 10 | F | Solid Carcinoma | G2 |
21 | Crossbreed | 14 | F | Solid Carcinoma | G2 |
22 | Crossbreed | 12 | F | Solid Carcinoma | G2 |
23 | Crossbreed | 8 | F | Solid Carcinoma | G3 |
34 | Pomeranian | 13 | F | Hyperplasia/Dysplasia | |
35 | Crossbreed | 9 | F | Hyperplasia/Dysplasia | |
36 | German Shepherd | n.a. | F | Hyperplasia/Dysplasia | |
37 | Crossbreed | 6 | F | Hyperplasia/Dysplasia | |
38 | Yorkshire terrier | 5 | F | Hyperplasia/Dysplasia | |
39 | Poodle | 10 | F | Hyperplasia/Dysplasia | |
40 | Crossbreed | n.a. | F | Lobular Hyperplasia with Atypia | |
41 | Siberian husky | 10 | F | Hyperplasia/Dysplasia | |
42 | Poodle | 6 | F | Lobular Hyperplasia with Atypia | |
43 | Siberian husky | 8 | F | Hyperplasia/Dysplasia |
Antibody | Clone | Brand | Specificity | Dilution |
---|---|---|---|---|
Mouse anti CD79a | HM47/A9 | Novocastra HM47-A9 | B-Cell receptor | 1:50 |
Mouse anti Macrophage Marker | MAC387 | Santa Cruz Biotech MAC 387 | Macrophages | 1:200 |
Mouse anti Mast cell Tryptase | 10D11 | Novocastra 10D11 | Mast cells | 1:100 |
Mouse anti Pan-cytokeratin | AE1/AE3 | Santa Cruz Biotech AE1/AE3 | Epithelium | 1:200 |
Goat Anti Dog IgM:FITC | n/a | AbD Serotec | Immunoglobulin M | 1:100 |
Sheep Anti Dog IgG:FITC | n/a | AbD Serotec | Immunoglobulin G | 1:100 |
Mouse Anti Dog IgG:FITC | n/a | Sigma | Immunoglobulin G | 1:100 |
Goat Anti Dog IgA:FITC | n/a | AbD Serotec | Immunoglobulin A | 1:100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sfacteria, A.; Napoli, E.; Rifici, C.; Commisso, D.; Giambrone, G.; Mazzullo, G.; Marino, G. Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog. Animals 2021, 11, 1189. https://doi.org/10.3390/ani11051189
Sfacteria A, Napoli E, Rifici C, Commisso D, Giambrone G, Mazzullo G, Marino G. Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog. Animals. 2021; 11(5):1189. https://doi.org/10.3390/ani11051189
Chicago/Turabian StyleSfacteria, Alessandra, Ettore Napoli, Claudia Rifici, Daria Commisso, Giada Giambrone, Giuseppe Mazzullo, and Gabriele Marino. 2021. "Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog" Animals 11, no. 5: 1189. https://doi.org/10.3390/ani11051189
APA StyleSfacteria, A., Napoli, E., Rifici, C., Commisso, D., Giambrone, G., Mazzullo, G., & Marino, G. (2021). Immune Cells and Immunoglobulin Expression in the Mammary Gland Tumors of Dog. Animals, 11(5), 1189. https://doi.org/10.3390/ani11051189