Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Detection of Heat Strain Based on the Most Commonly Used Animal-Based Indicators
2.1. Core Body Temperature
2.1.1. Rectal Temperature (RT)
2.1.2. Vaginal Temperature
2.1.3. Ruminal and Reticular Temperature
2.1.4. Tympanic Temperature
2.1.5. Subcutaneous Temperature
2.1.6. Other Core Temperatures
2.2. Body Surface Temperature
2.3. Respiration-Based Indicators
2.3.1. Respiration Rate
2.3.2. Panting Score
3. Comparison and Future Development of Detection Methods
3.1. Measurement Feasibility of Different Animal-Based Indicators
3.2. Sensitivity of Different Animal-Based Indicators to Heat Stress
3.3. Selection of Thermal Indices Suitable for Specific Environments
3.4. Development of Critical Thresholds
3.5. Individual Monitoring to Help Precision Management
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Ouellet, V.; Cabrera, V.E.; Fadul-Pacheco, L.; Charbonneau, É. The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci. 2019, 102, 8537–8545. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.S.C.; daSilva, R.G.; Loureiro, C.M.B. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment. Int. J. Biometeorol. 2005, 50, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.S.C.; Silva, R.G.d.; Loureiro, C.M.B. Latent heat loss of Holstein cows in a tropical environment: A prediction model. Rev. Bras. Zootec. 2008, 37, 1837–1843. [Google Scholar] [CrossRef] [Green Version]
- Becker, C.A.; Collier, R.J.; Stone, A.E. Invited review: Physiological and behavioral effects of heat stress in dairy cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef]
- Gorczyca, M.T.; Gebremedhin, K.G. Ranking of environmental heat stressors for dairy cows using machine learning algorithms. Comput. Electron. Agric. 2020, 168, 105124. [Google Scholar] [CrossRef]
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J.; Kuhla, B.; Amon, T. Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosys. Eng. 2020, 199, 83–96. [Google Scholar] [CrossRef]
- Bar, D.; Kaim, M.; Flamenbaum, I.; Hanochi, B.; Toaff-Rosenstein, R.L. Technical note: Accelerometer-based recording of heavy breathing in lactating and dry cows as an automated measure of heat load. J. Dairy Sci. 2019, 102, 3480–3486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koltes, J.E.; Koltes, D.A.; Mote, B.E.; Tucker, J.; Hubbell, D.S. Automated collection of heat stress data in livestock: New technologies and opportunities. Transl. Anim. Sci. 2018, 2, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Neethirajan, S. Transforming the Adaptation Physiology of Farm Animals through Sensors. Animals 2020, 10, 1512. [Google Scholar] [CrossRef]
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Bjerg, B.S.; Choi, C.Y.; Zong, C.; Zhang, G. A review and quantitative assessment of cattle-related thermal indices. J. Therm. Biol. 2018, 77, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Herbut, P.; Angrecka, S.; Walczak, J. Environmental parameters to assessing of heat stress in dairy cattle—A review. Int. J. Biometeorol. 2018, 62, 2089–2097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polsky, L.; Von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Collier, R.J.; Hall, L.W.; Rungruang, S.; Zimbleman, R.B. Quantifying Heat Stress and Its Impact on Metabolism and Performance. In Proceedings of the MidSouth Ruminant Nutrition Conference, Gainesville, FL, USA, 1 February 2012; pp. 74–84. [Google Scholar]
- West, J.W.; Mullinix, B.G.; Bernard, J.K. Effects of Hot, Humid Weather on Milk Temperature, Dry Matter Intake, and Milk Yield of Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Chen, J.; Peng, D.; Gu, X. Short communication: The lag response of daily milk yield to heat stress in dairy cows. J. Dairy Sci. 2021, 104, 981–988. [Google Scholar] [CrossRef]
- Galán, E.; Llonch, P.; Villagrá, A.; Levit, H.; Pinto, S.; Del Prado, A. A systematic review of non-productivity-related animal-based indicators of heat stress resilience in dairy cattle. PLoS ONE 2018, 13, e0206520. [Google Scholar] [CrossRef]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI thresholds based on the physiological parameters of lactating dairy cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, 52–77. [Google Scholar] [CrossRef] [Green Version]
- Key, N.; Sneeringer, S. Potential Effects of Climate Change on the Productivity of U.S. Dairies. Am. J. Agric. Econ. 2014, 96, 1136–1156. [Google Scholar] [CrossRef]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Liu, J.; Li, L.; Chen, X.; Lu, Y.; Wang, D. Effects of heat stress on body temperature, milk production, and reproduction in dairy cows: A novel idea for monitoring and evaluation of heat stress—A review. Asian Australas. J. Anim. Sci. 2019, 32, 1332–1339. [Google Scholar] [CrossRef]
- Alzahal, O.; Alzahal, H.; Steele, M.A.; Van Schaik, M.; Kyriazakis, I.; Duffield, T.F.; McBride, B.W. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J. Dairy Sci. 2011, 94, 3568–3574. [Google Scholar] [CrossRef] [PubMed]
- Berman, A.; Folman, Y.; Kaim, M.; Mamen, M.; Herz, Z.; Wolfenson, D.; Arieli, A.; Graber, Y. Upper Critical Temperatures and Forced Ventilation Effects for High-Yielding Dairy Cows in a Subtropical Climate. J. Dairy Sci. 1985, 68, 1488–1495. [Google Scholar] [CrossRef]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DiGiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 2017, 57, 1233–1241. [Google Scholar] [CrossRef]
- Spiers, D.E.; Spain, J.N.; Sampson, J.D.; Rhoads, R.P. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. J. Therm. Biol. 2004, 29, 759–764. [Google Scholar] [CrossRef]
- Reuter, R.; Carroll, J.; Hulbert, L.; Dailey, J.; Galyean, M. Technical note: Development of a self-contained, indwelling rectal temperature probe for cattle research. J. Anim. Sci. 2010, 88, 3291–3295. [Google Scholar] [CrossRef] [Green Version]
- Lees, A.M.; Lea, J.M.; Salvin, H.E.; Cafe, L.M.; Colditz, I.G.; Lee, C. Relationship between Rectal Temperature and Vaginal Temperature in Grazing Bos taurus Heifers. Animals 2018, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Debnath, T.; Bera, S.; Pal, P.; Debbarma, N.; Haldar, A. Application of radio frequency based digital thermometer for real-time monitoring of dairy cattle rectal temperature. Vet. World 2017, 10, 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Gebremedhin, K.; Parkhurst, A.; Hillman, P. Placement of temperature probe in bovine vagina for continuous measurement of core-body temperature. Int. J. Biometeorol. 2015, 59, 1201–1205. [Google Scholar] [CrossRef]
- Kendall, P.E.; Tucker, C.B.; Dalley, D.E.; Clark, D.A.; Webster, J.R. Milking frequency affects the circadian body temperature rhythm in dairy cows. Livest. Sci. 2008, 117, 130–138. [Google Scholar] [CrossRef]
- Vickers, L.A.; Burfeind, O.; Von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Technical note: Comparison of rectal and vaginal temperatures in lactating dairy cows. J. Dairy Sci. 2010, 93, 5246–5251. [Google Scholar] [CrossRef] [Green Version]
- Burfeind, O.; Suthar, V.S.; Heuwieser, W. Effect of heat stress on body temperature in healthy early postpartum dairy cows. Theriogenology 2012, 78, 2031–2038. [Google Scholar] [CrossRef] [PubMed]
- Burdick, N.C.; Carroll, J.A.; Dailey, J.W.; Randel, R.D.; Falkenberg, S.M.; Schmidt, T.B. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J. Therm. Biol. 2012, 37, 339–343. [Google Scholar] [CrossRef]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Sampling strategy and measurement device affect vaginal temperature outcomes in lactating dairy cattle. J. Dairy Sci. 2020, 103, 5414–5421. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.D.; Saxton, A.M.; Ríus, A.G. Short communication: Relationships among temperature-humidity index with rectal, udder surface, and vaginal temperatures in lactating dairy cows experiencing heat stress. J. Dairy Sci. 2018, 101, 6424–6429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakatani, M.; Sugano, T.; Higo, A.; Naotsuka, K.; Hojo, T.; Gessei, S.; Uehara, H.; Takenouchi, N. Vaginal temperature measurement by a wireless sensor for predicting the onset of calving in Japanese Black cows. Theriogenology 2018, 111, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, H.; Tian, H.; Chen, X.; Li, S.; Lu, Y.; Li, L.; Wang, D. Alterations in vaginal temperature during the estrous cycle in dairy cows detected by a new intravaginal device—A pilot study. Trop. Anim. Health Prod. 2020, 52, 2265–2271. [Google Scholar] [CrossRef]
- Iwasaki, W.; Ishida, S.; Kondo, D.; Ito, Y.; Tateno, J.; Tomioka, M. Monitoring of the core body temperature of cows using implantable wireless thermometers. Comput. Electron. Agric. 2019, 163, 104849. [Google Scholar] [CrossRef]
- Chung, H.; Li, J.; Kim, Y.; Van Os, J.M.C.; Brounts, S.H.; Choi, C.Y. Using implantable biosensors and wearable scanners to monitor dairy cattle’s core body temperature in real-time. Comput. Electron. Agric. 2020, 174, 105453. [Google Scholar] [CrossRef]
- Nogami, H.; Arai, S.; Okada, H.; Zhan, L.; Itoh, T. Minimized Bolus-Type Wireless Sensor Node with a Built-In Three-Axis Acceleration Meter for Monitoring a Cow’s Rumen Conditions. Sensors 2017, 17, 687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahendran, S.A.; Booth, R.; Burge, M.; Bell, N.J. Randomised positive control trial of NSAID and antimicrobial treatment for calf fever caused by pneumonia. Vet. Rec. 2017, 181, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setser, M.M.W.; Cantor, M.C.; Costa, J.H.C. A comprehensive evaluation of microchips to measure temperature in dairy calves. J. Dairy Sci. 2020, 103, 9290–9300. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Chen, S.; Li, G.; Chen, J.; Wang, J.; Gu, X. Infrared thermography measured body surface temperature and its relationship with rectal temperature in dairy cows under different temperature-humidity indexes. Int. J. Biometeorol. 2019, 63, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Jongman, E.C. Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals 2019, 9, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Chen, S.; Chen, J.; Peng, D.; Gu, X. Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress. J. Dairy Sci. 2020, 103, 5466–5484. [Google Scholar] [CrossRef]
- Dalcin, V.C.; Fischer, V.; dos Santos Daltro, D.; Alfonzo, E.P.M.; Stumpf, M.T.; Kolling, G.J.; da Silva, M.V.G.B.; McManus, C. Physiological parameters for thermal stress in dairy cattle. Rev. Bras. Zootec. 2016, 45, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Dado-Senn, B.; Ouellet, V.; Dahl, G.E.; Laporta, J. Methods for assessing heat stress in preweaned dairy calves exposed to chronic heat stress or continuous cooling. J. Dairy Sci. 2020, 103, 8587–8600. [Google Scholar] [CrossRef]
- Kovács, L.; Kézér, F.L.; Póti, P.; Boros, N.; Nagy, K. Short communication: Upper critical temperature-humidity index for dairy calves based on physiological stress variables. J. Dairy Sci. 2020, 103, 2707–2710. [Google Scholar] [CrossRef] [PubMed]
- Nabenishi, H.; Ohta, H.; Nishimoto, T.; Morita, T.; Ashizawa, K.; Tsuzuki, Y. Effect of the Temperature-Humidity Index on Body Temperature and Conception Rate of Lactating Dairy Cows in Southwestern Japan. J. Reprod. Dev. 2011, 57, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Hillman, P.E.; Lee, C.N.; Willard, S.T. Body Temperature Versus Microclimate Selection in Heat Stressed Dairy Cows. Trans. ASABE 2005, 48, 795–801. [Google Scholar]
- Atkins, I.K.; Cook, N.B.; Mondaca, M.R.; Choi, C.Y. Continuous Respiration Rate Measurement of Heat-Stressed Dairy Cows and Relation to Environment, Body Temperature, and Lying Time. Trans. ASABE 2018, 61, 1475–1485. [Google Scholar] [CrossRef]
- Ammer, S.; Lambertz, C.; Gauly, M. Is reticular temperature a useful indicator of heat stress in dairy cattle? J. Dairy Sci. 2016, 99, 10067–10076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, B.; Banhazi, T.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. Modelling of heat stress in a robotic dairy farm. Part 2: Identifying the specific thresholds with production factors. Biosys. Eng. 2020, 199, 43–57. [Google Scholar] [CrossRef]
- Kim, N.Y.; Moon, S.H.; Kim, S.J.; Kim, E.K.; Oh, M.; Tang, Y.; Jang, S.Y. Summer season temperature-humidity index threshold for infrared thermography in Hanwoo (Bos taurus coreanae) heifers. Asian Australas. J. Anim. Sci. 2020, 33, 1691–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Research Council. A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Bianca, W. Relative Importance of Dry- and Wet-Bulb Temperatures in Causing Heat Stress in Cattle. Nature 1962, 195, 251–252. [Google Scholar] [CrossRef] [PubMed]
- Mader, T.; Davis, M.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Piccione, G.; Caola, G.; Refinetti, R. Daily and estrous rhythmicity of body temperature in domestic cattle. BMC Physiol. 2003, 3, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaughan, J.B.; Holt, S.M.; Hahn, G.L.; Mader, T.L.; Eigenberg, R.A. Respiration rate—Is it a good measure of heat stress in cattle? Asian-Australas. J. Anim. Sci. 2000, 13, 329–332. [Google Scholar]
- Burfeind, O.; Von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Short communication: Repeatability of measures of rectal temperature in dairy cows. J. Dairy Sci. 2010, 93, 624–627. [Google Scholar] [CrossRef]
- Ekine-Dzivenu, C.C.; Mrode, R.; Oyieng, E.; Komwihangilo, D.; Lyatuu, E.; Msuta, G.; Ojango, J.M.K.; Okeyo, A.M. Evaluating the impact of heat stress as measured by temperature-humidity index (THI) on test-day milk yield of small holder dairy cattle in a sub-Sahara African climate. Livest. Sci. 2020, 242, 104314. [Google Scholar] [CrossRef]
- Rejeb, M.; Sadraoui, R.; Najar, T.; M’rad, M. A Complex Interrelationship between Rectal Temperature and Dairy Cows’ Performance under Heat Stress Conditions. Open J. Anim. Sci. 2016, 6, 24–30. [Google Scholar] [CrossRef] [Green Version]
- Hillman, P.E.; Gebremedhin, K.G.; Willard, S.T.; Lee, C.N.; Kennedy, A.D. Continuous Measurements of Vaginal Temperature of Female Cattle Using A Data Logger Encased in a Plastic Anchor. Appl. Eng. Agric. 2009, 25, 291–296. [Google Scholar] [CrossRef]
- Bergen, R.D.; Kennedy, A.D. Relationship between vaginal and tympanic membrane temperature in beef heifers. Can. J. Anim. Sci. 2000, 80, 515–518. [Google Scholar] [CrossRef]
- Suthar, V.; Burfeind, O.; Maeder, B.; Heuwieser, W. Agreement between rectal and vaginal temperature measured with temperature loggers in dairy cows. J. Dairy Res. 2013, 80, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Ammer, S.; Lambertz, C.; Gauly, M. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. J. Dairy Res. 2016, 83, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.C.; Hicks, W.S.; Bucklin, R.A.; Shearer, J.K.; Bray, D.R.; Soto, P.; Carvalho, V. Comparison of Methods of Measuring Deep Body Temperatures of Dairy Cows. In Proceedings of the 6th International Symposium, Louisville, KY, USA, 21–23 May 2001; pp. 432–438. [Google Scholar]
- Prendiville, D.J.; Lowe, J.; Earley, B.; Spahr, C.; Kettlewell, P. Radiotelemetry Systems for Measuring Body Temperature; Grange Research Centre: Tegasc, Ireland, 2002. [Google Scholar]
- Bewley, J.; Einstein, M.; Grott, M.; Schutz, M. Comparison of Reticular and Rectal Core Body Temperatures in Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 4661–4672. [Google Scholar] [CrossRef]
- Ipema, A.H.; Goense, D.; Hogewerf, P.H.; Houwers, H.W.J.; van Roest, H. Pilot study to monitor body temperature of dairy cows with a rumen bolus. Comput. Electron. Agric. 2008, 64, 49–52. [Google Scholar] [CrossRef]
- Lees, A.M.; Lees, J.C.; Lisle, A.T.; Sullivan, M.L.; Gaughan, J.B. Effect of heat stress on rumen temperature of three breeds of cattle. Int. J. Biometeorol. 2018, 62, 207–215. [Google Scholar] [CrossRef]
- Jonsson, N.N.; Kleen, J.L.; Wallace, R.J.; Andonovic, I.; Michie, C.; Farish, M.; Mitchell, M.; Duthie, C.-A.; Jensen, D.B.; Denwood, M.J. Evaluation of reticuloruminal pH measurements from individual cattle: Sampling strategies for the assessment of herd status. Vet. J. 2019, 243, 26–32. [Google Scholar] [CrossRef]
- Knauer, W.A.; Godden, S.M.; McDonald, N. Technical note: Preliminary evaluation of an automated indwelling rumen temperature bolus measurement system to detect pyrexia in preweaned dairy calves. J. Dairy Sci. 2016, 99, 9925–9930. [Google Scholar] [CrossRef] [PubMed]
- Sievers, A.K.; Kristensen, N.B.; Laue, H.-J.; Wolffram, S. Development of an intraruminal device for data sampling and transmission. J. Anim. Feed Sci. 2004, 13, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Burns, P.D.; Wailes, W.R.; Baker, P.B. Changes in reticular and rectal temperature during the periestrous period in cows. J. Anim. Sci. 2002, 80, 128. [Google Scholar]
- Cantor, M.; Costa, J.; Bewley, J. Impact of Observed and Controlled Water Intake on Reticulorumen Temperature in Lactating Dairy Cattle. Animals 2018, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Wood, C.L.; McQuerry, K.J.; Ray, D.L.; Clark, J.D.; Bewley, J.M. Influence of breed, milk production, season, and ambient temperature on dairy cow reticulorumen temperature. J. Dairy Sci. 2013, 96, 5072–5081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, A.E.; Jones, B.W.; Becker, C.A.; Bewley, J.M. Influence of breed, milk yield, and temperature-humidity index on dairy cow lying time, neck activity, reticulorumen temperature, and rumination behavior. J. Dairy Sci. 2017, 100, 2395–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, G.L.; Eigenberg, R.A.; Nienaber, J.A.; Littledike, E.T. Measuring physiological responses of animals to environmental stressors using a microcomputer-based portable datalogger. J. Anim. Sci. 1990, 68, 2658–2665. [Google Scholar] [CrossRef]
- Mader, T.; Holt, S.; Hahn, G.; Davis, M.; Spiers, D. Feeding strategies for managing heat load in feedlot cattle. J. Anim. Sci. 2002, 80, 2373–2382. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.S.; Mader, T.L.; Holt, S.M.; Parkhurst, A.M. Strategies to reduce feedlot cattle heat stress: Effects on tympanic temperature. J. Anim. Sci. 2003, 81, 649–661. [Google Scholar] [CrossRef]
- Arias, R.A.; Mader, T.L.; Escobar, P.C. Climatic factors affecting cattle performance in dairy and beef farms. Arch. Med. Vet. 2008, 40, 7–22. [Google Scholar]
- Jara, I.E.; Keim, J.P.; Arias, R.A. Behaviour, tympanic temperature and performance of dairy cows during summer season in southern Chile. Arch. Med. Vet. 2016, 48, 113–118. [Google Scholar] [CrossRef] [Green Version]
- McCorkell, R.; Wynne-Edwards, K.; Windeyer, C.; Schaefer, A. Limited efficacy of Fever Tag(®) temperature sensing ear tags in calves with naturally occurring bovine respiratory disease or induced bovine viral diarrhea virus infection. Can. Vet. J. 2014, 55, 688–690. [Google Scholar]
- Richeson, J.T.; Powell, J.G.; Kegley, E.B.; Hornsby, J.A. Evaluation of an Ear-Mounted Tympanic Thermometer Device for Bovine Respiratory Disease Diagnosis; Arkansas Agricultural Experiment Station Division of Agriculture University of Arkansas System Fayetteville: Little Rock, AR, USA, 2012; pp. 40–42. [Google Scholar]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A new heat load index for feedlot cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Myers, M.J.; Henderson, M. Assessment of two devices for measuring tympanic membrane temperature in swine, dairy cattle, and dairy calves. J. Am. Vet. Med. Assoc. 1996, 208, 1700–1701. [Google Scholar]
- Lee, Y.; Bok, J.D.; Lee, H.J.; Lee, H.G.; Kim, D.; Lee, I.; Kang, S.K.; Choi, Y.J. Body Temperature Monitoring Using Subcutaneously Implanted Thermo-loggers from Holstein Steers. Asian Australas. J. Anim. Sci. 2016, 29, 299–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, E.D.; Fried, K.; Velasco, J.M.; Dahl, G.E. Correlation of rectal temperature and peripheral temperature from implantable radio-frequency microchips in Holstein steers challenged with lipopolysaccharide under thermoneutral and high ambient temperatures. J. Anim. Sci. 2012, 90, 4788–4794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, A.; Heuwieser, W.; Burfeind, O. Technical note: Assessment of milk temperature measured by automatic milking systems as an indicator of body temperature and fever in dairy cows. J. Dairy Sci. 2014, 97, 4333–4339. [Google Scholar] [CrossRef] [PubMed]
- Igono, M.O.; Johnson, H.D.; Steevens, B.J.; Krause, G.F.; Shanklin, M.D. Physiological, Productive, and Economic Benefits of Shade, Spray, and Fan System Versus Shade for Holstein Cows During Summer Heat. J. Dairy Sci. 1987, 70, 1069–1079. [Google Scholar] [CrossRef]
- Chaudhari, B.J.; Singh, M. Relationship between udder, skin and milk temperature in lactating Murrah buffaloes during the hot-humid season. Buffalo Bull. 2015, 34, 181–188. [Google Scholar]
- Igono, M.; Johnson, H.; Steevens, B.; Hainen, W.; Shanklin, M. Effect of season on milk temperature, milk growth hormone, prolactin, and somatic cell counts of lactating cattle. Int. J. Biometeorol. 1988, 32, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Du Preez, J.H. Parameters for the determination and evaluation of heat stress in dairy cattle in South Africa. Onderstepoort J. Vet. Res. 2000, 67, 263–271. [Google Scholar]
- Theurer, M.E.; Anderson, D.E.; White, B.J.; Miesner, M.D.; Larson, R.L. Effects of weather variables on thermoregulation of calves during periods of extreme heat. Am. J. Vet. Res. 2014, 75, 296–300. [Google Scholar] [CrossRef]
- Poikalainen, V.; Praks, J.; Veermäe, I.; Kokin, E. Infrared temperature patterns of cow’s body as an indicator for health control at precision cattle farming. Agron. Res. 2012, 10, 187–194. [Google Scholar]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. Sci. Tech. Rev. Off. Int. Epizoot. 2014, 33, 189–196. [Google Scholar] [CrossRef]
- Norton, T.; Berckmans, D. Developing precision livestock farming tools for precision dairy farming. Anim. Front. 2017, 7, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Godyń, D.; Herbut, P.; Angrecka, S. Measurements of peripheral and deep body temperature in cattle—A review. J. Therm. Biol. 2019, 79, 42–49. [Google Scholar] [CrossRef]
- Salles, M.S.V.; da Silva, S.C.; Salles, F.A.; Roma, L.C.; El Faro, L.; Mac Lean, P.A.B.; de Oliveira, C.E.L.; Martello, L.S. Mapping the body surface temperature of cattle by infrared thermography. J. Therm. Biol. 2016, 62, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Vogel, B.; Wagner, H.; Gmoser, J.; Wörner, A.; Löschberger, A.; Peters, L.; Frey, A.; Hofmann, U.; Frantz, S. Touch-free measurement of body temperature using close-up thermography of the ocular surface. MethodsX 2016, 3, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.L.; Cook, N.J.; Bench, C.; Chabot, J.B.; Colyn, J.; Liu, T.; Okine, E.K.; Stewart, M.; Webster, J.R. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res. Vet. Sci. 2012, 93, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, G.; Schmidt, M.; Ammon, C. First investigations to refine video-based IR thermography as a non-invasive tool to monitor the body temperature of calves. Animal 2016, 10, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- George, W.D.; Godfrey, R.W.; Ketring, R.C.; Vinson, M.C.; Willard, S.T. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. J. Anim. Sci. 2014, 92, 4949–4955. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.J.E.; Stewart, I.B.; Disher, A.E.; Costello, J.T. A Comparison between Conductive and Infrared Devices for Measuring Mean Skin Temperature at Rest, during Exercise in the Heat, and Recovery. PLoS ONE 2015, 10, e0117907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, T.M.; Bateman, H.G.; Suarez-Mena, F.X.; Dennis, T.S.; Schlotterbeck, R.L. Short communication: Changes in body temperature of calves up to 2 months of age as affected by time of day, age, and ambient temperature. J. Dairy Sci. 2016, 99, 8867–8870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legrand, A.; Schütz, K.E.; Tucker, C.B. Using water to cool cattle: Behavioral and physiological changes associated with voluntary use of cow showers. J. Dairy Sci. 2011, 94, 3376–3386. [Google Scholar] [CrossRef]
- Kou, H.; Zhao, Y.; Ren, K.; Chen, X.; Lu, Y.; Wang, D. Automated measurement of cattle surface temperature and its correlation with rectal temperature. PLoS ONE 2017, 12, e0175377. [Google Scholar] [CrossRef]
- Sellier, N.; Guettier, E.; Staub, C. A Review of Methods to Measure Animal Body Temperature in Precision Farming. Am. J. Agric. Sci. Technol. 2014, 2, 74–99. [Google Scholar] [CrossRef]
- Sousa, R.V.d.; Rodrigues, A.V.d.S.; Abreu, M.G.d.; Tabile, R.A.; Martello, L.S. Predictive model based on artificial neural network for assessing beef cattle thermal stress using weather and physiological variables. Comput. Electron. Agric. 2018, 144, 37–43. [Google Scholar] [CrossRef]
- Pacheco, V.M.; Sousa, R.V.d.; Rodrigues, A.V.D.S.; Sardinha, E.J.d.S.; Martello, L.S. Thermal imaging combined with predictive machine learning based model for the development of thermal stress level classifiers. Livest. Sci. 2020, 241, 104244. [Google Scholar] [CrossRef]
- McArthur, A.J. Thermal interaction between animal and microclimate: A comprehensive model. J. Theor. Biol. 1987, 126, 203–238. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Nienaber, J.A.; Hahn, G.L. Dynamic Response Indicators of Heat Stress in Shaded and Non-shaded Feedlot Cattle, Part 1: Analyses of Indicators. Biosys. Eng. 2005, 90, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Milan, H.F.M.; Maia, A.S.C.; Gebremedhin, K.G. Technical note: Device for measuring respiration rate of cattle under field conditions. J. Anim. Sci. 2016, 94, 5434–5438. [Google Scholar] [CrossRef] [PubMed]
- Eigenberg, R.A.; Hahn, G.L.; Nienaber, J.A.; Brown-Brandl, T.M.; Spiers, D.E. Development of a new respiration rate monitor for cattle. Trans. ASAE 2000, 43, 723–728. [Google Scholar] [CrossRef]
- Strutzke, S.; Fiske, D.; Hoffmann, G.; Ammon, C.; Heuwieser, W.; Amon, T. Technical note: Development of a noninvasive respiration rate sensor for cattle. J. Dairy Sci. 2019, 102, 690–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Carvalho, G.A.; Salman, A.K.D.; da Cruz, P.G.; de Souza, E.C.; da Silva, F.R.F.; Schmitt, E. Technical note: An acoustic method for assessing the respiration rate of free-grazing dairy cattle. Livest. Sci. 2020, 241, 104270. [Google Scholar] [CrossRef]
- Pastell, M.; Aisla, A.M.; Hautala, M.; Poikalainen, V.; Praks, J.; Veermäe, I.; Ahokas, J. Contactless measurement of cow behavior in a milking robot. Behav. Res. Methods 2006, 38, 479–486. [Google Scholar] [CrossRef]
- Davison, C.; Michie, C.; Hamilton, A.; Tachtatzis, C.; Andonovic, I.; Gilroy, M. Detecting Heat Stress in Dairy Cattle Using Neck-Mounted Activity Collars. Agriculture 2020, 10, 210. [Google Scholar] [CrossRef]
- De Melo Costa, C.C.; de Melo Costa, C.C.; Maia, A.S.C.; Maia, A.S.C.; Nascimento, S.T.; Nascimento, S.T.; Nascimento, C.C.N.; Nascimento, C.C.N.; Neto, M.C.; Neto, M.C.; et al. Thermal balance of Nellore cattle. Int. J. Biometeorol. 2018, 62, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.C.; Lees, A.M.; Gaughan, J.B. Developing a heat load index for lactating dairy cows. Anim. Prod. Sci. 2018, 58, 1387. [Google Scholar] [CrossRef]
- Islam, M.A.; Lomax, S.; Doughty, A.K.; Islam, M.R.; Clark, C.E.F. Automated Monitoring of Panting for Feedlot Cattle: Sensor System Accuracy and Individual Variability. Animals 2020, 10, 1518. [Google Scholar] [CrossRef] [PubMed]
- Toledo, I.M.; Fabris, T.F.; Tao, S.; Dahl, G.E. When do dry cows get heat stressed? Correlations of rectal temperature, respiration rate, and performance. JDS Commun. 2020, 1, 21–24. [Google Scholar] [CrossRef]
- Laister, S.; Stockinger, B.; Regner, A.-M.; Zenger, K.; Knierim, U.; Winckler, C. Social licking in dairy cattle—Effects on heart rate in performers and receivers. Appl. Anim. Behav. Sci. 2011, 130, 81–90. [Google Scholar] [CrossRef]
- Stewart, M.; Wilson, M.T.; Schaefer, A.L.; Huddart, F.; Sutherland, M.A. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. J. Dairy Sci. 2017, 100, 3893–3901. [Google Scholar] [CrossRef]
- Lowe, G.; Sutherland, M.; Waas, J.; Schaefer, A.; Cox, N.; Stewart, M. Infrared Thermography—A Non-Invasive Method of Measuring Respiration Rate in Calves. Animals 2019, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Amamou, H.; Beckers, Y.; Mahouachi, M.; Hammami, H. Thermotolerance indicators related to production and physiological responses to heat stress of holstein cows. J. Therm. Biol. 2019, 82, 90–98. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Mader, T.L. Body temperature and respiratory dynamics in un-shaded beef cattle. Int. J. Biometeorol. 2014, 58, 1443–1450. [Google Scholar] [CrossRef]
- Tresoldi, G.; Schütz, K.E.; Tucker, C.B. Assessing heat load in drylot dairy cattle: Refining on-farm sampling methodology. J. Dairy Sci. 2016, 99, 8970–8980. [Google Scholar] [CrossRef]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Becker, C.A.; Aghalari, A.; Marufuzzaman, M.; Stone, A.E. Predicting dairy cattle heat stress using machine learning techniques. J. Dairy Sci. 2021, 104, 501–524. [Google Scholar] [CrossRef]
- Kabuga, J.D. The influence of thermal conditions on rectal temperature, respiration rate and pulse rate of lactating Holstein-Friesian cows in the humid tropics. Int. J. Biometeorol. 1992, 36, 146–150. [Google Scholar] [CrossRef]
- Martello, L.; Junior, H.S.; Silva, S.; Balieiro, J. Alternative body sites for heat stress measurement in milking cows under tropical conditions and their relationship to the thermal discomfort of the animals. Int. J. Biometeorol. 2010, 54, 647–652. [Google Scholar] [CrossRef]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef]
- Fuquay, J.W. Heat Stress as it Affects Animal Production. J. Anim. Sci. 1981, 52, 164–174. [Google Scholar] [CrossRef]
- Spiers, D.E.; Spain, J.N.; Ellersieck, M.R.; Lucy, M.C. Strategic application of convective cooling to maximize the thermal gradient and reduce heat stress response in dairy cows. J. Dairy Sci. 2018, 101, 8269–8283. [Google Scholar] [CrossRef]
- Ji, B.; Banhazi, T.; Ghahramani, A.; Bowtell, L.; Wang, C.; Li, B. Modelling of heat stress in a robotic dairy farm. Part 1: Thermal comfort indices as the indicators of production loss. Biosys. Eng. 2020, 199, 27–42. [Google Scholar] [CrossRef]
- Kovacs, L.; Kezer, F.L.; Ruff, F.; Jurkovich, V.; Szenci, O. Assessment of heat stress in 7-week old dairy calves with non-invasive physiological parameters in different thermal environments. PLoS ONE 2018, 13, e0200622. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D.; Thatcher, W.W.; Collier, R.J. Black Globe-Humidity Index (BGHI) as Comfort Equation for Dairy Cows. Trans. ASAE 1981, 24, 711–714. [Google Scholar] [CrossRef]
- Mader, T.L.; Johnson, L.J.; Gaughanf, J.B. A comprehensive index for assessing environmental stress in animals. J. Anim. Sci. 2010, 88, 2153–2165. [Google Scholar] [CrossRef] [Green Version]
- Yan, G.; Li, H.; Zhao, W.; Shi, Z. Evaluation of thermal indices based on their relationships with some physiological responses of housed lactating cows under heat stress. Int. J. Biometeorol. 2020, 64, 2077–2091. [Google Scholar] [CrossRef]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Hernández-Julio, Y.F.; Yanagi, T.; Pires, M.d.F.Á.; Aurélio Lopes, M.; Ribeiro de Lima, R. Models for Prediction of Physiological Responses of Holstein Dairy Cows. Appl. Artif. Intell. 2014, 28, 766–792. [Google Scholar] [CrossRef]
- Schütz, K.E.; Rogers, A.R.; Poulouin, Y.A.; Cox, N.R.; Tucker, C.B. The amount of shade influences the behavior and physiology of dairy cattle. J. Dairy Sci. 2010, 93, 125–133. [Google Scholar] [CrossRef]
- Mondaca, M.R.; Choi, C.Y.; Cook, N.B. Understanding microenvironments within tunnel-ventilated dairy cow freestall facilities: Examination using computational fluid dynamics and experimental validation. Biosys. Eng. 2019, 183, 70–84. [Google Scholar] [CrossRef]
- Fuentes, S.; Viejo, C.G.; Cullen, B.; Tongson, E.; Chauhan, S.S.; Dunshea, F.R. Artificial Intelligence Applied to a Robotic Dairy Farm to Model Milk Productivity and Quality based on Cow Data and Daily Environmental Parameters. Sensors 2020, 20, 2975. [Google Scholar] [CrossRef]
- Miura, R.; Yoshioka, K.; Miyamoto, T.; Nogami, H.; Okada, H.; Itoh, T. Estrous detection by monitoring ventral tail base surface temperature using a wearable wireless sensor in cattle. Anim. Reprod. Sci. 2017, 180, 50–57. [Google Scholar] [CrossRef]
Indicator | Technology | Automatic | Continuous | Real-Time | Accuracy | Reference |
---|---|---|---|---|---|---|
Rectal temperature | Digital thermometer | No | No | No | ±0.1 °C | Garner et al. [26] |
A thermistor probe attached to a recorder | Yes | Yes | No | Unknown | Spiers et al. [27] | |
An indwelling data logger supported by a customized tail harness or piping | Yes | Yes | No | ±0.2 to ± 0.5 °C | Reuter et al. [28]; Lees et al. [29] | |
Radiofrequency-based digital thermometer | Yes | Yes | Yes | ±0.5 °C | Debnath et al. [30] | |
Vaginal temperature | Temperature probe with a long-finger anchor | Yes | Yes | No | ±0.2 °C | Lee et al. [31] |
Temperature data loggers and modified vaginal controlled internal drug release | Yes | Yes | No | ±0.1 to ±1 °C | Kendall et al. [32]; Vickers et al. [33]; Burfeind et al. [34]; Burdick et al. [35]; Tresoldi et al. [36]; Kaufman et al. [37]; Garner et al. [26] | |
A wireless vaginal temperature device | Yes | Yes | Yes | Unknown | Sakatani et al. [38] | |
An indwelling device equipped with temperature sensors, a data collector, and a computer system | Yes | Yes | Yes | Mean difference of 0.02 °C with a 95% confidence interval: −0.23 to 0.26 °C | Wang et al. [39] | |
Subcutaneous temperature | Implantable wireless thermometers based on Bluetooth | Yes | Yes | Yes | ±0.05 °C | Iwasaki et al. [40] |
Implantable radiofrequency identification biosensors and wearable scanners | Yes | Yes | Yes | Unknown | Chung et al. [41] | |
Ruminal temperature | Radiotelemetric ruminal and reticular bolus | Yes | Yes | Yes | Unknown | Nogami et al. [42] |
Tympanic temperature | Continuous monitoring temperature probes | Yes | Yes | Yes | ±0.1% | Mahendran et al. [43] |
Infrared ear thermometer | Yes | No | No | ±0.2 °C | Woodrum Setser et al. [44] | |
Body surface temperature | Handheld infrared camera | No | No | No | ±1% | Peng et al. [45] |
Handheld infrared gun | No | No | No | ±1.5 °C | Kaufman et al. [37] | |
Fixed infrared camera | Yes | Yes | Yes | ±2% | Jorquera-Chavez et al. [46] |
Indicator | Threshold for Animal-Based Indicators | Threshold for Environment-Based Indicators | Cow Information | Thermal Condition | Reference |
---|---|---|---|---|---|
Rectal temperature | 38.4 °C | THI a 70 | High-producing Holstein-Friesian dairy cows | A continental climate with a THI range of 17.8 to 85.1 | Pinto et al. [19] |
38.6 °C | THI a 70 | High-producing Holstein dairy cows | Hot climate with an AT range of 9.5 to 30.8 °C | Li et al. [47] | |
38.55 °C | THI a 74.1 | High-producing Holstein dairy cows | Warm temperate semi-humid continental monsoon climate with a THI range of 58 to 84 | Peng et al. [45] | |
Unknown | BGHI 76.44 | ½ Holstein dairy cows | BGHI stayed higher than 72 | Dalcin et al. [48] | |
Unknown | BGHI 73.51 | ¾ Holstein dairy cows | BGHI stayed higher than 72 | Dalcin et al. [48] | |
Unknown | THI a 67 | Preweaning dairy calves | Averaged THI of 78 with shade only in a subtropical climate | Dado–Senn et al. [49] | |
Unknown | THI b 88.1 | Preweaning Holstein bull calves | Hot climate with a THI range from 70.3 to 94 | Kovács et al. [50] | |
Vaginal temperature | Unknown | THI c 69 | Multiparous nonpregnant Holstein-Friesian dairy cows | THI ranged from 55.8 to 79.9 | Nabenishi et al. [51] |
38.9 °C | Unknown | Dairy cows | Hot–humid climate with an average THI of 82.4 | Hillman et al. [52] | |
Unknown | THI a 70 | Lactating Holstein cows | Unknown | Atkins et al. [53] | |
Ruminal temperature | 39.3 °C | THI a 65 | Lactating Holstein-Friesian dairy cows | Temperate climate with THI values varied from 9.6 to 84.9 | Ammer et al. [54] |
Milk temperature | Unknown | Dynamic thresholds using a decision tree model | Lactating Holstein cows | A subtropical climate with an ambient temperature range of 2.0 to 38.0 °C | Ji et al. [55] |
Body surface temperatures: Eyes, hindquarters, nose, part of horns, and ears | Unknown | THI a 65 (eyes) to 70 (hindquarters) | Hanwoo heifers | THI ranged from 75.1 to 84.7 | Kim et al. [56] |
Body surface temperatures: Forehead (mean, maximum) | 30.05, 30.34 °C | THI a 71.4, 66.8 | High-producing Holstein dairy cows | Warm temperate semi-humid continental monsoon climate with a THI range of 58 to 84 | Peng et al. [45] |
Body surface temperature: Ear | Unknown | THI b 83.0 | Preweaning Holstein bull calves | Hot climate with a THI range from 70.3 to 94 | Kovács et al. [50] |
Indicator | Methodology | Technology | Automatic | Continuous | Real-Time | Accuracy | Reference |
---|---|---|---|---|---|---|---|
Respiration rate | Temperature changes around nostrils during breathing | Infrared thermography | Yes | Yes | Yes | 8.4 ± 3.4 (mean ± SD) BPM lower | Jorquera–Chavez et al. [46] |
Thermistor sensor | Yes | Yes | No | ±2 BPM for 80% of the times | Milan et al. [116] | ||
Chest and abdominal expansion associated with breathing | Pressure sensor | Yes | Yes | No | ±2–3 BPM | Eigenberg et al. [117] | |
±0.47 BPM | Atkins et al. [53] | ||||||
Pressure changes around nostrils during breathing | Pressure sensor | Yes | Yes | No | Mean difference (BPM): −0.2 when dozing; 0.2 when lying; 1.4 when standing | Strutzke et al. [118] | |
Breathing sounds | Acoustic processing | Yes | Yes | No | Mean bias: 2.75 BPM | de Carvalho et al. [119] | |
Distance change of abdominal movement during breathing | Laser distance sensor | Yes | Yes | No | Mean difference of 6 BPM when measurement rate is 100 Hz | Pastell et al. [120] | |
Body movements due to respiration | Accelerometer-based neck collar | Yes | Yes | No | Unknown | Davison et al. [121] | |
The change in respiration volume | Spirometer | Yes | Yes | Yes | Unknown | de Melo Costa et al. [122] | |
Panting | Panting scoring system | Visual scoring | No | No | No | Not applicable | Mader et al. [59]; Gaughan et al. [88]; Lees et al. [123] |
Body movements due to panting | Accelerometer-based ear tag and neck collar | Yes | Yes | Yes | Positive predictive value = 79% | Bar et al. [8]; Islam et al. [124] |
Indicator | Threshold for Animal-Based Indicators | Threshold for Environment-Based Indicators | Cow Information | Thermal Condition | Reference |
---|---|---|---|---|---|
Respiration rate | 48 BPM | THI a 70 | High-producing Holstein dairy cows | Hot climate with a Ta range of 9.5 to 30.8 °C | Li et al. [47] |
37, 39 BPM | THI a 70, 65 | Standing and lying high-producing Holstein-Friesian dairy cows | Continental climate with a THI range of 17.8 to 85.1 | Pinto et al. [19] | |
60 BPM | Unknown | Lactating Holstein-Friesian dairy cows | Three summers and two winters in Queensland, Australia | Lees et al. [123] | |
30 BPM | BGHI 73.61 | ½ Holstein dairy cows | BGHI stayed higher than 72 | Dalcin et al. [48] | |
45 BPM | BGHI 72.29 | ¾ Holstein dairy cows | BGHI stayed higher than 72 | Dalcin et al. [48] | |
Unknown | THI a 70 | Lactating Holstein cows | Unknown | Atkins et al. [53] | |
61 BPM | Unknown | Dry cows | Unknown | Toledo et al. [125] | |
Unknown | THI a 65 | Preweaning dairy calves | Averaged THI of 78 with shade only in a subtropical climate | Dado–Senn et al. [49] | |
Unknown | THI a 69 | Preweaning dairy calves | Averaged THI of 78.25 with shade plus fans in a subtropical climate | Dado–Senn et al. [49] | |
Unknown | THI b 82.4 | Preweaning Holstein bull calves | Hot climate with a THI range from 70.3 to 94 | Kovács et al. [50] |
Thermal Index | Formula | Resource |
---|---|---|
Temperature–humidity index (THI) | THI = (1.8 × Ta + 32) − (0.55 − 0.0055 × RH) × (1.8 × Ta − 26.8) | National Research Council [57] |
THI = (0.35 × Ta + 0.65 × Tw) × 1.8 + 32 | Bianca et al. [58] | |
THI = 0.8 × Ta + (RH/100) × (Ta − 14.4) + 46.4 | Mader et al. [59] | |
Black globe-humidity index (BGHI) | BGHI = Tbg + 0.36 × Tdp + 41.5 | Buffington et al. [141] |
Comprehensive climate index (CCI) | Mader et al. [142] | |
Heat load index (HLI) | HLI (Tbg < 25) = 10.66 + 0.28 × RH + 1.9 × Tbg − WS | Gaughan et al. [88] |
Dairy heat load index (DHLI) | Lees et al. [123] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, H.; Wang, W.; Guo, L.; Bindelle, J. Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review. Animals 2021, 11, 980. https://doi.org/10.3390/ani11040980
Shu H, Wang W, Guo L, Bindelle J. Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review. Animals. 2021; 11(4):980. https://doi.org/10.3390/ani11040980
Chicago/Turabian StyleShu, Hang, Wensheng Wang, Leifeng Guo, and Jérôme Bindelle. 2021. "Recent Advances on Early Detection of Heat Strain in Dairy Cows Using Animal-Based Indicators: A Review" Animals 11, no. 4: 980. https://doi.org/10.3390/ani11040980