Fermented Soybean Meal Affects the Reproductive Performance and Oxidative Status of Sows, and the Growth of Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. SM, FSM, and SIF Content
2.2. Animal and Experiment Design
2.3. Feeding and Management
2.4. Sample Collection
2.5. Serum Anti-Oxidative Analysis
2.6. Hormone and Growth Factors
2.7. Colostrum Composition
2.8. Statistical Analysis
3. Results
3.1. Performance of Sows and Piglets
3.2. Serum Oxidative Stress Status in Sows
3.3. Serum Hormone and Growth Factors in Sows
3.4. Composition of Colostrum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Punjaisee, C.; Visessanguan, W.; Punjaisee, S.; Sirilun, S. Antioxidant activities of soybean fermented with Aspergillus oryzae BCC 3088. Chiang Mai Univ. J. Nat. Sci. 2012, 11, 13–28. [Google Scholar]
- Lee, J.; Renita, M.; Fioritto, R.J.; St Martin, S.K.; Schwartz, S.J.; Vodovotz, Y. Isoflavone characterization and antioxidant activity of ohio soybeans. J. Agric. Food. Chem. 2004, 52, 2647–2651. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.M.; Wu, W.M.; Hu, M.L. Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food Chem. Toxicol. 2009, 47, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ding, L.; Zhou, R. Determination of Isoflavones in Soybean Meal by HPLC. Chem. Ind. Eng. Prog. 2005, 24, 196. [Google Scholar]
- Kano, M.; Takayanagi, T.; Harada, K.; Sawada, S.; Ishikawa, F. Bioavailability of isoflavones after ingestion of soy beverages in healthy adults. J. Nutr. 2006, 136, 2291–2296. [Google Scholar] [CrossRef]
- Cho, K.M.; Jin, H.L.; Han, D.Y.; Ahn, B.Y.; Kim, H.; Seo, W.T. Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during cheonggukjang soybeans fermentation using potential probiotics Bacillus subtilis CS90. J. Food Compos. Anal. 2011, 24, 402–410. [Google Scholar] [CrossRef]
- Yang, S.F.; Xu, J.X. Biotransformation of soybean isoflavone by microbial solid-state fermentation. Mod. Food Sci. Technol. 2013, 29, 1867–1871. [Google Scholar]
- Hong, K.-J.; Lee, C.-H.; Kim, S.W. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 2004, 7, 430–435. [Google Scholar] [CrossRef]
- Miller, J.K.; Brzezinska-Slebodzinska, E.; Madsen, F.C. Oxidative Stress, Antioxidants, and Animal Function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Abdel-Moez, A.M. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed Sci. Technol. 2015, 201, 89–98. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurley, W.L. 9. Composition of Sow Colostrum and Milk; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 193–230. [Google Scholar] [CrossRef]
- Kim, S.W. Sow Milk. Milk Dairy Prod. Hum. Nutr. 2013. [Google Scholar] [CrossRef]
- Kim, S.W.; van Heugten, E.; Ji, F.; Lee, C.H.; Mateo, R.D. Fermented soybean meal as a vegetable protein source for nursery pigs: I. Effects on growth performance of nursery pigs. J. Anim. Sci. 2010, 88, 214–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.H.; Yun, C.H.; Lee, C.H.; Ha, J.K. The effects of fermented soybean meal on immunophysiological and stress-related parameters in Holstein calves after weaning. J. Dairy Sci. 2012, 95, 5203–5212. [Google Scholar] [CrossRef] [Green Version]
- Association of Official Anlytical Chemists. Offical Methods of Analysis of the Association of Offical Analytical Chemists, 17th ed.; Association of Official Anlytical Chemists: Washington, DC, USA, 2000. [Google Scholar]
- Barnes, S.; Kirk, M.; Coward, L. Isoflavones and their conjugates in soy foods: Extraction conditions and analysis by HPLC-mass spectrometry. J. Agric. Food. Chem. 1994, 42, 2466–2474. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Swine, 11th revised ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Liu, S.T.; Hou, W.X.; Cheng, S.Y.; Shi, B.M.; Shan, A.S. Effects of dietary citric acid on performance, digestibility of calcium and phosphorus, milk composition and immunoglobulin in sows during late gestation and lactation. Anim. Feed Sci. Technol. 2014, 191, 67–75. [Google Scholar] [CrossRef]
- Jóźwik, A.; Krzyzewski, J.; Strzałkowska, N.; Polawska, E.; Bagnicka, E.; Wierzbicka, A.; Niemczuk, K.; Lipińska, P.; Horbańczuk, J.O. Relations between the Oxidative Status, Mastitis, Milk Quality and Disorders of Reproductive Functions in Dairy Cows—A Review. Anim. Sci. Pap. Rep. 2012, 30, 297–307. [Google Scholar]
- da Silva Schmitz, I.; Schaffer, L.F.; Busanello, A.; de Freitas, C.M.; Fachinetto, R.; Peroza, L.R. Isoflavones prevent oxidative stress and inhibit the activity of the enzyme monoamine oxidase in vitro. Mol. Biol. Rep. 2019, 46, 2285–2292. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Adamovic, I.; Kuhn, G. Effects of dietary daidzein supplementation of pregnant sows on carcass and meat quality and skeletal muscle cellularity of the progeny. Meat Sci. 2007, 75, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.Q.; Kuhn, G.; Wegner, J.; Chen, J. Isoflavones, substances with multi-biological and clinical properties. Eur. J. Nutr. 2001, 40, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Ognibene, D.T.; Carvalho, L.C.; Costa, C.A.; Rocha, A.P.; de Moura, R.S.; Castro, R.A. Role of renin-angiotensin system and oxidative status on the maternal cardiovascular regulation in spontaneously hypertensive rats. Am. J. Hypertens. 2012, 25, 498. [Google Scholar] [CrossRef] [PubMed]
- White, R.E.; Gerrity, R.; Barman, S.A.; Han, G. Estrogen and oxidative stress: A novel mechanism that may increase the risk for cardiovascular disease in women. Steroids 2010, 75, 788–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrazek, H.M.A.; Mahmoud, M.M.A.; Tag, H.M.; Greish, S.M.; Eltamany, D.A.; Soliman, M.T.A. Soy Isoflavones Ameliorate Metabolic and Immunological Alterations of Ovariectomy in Female Wistar Rats: Antioxidant and Estrogen Sparing Potential. Oxidative Med. Cell. Longev. 2019, 2019, 5713606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, L.J.; Montine, T.J.; Markesbery, W.R.; Tapper, A.R.; Hardy, P.; Chemtob, S.; Dettbarn, W.D.; Morrow, J.D. Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem. 1998, 273, 13605–13612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, K.; Nishizawa, H.; Funahashi, T.; Shimomura, I.; Shimabukuro, M. Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circ. J. 2006, 70, 1437–1442. [Google Scholar] [CrossRef] [Green Version]
- Ratty, A.K.; Das, N.P. Effects of flavonoids on nonenzymatic lipid peroxidation: Structure-activity relationship. Biochem. Med. Metab. Biol. 1988, 39, 69–79. [Google Scholar] [CrossRef]
- Ming, J.; Xie, J.; Xu, P.; Ge, X.; Liu, W.; Ye, J. Effects of emodin and vitamin C on growth performance, biochemical parameters and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblycephala Yih) under high temperature stress. Fish. Shellfish Immunol. 2012, 32, 651–661. [Google Scholar] [CrossRef]
- Albera, E.; Kankofer, M. Antioxidants in Colostrum and Milk of Sows and Cows. Reprod. Domest. Anim. 2009, 44, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Pinelli-Saavedra, A. Vitamin E in immunity and reproductive performance in pigs. Reprod. Nutr. Dev. 2003, 43, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castillo, C.; Pereira, V.; Abuelo, Á.; Hernández, J. Effect of supplementation with antioxidants on the quality of bovine milk and meat production. Sci. World J. 2013, 2013, 616098. [Google Scholar] [CrossRef] [PubMed]
- Traverso, N.; Balbis, E.; Sukkar, S.G.; Furfaro, A.; Sacchi-Nemours, A.M.; Ferrari, C.; Patriarca, S.; Cottalasso, D. Oxidative stress in the animal model: The possible protective role of milk serum protein. Mediterr. J. Nutr. Metab. 2010, 3, 173–178. [Google Scholar] [CrossRef]
- Noblet, J.; Etienne, M. Body composition, metabolic rate and utilization of milk nutrients in suckling piglets. Reprod. Nutr. Dev. 1987, 27, 829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, R.H.; Toner, M.S.; Dove, H.; Atwood, C.S.; Brown, W.G. The response of first-litter sows to dietary protein level during lactation. J. Anim. Sci. 1993, 71, 2457. [Google Scholar] [CrossRef] [PubMed]
- Weaver, S.R.; Hernandez, L.L. Autocrine-paracrine regulation of the mammary gland. J. Dairy Sci. 2016, 99, 842–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, K.; Oyama, S.; Kuki, C.; Tsugami, Y.; Matsunaga, K.; Suzuki, T.; Nishimura, T. Distinct roles of prolactin, epidermal growth factor, and glucocorticoids in beta-casein secretion pathway in lactating mammary epithelial cells. Mol. Cell. Endocrinol. 2017, 440, 16–24. [Google Scholar] [CrossRef]
- Bedford, A.; Chen, T.; Huynh, E.; Zhu, C.; Medeiros, S.; Wey, D.; de Lange, C.; Li, J. Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: Potential mechanisms involved. J. Biotechnol. 2015, 196–197, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Kang, B.K.; Kim, J.Y.; Shin, K.S.; Lee, C.S.; Song, D.S. Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus. Vet. J. 2008, 177, 231–235. [Google Scholar] [CrossRef]
- Burrin, D.G.; Wester, T.J.; Davis, T.A.; Amick, S.; Heath, J.P. Orally administered IGF-I increases intestinal mucosal growth in formula-fed neonatal pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1996, 270, R1085–R1091. [Google Scholar] [CrossRef]
Items | SM | FSBM | p Value |
---|---|---|---|
Crude protein (%) | 44.72 ± 1.18 | 47.88 ± 1.42 | NS |
Isoflavone glucoside | |||
Underivatized glucosides (μg/g) | 575.12 ± 17.43 | 100.33 ± 4.56 | p < 0.001 |
Acetyl glucosides conjugates (μg/g) | 139.67 ± 10.43 | 22.70 ± 1.38 | p < 0.001 |
Malonyl glucosides (μg/g) | 872.71 ± 4.07 | 168.07 ± 6.14 | p < 0.001 |
Isoflavone aglucone | |||
Daidzein (μg/g) | 157.18 ± 4.82 | 392.37 ± 15.43 | p < 0.001 |
Glycitin (μg/g) | 55.49 ± 2.27 | 130.34 ± 5.27 | p < 0.001 |
Genistein (μg/g) | 155.76 ± 10.99 | 1210.87 ± 34.42 | p < 0.001 |
Ingredient | Day 78–84 of Gestation | Day 85–100 of Gestation | Day 100 of Gestation Lactation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn (%) | 33.9 | 33.9 | 33.9 | 33.9 | 34.8 | 34.8 | 34.8 | 34.8 | 54.0 | 54.0 | 54.0 | 54.0 |
Barley (%) | 44.0 | 44.0 | 44.0 | 44.0 | 35.0 | 35.0 | 35.0 | 35.0 | 12.3 | 12.3 | 12.3 | 12.3 |
Wheat bran (%) | 5.00 | 5.00 | 5.00 | 5.00 | - | - | - | - | - | - | - | - |
SM (%) | 13.1 | 11.1 | 9.10 | 7.10 | 11.2 | 9.20 | 7.20 | 5.20 | 13.5 | 11.5 | 9.50 | 7.50 |
FSBM (%) | 2.00 | 4.00 | 6.00 | 2.00 | 4.00 | 6.00 | 2.00 | 4.00 | 6.00 | |||
Extruded soybean (%) | - | - | - | - | 12.0 | 12.0 | 12.0 | 12.0 | 10.0 | 10.0 | 10.0 | 10.0 |
NUPRO 1 (%) | - | - | - | - | - | - | - | - | 2.50 | 2.50 | 2.50 | 2.50 |
Fish meal (%) | - | - | - | - | - | - | - | - | 1.00 | 1.00 | 1.00 | 1.00 |
HTL-306 1 (%) | - | - | - | - | 3.00 | 3.00 | 3.00 | 3.00 | 2.50 | 2.50 | 2.50 | 2.50 |
L-Lysine-HCL,98% (%) | - | - | - | - | - | - | - | - | 0.10 | 0.10 | 0.10 | 0.10 |
DL-methionine, 99% (%) | - | - | - | - | - | - | - | - | 0.05 | 0.05 | 0.05 | 0.05 |
L-Threonine, 98.5% (%) | - | - | - | - | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
Gestation-premix 2 (%) | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | - | - | - | - |
Lactation-premix 3 (%) | - | - | - | - | - | - | - | - | 4.00 | 4.00 | 4.00 | 4.00 |
Total (%) | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Calculated nutrients levels | ||||||||||||
Metabolizable energy, kcal/kg | 3029 | 3032 | 3035 | 3038 | 3208 | 3211 | 3214 | 3217 | 3306 | 3309 | 3312 | 3315 |
Crude protein, % | 14.2 | 14.3 | 14.4 | 14.5 | 15.9 | 16.0 | 16.1 | 16.2 | 16.7 | 16.8 | 16.9 | 17.0 |
Ether extract,% | 2.49 | 2.46 | 2.42 | 2.39 | 7.30 | 7.26 | 7.23 | 7.19 | 6.97 | 6.84 | 6.81 | 6.77 |
Crude fiber,% | 3.99 | 3.88 | 3.78 | 3.67 | 3.75 | 3.65 | 3.54 | 3.44 | 3.17 | 3.06 | 2.96 | 2.85 |
Lysine, % | 0.65 | 0.66 | 0.66 | 0.66 | 0.80 | 0.80 | 0.80 | 0.80 | 1.08 | 1.08 | 1.08 | 1.08 |
Total calcium, % | 0.88 | 0.88 | 0.88 | 0.88 | 0.90 | 0.90 | 0.90 | 0.90 | 0.96 | 0.96 | 0.96 | 0.96 |
Total phosphorus, % | 0.54 | 0.55 | 0.55 | 0.55 | 0.52 | 0.53 | 0.53 | 0.54 | 0.52 | 0.52 | 0.53 | 0.53 |
Items | Control | 2-FSBM | 4-FSBM | 6-FSBM |
---|---|---|---|---|
Litter size | 12.00 ± 0.98 | 11.55 ± 0.87 | 12.64 ± 0.77 | 11.09 ± 0.71 |
Alive litter size | 11.27 ± 0.83 | 10.82 ± 0.72 | 12.00 ± 0.79 | 10.45 ± 0.64 |
Survival rate at birth | 0.95 ± 0.01 | 0.94 ± 0.02 | 0.95 ± 0.02 | 0.95 ± 0.02 |
The number of weaned piglets per litter | 10.91 ± 0.39 | 10.45 ± 0.51 | 10.18 ± 0.18 | 10.18 ± 0.54 |
Average daily gain per litter (kg) | 1.58 ± 0.19 a | 1.91 ± 0.13 a | 2.04 ± 0.16 b | 1.93 ± 0.17 a |
Weight/litter (kg) | ||||
Birth | 16.98 ± 0.77 | 16.76 ± 0.94 | 18.06 ± 0.85 | 16.17 ± 1.74 |
14 day old | 34.78 ± 2.22 a | 40.43 ± 2.23 a,b | 44.18 ± 1.37 b | 41.96 ± 2.87 b |
21 day old | 50.15 ± 3.95 a | 57.01 ± 2.90 a,b | 60.95 ± 1.91 b | 56.78 ± 3.59 a,b |
Weight/piglets, kg | ||||
Birth | 1.57 ± 0.11 | 1.58 ± 0.88 | 1.54 ± 0.07 | 1.55 ± 0.11 |
14 day old | 3.17 ± 0.13 a | 3.91 ± 0.20 b | 4.37 ± 0.19 b | 4.16 ± 0.25 b |
21 day old | 4.57 ± 0.30 a | 5.53 ± 0.29 b | 6.03 ± 0.28 b | 5.65 ± 0.34 b |
Items | Control | 2-FSBM | 4-FSBM | 6-FSBM |
---|---|---|---|---|
The 1st day of lactation | ||||
GSH-Px 1 (U/mL) | 357.61 ± 10.9 1 a | 426.18 ± 13.19 b | 373.68 ± 17.04 a | 374.74 ± 17.04 a |
SOD 2 (U/mL) | 49.14 ± 0.65 | 48.26 ± 2.36 | 50.35 ± 1.23 | 48.89 ± 0.85 |
MDA 3 (nmol/mL) | 9.89 ± 0.44 a | 6.25 ± 0.29 b | 6.44 ± 0.42 b | 6.94 ± 0.71 b |
inhibition of OH− 4 (U/mL) | 213.06 ± 5.26 a | 214.12 ± 4.29 a | 222.66 ± 3.80 a,b | 231.69 ± 4.10 b |
8-ISO-PGF2α 5 (pg/mL) | 92.07 ± 2.17 a | 85.00 ± 1.27 b | 82.61 ± 2.00 b | 86.19 ± 1.10 b |
The 17th day of lactation | ||||
GSH-Px 1 (U/mL) | 428.28 ± 19.00 a | 479.02 ± 17.2 b | 449.68 ± 12.67 a,b | 443.12 ± 9.28 a,b |
SOD 2 (U/mL) | 41.95 ± 2.89 a | 45.78 ± 1.45 a,b | 49.22 ± 1.11 b | 45.35 ± 1.48 a,b |
MDA 3 (nmol/mL) | 7.52 ± 0.15 a | 4.02 ± 0.46 b | 4.66 ± 0.28 b | 6.37 ± 0.34 c |
inhibition of OH− 4 (U/mL) | 160.77 ± 4.10 a | 163.60 ± 3.03 a,b | 174.15 ± 3.72 b | 205.76 ± 3.45 c |
8-ISO-PGF2α 5 (pg/mL) | 103.36 ± 3.88 a | 100.15 ± 4.00 a | 41.91 ± 2.57 b | 72.64 ± 1.83 c |
Items | Control | 2-FSBM | 4-FSBM | 6-FSBM |
---|---|---|---|---|
The 1st day of lactation | ||||
Estrogen (pg/mL) | 74.96 ± 1.87 a | 75.59 ± 0.32 a | 76.27 ± 2.77 a | 88.05 ± 1.86 b |
Prolactin (ng/mL) | 36.37 ± 2.54 | 36.96 ± 2.96 | 39.38 ± 1.78 | 38.96 ± 2.00 |
IGF-1 1 (ng/mL) | 5.95 ± 0.11 | 6.02 ± 0.34 | 6.55 ± 0.11 | 6.51 ± 0.26 |
EGF 2 (ng/L) | 204.32 ± 9.19 a | 199.01 ± 5.54 a | 226.08 ± 6.56 b | 231.3 ± 6.39 b |
Cortisol (ng/mL) | 87.12 ± 2.00 a | 80.73 ± 1.89 b | 71.22 ± 1.60 c | 75.86 ± 2.64 b,c |
The 17th day of lactation | ||||
Estrogen (pg/mL) | 69.65 ± 1.94 a | 76.50 ± 1.81 b,c | 71.61 ± 2.73 a,b | 79.18 ± 1.78 c |
Prolactin (ng/mL) | 48.41 ± 2.19 a | 51.02 ± 2.47 a | 40.79 ± 3.06 b | 51.01 ± 2.31 a |
IGF-1 1 (ng/mL) | 6.33 ± 0.145 a | 6.49 ± 0.18 a,b | 6.95 ± 0.18 b,c | 7.05 ± 0.19 c |
EGF 2 (ng/L) | 225.37 ± 9.27 a | 214.95 ± 13.37 a | 243.51 ± 11.82 a,b | 269.85 ± 5.61 b |
Cortisol (ng/mL) | 75.96 ± 0.50 a | 74.66 ± 1.14 a | 66.76 ± 1.24 b | 70.45 ± 1.73 c |
Items | Control | 2-FSBM | 4-FSBM | 6-FSBM |
---|---|---|---|---|
Fat (%) | 3.90 ± 0.13 | 4.79 ± 0.40 | 4.50 ± 0.99 | 4.73 ± 0.37 |
Protein (%) | 13.56 ± 0.66 a | 15.08 ± 0.53 a,b | 16.76 ± 0.83 b | 17.59 ± 1.39 b |
Lactose (%) | 2.52 ± 0.38 | 2.74 ± 0.10 | 2.48 ± 0.28 | 2.19 ± 0.31 |
TS 1 (%) | 22.49 ± 0.70 a | 25.39 ± 0.85 a,b | 26.67 ± 1.23 b | 27.7 ± 1.31 b |
SNF 2 (%) | 17.73 ± 0.78 a | 21.30 ± 1.59 a,b | 22.48 ± 1.30 b | 21.82 ± 1.26 a,b |
IgA 3 (μg/mL) | 3.33 ± 0.15 | 3.36 ± 0.18 | 3.67 ± 0.15 | 3.74 ± 0.16 |
IgG 3 (mg/mL) | 2.09 ± 0.03 a | 2.19 ± 0.06 a | 2.45 ± 0.12 b | 2.30 ± 0.08 a,b |
IgM 3 (μg/mL) | 13.45 ± 0.35 | 14.06 ± 0.40 | 14.17 ± 0.28 | 14.03 ± 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, W.; Yin, X.; Yao, J.; Cheng, J.; Zhang, J.; Xu, W.; Mu, Y.; Xu, J. Fermented Soybean Meal Affects the Reproductive Performance and Oxidative Status of Sows, and the Growth of Piglets. Animals 2021, 11, 597. https://doi.org/10.3390/ani11030597
Luo W, Yin X, Yao J, Cheng J, Zhang J, Xu W, Mu Y, Xu J. Fermented Soybean Meal Affects the Reproductive Performance and Oxidative Status of Sows, and the Growth of Piglets. Animals. 2021; 11(3):597. https://doi.org/10.3390/ani11030597
Chicago/Turabian StyleLuo, Wenli, Xiaofeng Yin, Jianbo Yao, Jinlong Cheng, Jing Zhang, Weina Xu, Yuyun Mu, and Jianxiong Xu. 2021. "Fermented Soybean Meal Affects the Reproductive Performance and Oxidative Status of Sows, and the Growth of Piglets" Animals 11, no. 3: 597. https://doi.org/10.3390/ani11030597
APA StyleLuo, W., Yin, X., Yao, J., Cheng, J., Zhang, J., Xu, W., Mu, Y., & Xu, J. (2021). Fermented Soybean Meal Affects the Reproductive Performance and Oxidative Status of Sows, and the Growth of Piglets. Animals, 11(3), 597. https://doi.org/10.3390/ani11030597